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Abstract: Aspect-based sentiment classification (ABSC) aims to predict sentiment polarities of
different aspects within sentences or documents. Many previous studies have been conducted
to solve this problem, but previous works fail to notice the correlation between the aspect’s sentiment
polarity and the local context. In this paper, a Local Context Focus (LCF) mechanism is proposed for
aspect-based sentiment classification based on Multi-head Self-Attention (MHSA). This mechanism is
called LCF design, and utilizes the Context features Dynamic Mask (CDM) and Context Features
Dynamic Weighted (CDW) layers to pay more attention to the local context words. Moreover,
a BERT-shared layer is adopted to LCF design to capture internal long-term dependencies of local
context and global context. Experiments are conducted on three common ABSC datasets: the
laptop and restaurant datasets of SemEval-2014 and the ACL twitter dataset. Experimental results
demonstrate that the LCF baseline model achieves considerable performance. In addition, we
conduct ablation experiments to prove the significance and effectiveness of LCF design. Especially,
by incorporating with BERT-shared layer, the LCF-BERT model refreshes state-of-the-art performance
on all three benchmark datasets.
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1. Introduction

Aspect-based sentiment classification (ABSC) [1,2] is a fine-grained Natural Language Processing
(NLP) task, and it is a significant branch of sentiment analysis [3–6]. Traditional sentiment analysis
approaches [7–10] mainly focus on inferring sentence-level or document-level sentiment polarities
(typically positive, negative, or neutral in triple-classification). However, the ABSC task, also known
as aspect-based sentiment analysis (ABSA), differs from traditional sentiment analysis. It aims to
predict independent sentiment polarities for targeted aspects within the same sentence or document.
Aspect-based sentiment classification local contexts people make full use of the sentiment polarity,
subjectivity and further information from targeted aspects. The ABSC datasets are composed of plenty
of contexts and aspects. For example, reviews from customers usually comment on different aspects,
and different aspects may deliver different sentiment polarities. Given sentences like “while the food is
so good and so popular that waiting can really be a nightmare”. Definitely, the customer compliments
the food but criticizes the service. Due to certain reasons, the restaurant makes the customer wait
for a long while. Generally, traditional sentence-level or document-level sentiment polarity mining
methods cannot precisely predict polarities for specific aspects as they do not consider the fine-grained
polarities of different aspects.

Deep Neural Networks (DNNs), such as Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs), are employed in NLP tasks in recent years, and those DNN-based models are
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proven to be efficient as well as an effective way to learn and deal with features of documents, sentences,
words, and even tokens. Self-attention, which has been introduced in transformer [11] architecture, is a
new attention mechanism compared to the traditional attention mechanism [12–14] to capture internal
correlation of input representations. Experimental results have proved that self-attention performs
much better than traditional DNN architectures in capturing features for Sequence to Sequence
(Seq2Seq) tasks. BERT [15] is a pretrained linguistic model that can be adapted to many NLP tasks;
it attained state-of-the-art performance on 11 NLP tasks. LCF design incorporates pretrained BERT
model with LCF design as shared layers, and it outperforms state-of-the-art performance among three
ABSC datasets.

Almost none of the previous studies took the significant emotional information contained in
aspect’s local context into considerations. Indeed, traditional DNN-based methods only focus on
analyzing the correlations of the global context and sentiment polarities before identifying the
sentiment polarity of targeted aspect based on global context features. However, LCF design
notices that sentiment polarity of an aspect is more relevant to the context words near to itself.
Moreover, the context words far from the aspect probably tend to cause negative influence to precisely
predict the polarity of specific aspect (see Figures 1 and 2). For example, semantics, adjectives, adverbs,
and other subjective presentations are usually placed to the aspects which they modify. Further, they
are more semantic-relative to the aspect which they are closed to. In that case, Semantic-Relative
Distance (SRD) (see Section 3.2) is proposed to determine if a contextual word is the local context of a
specific aspect. CDM and CDW layers concentrate on local context with the help of SRD. Based on
Multi-Head Self-Attention (MHSA) different from previous methods, LCF design models learn the
features from the sequence-level global context, but also from local context words associated with a
specific aspect. LCF design compute local context features according to SRD.

The main contributions of this paper are as follows:

• This paper proposes LCF design models, which utilize self-attention to capture local context
features and global context features concurrently. LCF design models combine local context
features and global context features to infer sentiment polarity of targeted aspect.

• We introduce SRD to evaluate the dependency between contextual words and aspects. SRD is
significant for figuring out local context, and features of contextual words in SRD threshold will
be preserved and focused.

• This paper implements CDM and CDW layer to enforce LCF design models to pay more attention
to local context words of specific aspect. The CDM layer focuses on local context by masking
output representations of less-semantic-relative contextual words. The CDW layer weakens the
features of less-semantic-relative contextual words according to SRD.

• Experiments conducted for ablated LCF design models to evaluate the significance and
effectiveness of LCF design architectures. Besides, extra experiments are also carried out to
evaluate the effectiveness of different SRD thresholds.

Figure 1. Different influence of context words on sentiment polarity prediction. Only the impact of
typical sentimental context words is demonstrated.



Appl. Sci. 2019, 9, 3389 3 of 22

Figure 2. Different influence of context words on sentiment polarity prediction. Only the impact of
typical sentimental context words is demonstrated.

2. Related Works

In recent years, a variety of methods have been introduced to deal with the ABSC task, including
traditional machine learning methods and neural network methods. In this section, we will introduce
the related work of aspect-level sentiment classification, including traditional machine learning
methods and deep learning methods.

2.1. Traditional Machine Learning Methods

In general, traditional machine learning approaches [16,17] for the ABSC task are primarily based
on feature engineering. This also means that a lot of time is spent collecting and analyzing data, then
designing features based on the characteristics of the dataset and obtaining enough language resources
to construct lexicons. Supported Vector Machine (SVM) [16] is a traditional machine learning method
and is applied to solve aspect-level sentiment classification and achieve a considerable performance.
However, consistent with most traditional machine learning methods, this method is very burdensome
and inefficient to design features manually. In addition, when the dataset changes, the performance of
the method is greatly affected. Therefore, the methods based on traditional machine learning have
poor generality and are difficult to apply to a variety of datasets.

2.2. Deep Learning-Based Methods

Recent works are growing to combine with Neural Networks (NN) because NN-based methods
equipping with the remarkable ability to capturing original features, which can map the features into
continuous and low-dimensional vectors without feature engineering.

Word embedding [18] is the basis of most DNN-based methods, which represents natural language
as continuous low-dimensional vectors and learns interfeatures of natural language by operating the
vectors. Word2vec [19], PV [20], and GloVe [21] are the pretrained word embeddings. These pretraining
word embeddings are all trained on a large amount of text corpus (a typical source of text data is
the corpus of Wikipedia). DNN-based methods map each word into a vector and learning the vector
representations of the words according to the word embeddings. Pretrained word embedding can not
only accurately reflect the relationship between words, but also significantly improve the performance
of DNN-based models.

Attention mechanism [22], which is applied in plenty of DNN-based models, improves the
performance for most NN-based models. The attention mechanism takes advantage of the semantic
correlation of context and aspect to calculate the attention weights for context words, enforcing
DNN-based models to obtain fine-grained aspect-level sentiment polarity. DNNs become very popular
and play a more important role in NLP tasks than traditional machine learning methods, especially
RNNs and CNNs. However, neural networks usually apply backpropagation to update the weight
of hidden layer of the network. When the network is deep, the gradient vanishing problem occurs,
which causes the weight of the hidden layer close to the input layer to be updated very slowly. It is
a long-standing issue in the neural network. Long Short-Term Memory (LSTM) [23] is an advanced
RNN network that can alleviate the gradient vanishing problem. However, like most RNNs, LSTMs
can hardly be trained in parallel and they tend to be time-consuming since they are time-serial
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neural networks. Moreover, LSTMs are not suitable to process the interactive correlation of context
and aspect, which would cause a tremendous loss of aspect information. TD-LSTM is proposed by
the authors of [24], an RNN-based architecture that can obtain context features from both left and
right sides. ATAE-LSTM [12] applies an attention mechanism and assembles the representations of
aspect and context by concatenating them. ATAE-LSTM enables aspects to participate in computing
attention weights.

Previous works regard targeted aspects such as independent and auxiliary information.
However, experimental results show that these methods have limited effectiveness improvement
for ABSC task. IAN, which is proposed by the authors of [13], generates the representations of
context and aspect. IAN applies attention mechanism to interactively learn the features of context
and targeted aspect, which enhances the interactively-learning process of aspect and context. IAN
first proposed the interactive learning of context and aspect words. RAM [25] adopts multilayer
architecture based on bidirectional LSTMs, and each layer contains attention-based aggregation of
token features and Gated Recurrent Units (GRU [26]) to learn the sentence features. For the first
time, RAM noticed varying degrees of contribution to learning from different contexts. MGAN [27]
introduces a novel multigrained attention network, which uses a fine-grained attention mechanism to
capture the word-level interaction between aspect and context.

A notable trend is that the pretrained model has gradually become a research hotspot of the ABSC
task. The main characteristic of the pretraining model is to train a highly universal Language Model
(LM) based on massive corpus resources. The pretraining model can be applied to a large number of
NLP tasks and significantly improve the performance of each task. ELMo [28] and GPT [29], which are
based on LSTM and transformer, respectively, are pretrained language models designed to improve the
performance of many NLP tasks. In addition, BERT-PT [30] explores a novel post-training approach
for question answering (QA) task on the pretrained BERT language model, which can be adapted to
aspect-level sentiment classification task. BERT-SPC is the BERT text pair classification model, which
is adapted to finish the ABSC task by the authors of [31]. BERT-SPC prepares the input sequence by
appending aspect to contexts, regarding context and aspect as two segments.

3. Methodology

In this paper, an LCF design is implemented with two embedding layers. In the LCF baseline
model, GloVe [21] word embedding is adopted as the embedding layer to accelerate the learning
process and attain better performance. The LCF baseline model is called as LCF-GloVe. As for another
architecture of LCF design, we substitute GloVe embedding layer and feature extractor layer with
BERT shared layer, the LCF-BERT model. A shortcut of the LCF design overall architecture is shown
in Figure 3.

Apart from the embedding layer, the LCF-GloVe is slightly different from LCF-BERT, as LCF-GloVe
mainly relies on Multi-Head Self-Attention instead of BERT-shared layer to learn local context features
and global context features respectively. Moreover, the input sequence for LCF-GloVe could be slightly
different between local context processor and global context processor. The LCF-GloVe requires the
input of the whole context sequence accompanied with aspect.

The LCF-BERT model attains a dramatically high performance compared to current state-of-the-art
models. Motivated by the BERT-SPC model, the input of global context processor of LCF-BERT model
adopts the context input sequence consistent with BERT-SPC [31]. In the local context sequence, aspects
will be preserved, because the LCF design can learn the interactive relation between context and aspect,
which strengthens the capability of LCF design to determine the deep correlation of context and aspect.
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Figure 3. Overall architecture of LCF design. BERT-shared layer is alternative to substitute for
embedding layer and Pre-Feature Extractor layer. MH Self-Attention: Multi-Head Self-Attention.

3.1. Task Definition

For aspect-based sentiment classification, the prepared input sequences for model generally
consist of context sequence and aspect sequence, which enables the model to learn the correlation
of context and aspect. Suppose that s = {w0, w1, . . . , wn} is an input context sequence with aspect
included, the sequence contains n words including targeted aspects. st =

{
wt

0, wt
1, . . . , wt

m
}

is a targeted
aspect sequence. Meanwhile, st is a subsequence from s, which is composed of m(m ≥ 1) words.

3.2. Semantic-Relative Distance

The majority of previous works divide the input sequence into aspect sequence and context
sequence and modeling for their interrelation. However, this paper proposes a new idea: apart
from the global context, the local context of targeted aspects contains more significant information.
Therefore, one of the most important things is how to determine whether a contextual word belongs to
the local context of a specific aspect or not. In order to solve this problem, this paper proposes SRD,
which aims at assisting models to capture local contexts.

LCF design counts tokens between each contextual token towards specific aspect as the SRD of all
token-aspect pairs (see Figures 4 and 5). For example, if the SRD threshold is set to be 5, each context
word whose SRD towards an aspect less than the threshold will be regarded as the local context.
Take the same review example as mentioned above, “while the food is so good and so popular that



Appl. Sci. 2019, 9, 3389 6 of 22

waiting can really be a nightmare”, for the aspect of food, its local contexts words are while the [asp] is
so good and so”, [asp] represents the aspect sequence, which may be composed of several words or
tokens. In this local context sequence, [asp] means “food”. LCF calculates the SRD as follows.

SRDi = |i− Pa| − b
m
2
c (1)

where i and Pa are the position of the contextual word and central position of aspect, respectively. m is
the sequence length of the aspect. SRDi represents for the SRD between the i-th contextual token and
specific aspect.

LCF design models completely preserve original features of aspects and its local context.
Through the experiments and analysis, it is concluded that SRD is of great importance for LCF models.

3.3. Embedding Layer

The embedding layer is the basic layer of LCF design models. Each word and token will be
mapped to a vector space through embedding layers. In LCF design, GloVe word embedding and the
BERT-shared layer are alternatives for the embedding layer.

3.3.1. GloVe Word Embedding

LCF-GloVe adopts the pretrained GloVe word embedding to accelerate the learning process and
retain better performance. Suppose L ∈ Rde×|V| is the GloVe embedding, de is the dimension of
embedding vector, and |V| is the size of vocabulary. Then, each contextual word wi will be embedded
into a vector vi ∈ Rde .

3.3.2. BERT-Shared Layer

The BERT-shared layer is a pretrained Seq2Seq model for language understanding, and it can be
regarded as the embedding layer. In order to achieve better performance, the fine-tuning learning
process is necessary and indispensable. LCF-BERT adopts two independent BERT-shared layers to
model local context sequence features and global context features, respectively. For the input of local
context and global context representations Xl and Xg, respectively, we have

Ol
BERT = BERTl

(
Xl
)

(2)

Og
BERT = BERTg (Xg) (3)

Ol
BERT and Og

BERT are the output representations of local context and global context processor,
respectively. BERTl and BERTg are the corresponding BERT-shared layer modeling for local context
and global context, respectively.

3.4. Pre-Feature Extractor

The BERT-shared layer is powerful enough to capture context features. However, LCF-GloVe
eschews the BERT-shared layer and adopts GloVe word embedding as the embedding layer. In order
to improve the capability of LCF design for learning semantic features, we design the Pre-Feature
Extractor (PFE). PFE is composed of MHSA layer and Position-wise Convolution Transformation [31]
(PCT) layer.

3.4.1. Multi-Head Self-Attention

Based on a self-attention mechanism, Multi-Head Self-Attention performs multiple attention
functions to compute attention scores for each contextual word. For the self-attention function, Scaled
Dot Product Attention (SDA) is recommended as the identical attention function, for it is faster and
more efficient in the calculation.
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Suppose XSDA is the input representation embedded through embedding layer. The definition of
SDA is as follows,

SDA(XSDA) = So f tmax
(

Q · KT
√

dk

)
·V (4)

Q, K, V = fx(XSDA) (5)

fx(XSDA) =


Q = XSDA ·Wq

K = XSDA ·Wk

V = XSDA ·Wv
(6)

Q, K, andV are obtained by multiplying the output representation of the upper layer’s hidden
states by their respective weight matrix Wq ∈ Rdh×dq , Wk ∈ Rdh×dk , Wv ∈ Rdh×dv . And these weight
matrices are trainable during learning process, Dimensions dq, dk, dv are equal to dh ÷ h, dh is the
dimension of hidden layer. The attention representations learned by each head will be concatenated
and transformed by multiplying a vector WMH . In LCF design, the number of attention heads, h, is set
to be 12. Suppose Hi is the representation learned by each attention head, then we have

MHSA(X) = Tanh
(
{H0; H1; . . . ; Hh} ·WMH

)
(7)

where “;” denotes vector concatenation WMH ∈ Rhdv×dh . Additionally, a tanh activation function is
deployed for MHSA encoder to enhance learning capability of the representations.

Figures 4 and 5 are the local context focus design diagrams during the encoding process.

3.4.2. Position-Wise Convolution Transformation

Position-Wise Convolution Transformation (PCT) is adapted to the LCF design as a trick.
According to experimental results and sufficient analysis, it can slightly improve the performance of
LCF design on laptop dataset. The input representations for PCT layer is the output representation of
MHSA encoder. The definition of PCT is as follows

PCT (Omhsa) = ReLU (Omhsa ∗W1 + b1) ∗W2 + b2 (8)

ReLU denotes the activate function of ReLU; W1, W2, and ∈ Rd2
h are the traniable weights vectors

of the two convolutional kernels, respectively; and b1and b2 ∈ Rdh are the biases vectors of the two
convolutional kernels.

Then, the output representations of PFE layer generated are as follows

Ol−embed
mhsa = MHSAl

(
Ol

embed

)
(9)

Og−embed
mhsa = MHSAg

(
Ol

embed

)
(10)

Ol
PFE = PCTl

(
Ol−embed

mhsa

)
(11)

Og
PFE = PCTg

(
Og−embed

mhsa

)
(12)

Word embeddings of the local context and global context, Ol
embed and Og

embed, respectively, are

learned by the MHSA encoder, giving out Ol_embed
mhsa and Og_embed

mhsa . Og
PFE are the output representations of

local context and global context processed by corresponding PFE layer. PCTlandPCTg denote the PCT
layers that aim at improving the performance on laptop dataset.
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3.5. Feature Extractor

The LCF design deploys a Feature Extractor (FE) layer to learn features of the local context and
global context. If only taking the local context into consideration, it would inevitably ignore the
features of less-semantic-relative context words. In order to fully retain the features contained in the
global context and learn the correlation between global context and aspect, LCF models take the global
context features as a supplement to enhance LCF design.

The local context feature extractor is much different from global context feature extractor, for it
contains a local context focus layer, while the global context feature extractor is only equipped with an
MHSA encoder.

3.5.1. Local Context Focused Layer

Figures 4 and 5 are the abstracts of the local context focus mechanisms. Each token in the bottom
of the figure comes from the input sequence, and the position (POS) in the top of the figure represents
the output position of the corresponding token. The self-attention mechanism enables all tokens to
calculate the attention scores with other tokens in parallel and react in the corresponding output
position. To simplify the picture, we select two tokens to show their context-focused process with other
tokens. After calculating the output of all tokens from the attention layer, the output features on each
output position above the SRD threshold will be masked or weakened, while the output features of
local context words will be completely retained.

Figure 4. Diagram of the local context focus mechanism. The features of the output position (POS) that
the dotted arrow points to will be masked or weighted down and the features of the output position
that the solid arrow points to will be completely preserved. The example of context word in this picture
is “right”.

Figure 5. Diagram of the local context focus mechanism. The example of context word in this picture
is “Good”.

The input sequences of the LCF design are mainly based on the global context. LCF design models
focus on local context by adopting local context focus layer. This paper implements two architectures
to focus on local contexts CDM and CDW (see Figures 4 and 5). We apply MHSA encoders instead
of CNN or RNN architecture due to the following considerations. On the one hand, MHSA is more
powerful to capture context features. On the other hand, self-attention calculates correlation attention
scores for every contextual word, and, according to the self-attention definition, the word itself holds
the highest score on its corresponding output position generally.

Table 1 is the algorithm flow of CDM and CDW mechanism. LCF design layers preserve
the features of semantic-relative contextual words while masking or weighing the features of
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less-semantic-relative contextual words. So the less-semantic-relative context can participate in the
encoding process and their passive influence are alleviated.

Table 1. Algorithm flow of CDM and CDW mechanism.

1 Accepting the out representation Ol
PFE or Ol

BERT delivered
from local context processor

2
Calculating the SRDs for each context word regarding to
a specific aspect

3

For CDM mechanism: Constructing the mask matrices
M for the input sequence according to SRDs
For CDW mechanism: Constructing the weighting matrices
W for the input sequence according to SRDs

4
Applying a matrix element-wise product operation for
Ol

PFE and M or Ol
BERT and M

5 Output the representation of local context words Ol

3.5.2. Dynamic Mask for Context Features

CDM layer masks the less-semantic-relative context features learned by PFE or BERT-shared
layers. Although it is easy to mask the less-semantic-relative contextual words in the input sequence, it
also will absolutely discard the features of less-semantic-relative contextual word. With the CDM layer
deployed, only the features of the less-semantic-relative context itself on the corresponding output
position will be masked. The correlative representations between less-semantic-relative context word
and aspect are reserved on corresponding output positions.

All masked features will be set to zero vectors. Another MHSA encoder is deployed to learn the
masked context features. In this term, LCF design can alleviate the influence of less-semantic-relative
contexts, but reserve the correlation between each contextual word and aspect. Suppose Ol

PFE is
the output representation of local context feature extractor, CDM focuses on the local context by
constructing the mask vectors Vm

i for each less-semantic-relative context word, so we get the mask
matrices M.

Vi =

{
E SRDi ≤ α

O SRDi > α
(13)

M = [Vm
0 , Vm

1 , . . . Vm
n ] (14)

Ol
CDM = Ol

PFE ·M (15)

where α is the SRD threshold. M is the mask matrices for the representation of input sequences and n
is the length of input sequence including aspect. E ∈ Rdh is the ones vector and O ∈ Rdh is the zeros
vectors. Ol

CDM is the output of CDM layer. “.” denotes the dot product operation of the vectors.

3.5.3. Dynamic Weighted for Context Features

In addition to CDM layer, another architecture is implemented to focus on local context words,
the Context features Dynamic Weighted (CDW) layer. While features of a semantic-relative contextual
word will be absolutely preserved, less-semantic-relative context features will be weighted decay.
In this design, features of the contextual word that is far from the targeted aspect will be reduced
according to their SRD. CDW weights the features by constructing the weighted vector Vw

i for each
less-semantic-relative context word, here is the formula to get mask matrices M for an input sequence:

Vi =

{
E SRDi ≤ α

SRDi−α
n · E SRDi > α

(16)
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W = [Vw
0 , Vw

1 , . . . Vw
n ] (17)

Ol
CDW = Ol

PFE ·W (18)

where SRDi is the SRD between the i-th contextual token and a specific aspect. n is the length of the
input sequence. α is the SRD threshold. Ol

CDW is the output of CDW layer. “.” denotes the vector dot
product operation.

The output representation of local context FE can be attained based on the output of CDW
or CDM.

For CDM layers:
Ol = MHSA

(
Ol

CDM

)
(19)

For CDW layers:
Ol = MHSA

(
Ol

CDW

)
(20)

Both the output representations of CDM and CDW layer are denoted as Ol , and they are alternative
and independent.

3.5.4. Global Context Features Extractor

In global context FE, the output of the features learned by MHSA encoder is as follows

Og = MHSA
(

Og
PFE

)
(21)

where Og
PFE is the representation learned by global context PFE layer.

3.6. Feature Interactive Learning Layer

The Feature Interactive Leaning (FIL) layer is deployed to interactively learn the features of the
global context. FIL first concatenates the representations of OlandOg, then projects them into Olg

pool
and applies an MHSA encoding operation.

Olg =
[
Ol ; Og

]
(22)

Olg
dense = W lg ·Olg + blg (23)

Olg
FIL = MHSA

(
Olg

dense

)
(24)

W lg ∈ Rdh×2dh and blg ∈ Rdh are the weights and bias vector of the dense layer, respectively; an
MHSA encoder will encode the Olg

dense, then output the interactively learned features Olg
FIL.

3.7. Output Layer

In the output layer, the representation learned by feature interactive learning layer is pooled by
extracting the hidden states on the corresponding position of the first token. Finally, a Softmax layer is
applied to predict the sentiment polarity.

Xlg
pool = POOL

(
Olg

FIL

)
(25)

Y = So f tmax
(

Xlg
pool

)
=

exp(Xlg
pool)

∑C
k=1 exp(Xlg

pool)
(26)

where C is the number of classes and Y is the sentiment polarity predicted by LCF design model.
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3.8. Model Training

The LCF design includes LCF-GloVe and LCF-BERT; most of the architectures are identical except
the embedding layer and PFE layer. For the LCF-GloVe model, the input sequence for local context
processor and global context processor is the whole review, e.g., “while the food is so good and so
popular that waiting can really be a nightmare”. For the LCF-BERT model, the input sequence for the
local context processor will be refactored to “[CLS]” + “while the food is so good, it is so popular that
waiting can really be a nightmare.” + “[SEP]”, and the input sequence for global context processor are
the same as the input sequence of BERT-SPC, e.g., “[CLS]” + “while the food is so good and so popular
that waiting can really be a nightmare.” + “[SEP]” + [asp] + “[SEP]”.

Similar to LCF-GloVe, the MHSA encoders of LCF-BERT are independent. Moreover,
the BERT-shared layers for local context processor and global context processor are independent.

LCF design applies the cross-entropy loss function for LCF design with L2 regularization, and we
define the loss function as follows.

L =
C

∑
1

ŷi log yi + λ ∑
θ∈Θ

θ2 (27)

where C is the number of classes, λ is the L2 regularization parameter, and Θ is the parameter set of
the LCF model.

4. Experiments

4.1. Datasets and Hyperparameters

Experiments are conducted on three ABSC benchmark datasets, a review dataset of laptop, a
review dataset of restaurants from SemEval-2014 [1] and a common ACL 14 twitter social dataset
introduced by [32]. According to the experimental results, the performance of the LCF design on
the datasets of three topics (restaurant reviews, laptop reviews, and tweets) has been significantly
improved, which indicates that the LCF design does not rely on specific datasets or corpora and it is
applicable to most topics of datasets, which is due to the original characteristics of natural language
(Suppose people comment on multiple aspects in a review, then, the context word used to judge an
aspect is likely to be near the aspect generally, and not far from the aspect word to be commented
on.). These datasets are adopted by most of the proposed models and are the most popular datasets of
ABSC task, and a large number of experiments have been carried out on these datasets for comparison.
These datasets provide labeled aspects such as the sentiment polarities of the aspects. All aspects
of the above datasets are labeled in three categories of sentiment polarities: positive, neutral, and
negative. In the experiments, these datasets are original and under no refactor, and no conflicting label
is removed. In that case, it can provide a better estimate of the real performance of the model. Table 2
demonstrates the details of three datasets (Generally, both LCF-GloVe and LCF-BERT converge within
three epochs during the training process.).

Table 2. Detail of benchmark datasets.

Datasets Positive Negative Neural

Train Test Train Test Train Test

Laptop 994 341 870 128 464 169
Restaurant 2164 728 807 196 637 196

Twitter 1561 173 1560 173 3127 346

To evaluate the precise difference of performance, the hyperparameters are kept consistent for
LCF-GloVe model and LCF-BERT model except for learning rate, because BERT-shared layer requires
very small learning rate during fine-tuning process [15]. For LCF-GloVe, the learning rate is set to



Appl. Sci. 2019, 9, 3389 12 of 22

1× 10−3. The hidden dimension and embedding dimension, dh, and de, are set to 300. For LCF-BERT,
the learning rate is set to 2× 10−5. The hidden dimension and embedding dimension are set to 768 in
LCF-BERT. For both LCF design models, dropout rates are set to 0, L2 regularization is set to 1× 10−5,
and the batch size is set to 16. In addition, LCF models utilize the Adam optimizer [33].

All hyperparameters in this paper have been supported by a large number of comparative
experiments. Among them, most of the hyperparameters follow the common hyperparameter settings
of this task, such as the word embedding dimension and learning rate of LCF-GloVe model. We
tried different thresholds to find the optimal threshold for each dataset (see Table 5). The fine-tuning
process of BERT is very sensitive to the learning rate. Only a small learning rate can maximize Bert’s
performance, which has been illustrated in the original paper of BERT. Through the experiments,
we observed that when batch size was large, the instability of regularization between layers would
reduce the performance of the model, so the optimal batch size of 16 was adopted. Large dropout will
prolong the convergence rate of the LCF-BERT model, and experimental results show that they have
no obvious influence on LCF design. Therefore, after comprehensive consideration, dropout of the
model is designed to be 0. For both LCF design models, accuracy and Macro-F1 score are adopted to
evaluate the performance of LCF designs. Because experimental results tend to fluctuate, this paper
chooses the best experimental results to make comparisons.

4.2. Comparison Models

We evaluate the performance of the LCF design on three datasets and compared with multiple
baseline models. The results reveal that LCF design can greatly improve the state-of-the-art
performance on three data sets, especially the LCF-BERT model. The LCF design models are compared
with the following models.

TD-LSTM [24] TD-LSTM divides the input sequences into left context and right context towards
a specific aspect. Moreover, two LSTM networks are adopted to modeling the left context sequence
and right context sequence with targeted aspect respectively. Both left and right target-dependent
representation are processed by corresponding LSTM networks and are concatenated as a unity to
predict sentiment polarity of targeted aspect.

ATAE-LSTM [12] ATAE-LSTM implements an attention mechanism to assist mode to focus on
more relative context to targeted aspects. Meanwhile, ATAE-LSTM appends aspect embeddings with
each word embedding, which strengthens model by learning the hidden relation between context
and aspect.

IAN [13] IAN generates representations of targeted aspects and context by two LSTM
networks, respectively. IAN learns the representations of targeted aspect and context interactively.
Interactive attention mechanism brings a considerable performance improvement.

RAM [25] RAM improves the MemNet [34] by representing memory with BiLSTM neural
networks. Meanwhile, a gated recurrent unit network was introduced to learn the features processed
multiple attention mechanism.

BERT-PT [30] BERT-PT explores a novel post-training approach on the BERT pretrained model to
improve the performance of fine-tuning of BERT for RRC task. Additionally, the BERT-PT method can
be adapted to ABSC task.

BERT-SPC [31] BERT-SPC is the Sentence Pair Classification task of pretrained BERT model.
BERT-SPC for ABSC task constructs the input sequence as “[CLS]” + global context + “[SEP]” + [asp] +
“[SEP]”.

4.3. Overall Performance Comparison

Table 3 demonstrates the main experimental results. According to experimental results, LCF
design models perform well among three benchmark datasets, especially on the laptop dataset
and restaurant dataset. The LCF-BERT model attains impressive improvement for outperforming
state-of-the-art performance. Compared to the BERT-PT model, it improves the performance by 3–4%
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in the laptop dataset and 2–3% in the restaurant dataset. However, compared to MGAN, the LCF-GloVe
model achieves a limited performance in the twitter dataset. After further analysis, it is found that
the twitter dataset is a social dataset, and there are lots of misspelled words and unknown tokens.
Moreover, it is found that plenty of tweets are composed of informal linguistic expressions as well
as grammatically incorrect expressions, causing difficulty when extracting high-quality semantic
representations. Generally, the CDM layer works well in the LCF-GloVe model. Probably the local
context plays a more important role in feature extraction since MHSA has a limited power to extract
global context features. In addition, the CDW layer achieves remarkable performance in the LCF-BERT
model, because the BERT-shared layer is more powerful when extracting and learning context features,
including the local context and global context.

Table 3. Experimental results of performance. “Glo-CDM” and “Glo-CDW” indicate that both global
context and local context participate in the learning process. We set superior SRD thresholds for LCF
designs (see Section 4.5.5). We use “ - ” to represent unreported experimental results. The top two
scores are in bold.

Models
Laptop Restaurant Twitter

Accuracy (%) F1 (%) Accuracy (%) F1 (%) Accuracy (%) F1 (%)

Baselines

TD-LSTM 68.13 - 75.63 - 70.8 69
ATAE-LSTM 68.7 - 77.2 - - -

IAN 72.1 - 78.6 - - -
RAM 74.49 71.35 80.23 70.8 69.36 67.30

MGAN 75.39 72.47 81.25 71.94 72.54 70.81

BERT Models BERT-PT 78.07 75.08 84.95 76.96 - -
BERT-SPC 80.25 77.41 85.98 78.79 75.29 73.63

LCF-GloVe Glo-CDM 76.02 70.58 82.5 73.92 72.25 70.92
Glo-CDW 75.24 71.46 81.61 72.26 71.82 69.83

LCF-BERT Glo-CDM 82.29 79.28 86.52 80.4 76.45 75.52
Glo-CDW 82.45 79.59 87.14 81.74 77.31 75.78

The experiments show that the local context focus mechanism is applicable to the self-attention
and can achieve excellent results. However, while applied into many kinds of DNNs, the performance
of local context focus layer in RNNs (LSTM and GRU) is not optimal. At the same time, local context
focus mechanism provides a new approach to fine-grained aspect-level sentiment classification, which
significantly avoids the influence of distant context in the mechanism of self-attention, and achieves a
state-of-art effect on the three commonly used ABSC datasets. Once applied to different ABSC models,
the local context focus mechanism will bring significant performance improvement to models.

4.4. Analysis of LCF design Models

Both LCF-GloVe and LCF-BERT are equipped with CDM and CDW local context focus layers.
The experimental results indicate that LCF designs are very effective. In addition, CDM and CDW are
feature-level operations (see Figures 4 and 5), instead of directly operating the input tokens. Owing to
the MHSA encoder, CDM and CDW can involve less-semantic-relative tokens in the learning process,
then retain their semantic features towards semantic-relative tokens. However, CDM and CDW
mitigate the features of less-semantic-relative tokens on corresponding output positions, which enable
LCF design models to focus on the local context. Another significant thing is that LCF design also
learns the features of the global context. Owing to the interactive learning of local context and global
context that LCF design achieves such remarkable results (see Table 4).
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Table 4. Results of LCF-GloVe variations of SRD threshold. “Only” means only global context or local
context participates in the learning process. “w/o” means “without”. The best scores of LCF-GloVe and
LCF-BERT are at the top of the table. SRD thresholds for each variation are equal to basic CDM/CDW
design (see Table 5).

Model Ablations
Laptop Restaurant Twitter

Accuracy (%) F1 (%) Accuracy (%) F1(%) Accuracy (%) F1 (%)

LCF-GloVe Glo-CDM 76.02 70.58 82.5 73.92 72.25 70.92
Glo-CDW 75.24 71.46 81.61 72.26 71.82 69.83

LCF-GolVe

Glo-CDM w/o PFE 73.04 68.17 82.32 74.32 72.83 71.09
Glo-CDW w/o PFE 74.14 69.84 81.07 72.05 71.97 70.2

Only Glo 74.29 70.52 80.8 71.38 71.24 69.13
Only CDM 74.76 69.68 82.32 74.4 71.68 69.91
Only CDW 74.92 70.65 80.36 70.54 71.39 67.99

Glo-CDM w/o FIL 74.14 69.25 82.23 74.02 72.25 69.57
Glo-CDW w/o FIL 74.61 69.33 80.98 71.49 71.1 69.85

LCF-BERT Glo-CDM 82.29 79.28 86.52 80.4 76.45 75.52
Glo-CDW 82.45 79.59 87.14 81.74 77.31 75.78

LCF-BERT

Only Glo 80.88 77.52 86.25 79.56 76.16 75.01
Only CDM 80.72 76.65 83.66 75.2 75.14 74.54
Only CDW 81.03 77.22 84.64 77.08 75.29 73.78

Glo-CDM w/o FIL 81.03 77.5 85.98 79.53 75.14 75.16
Glo-CDW w/o FIL 80.56 76.23 85.98 80.08 76.3 75.16

4.5. Ablations and Variations of LCF Design

In order to analyze the importance of each LCF design layer, ablation and variation experiments
are designed for LCF-GloVe as well as LCF-BERT. Experimental results are listed in Table 4.

4.5.1. Ablate Pre-Feature Extractor Layer

For LCF-GloVe, the pre-feature extractor is deployed between the embedding layer and feature
extractor in LCF-Glove model, since it can enhance the performance of GloVe embedding layer.
The pre-feature extractor consists of MHSA and PCT layer. We ablate the pre-feature extractor layer to
examine the performance of LCF without it.

LCF-GloVe (CDM/CDW) without PFE layers performs better than baseline models on twitter
dataset, while its performance on laptop dataset descends obviously. On the restaurant dataset,
LCF-GloVe (CDM/CDW) almost achieve an equal performance compared to baseline models. PFE
layers are deployed to learn the features embedded by GloVe embedding layer. The MHSA encoder is
pretty different from the traditional encoder as it contains positional embedding. In order to adapt
the GloVe embedding representation to MHSA encoder, PFE layers are designed to preprocess the
embedding representations. Table 4 indicates that PFE layers are very significant for LCF-GloVe
(CDM/CDW) on laptop dataset.

4.5.2. Ablate CDM/CDW Layer

The CDM layer and CDW layer are core architecture for the LCF design. We ablate the CDM and
CDW layer and utilize the global context features to predict sentiment polarities for targeted aspects.

For the LCF-GloVe ablation experiment, LCF-GloVe with “only Glo” means that only global
context features are captured and learned, and no CDM or CDW layer is deployed in this ablation.
This ablation achieves inferior performance among three datasets, which indicates that CDM layer
and CDW layer are very effective for LCF design models. LCF-GloVe with “only CDM” performs
moderate performance among three datasets, and its performance on the restaurant dataset is equal
to the baseline model. Moreover, LCF-GloVe with “only CDW” attains worse performance on three
datasets compared to LCF-GloVe with “only Glo”.
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For the LCF-BERT ablation experiment, LCF-BERT with “only Glo” attains a considerable
performance compared to LCF-BERT with “only CDM” and LCF-BERT with “only CDW”.
However, there is still a gap of performance on three datasets between both three ablations and
their baseline model.

4.5.3. Ablate Feature Interactive Leaning Layer

Feature Interactive Learning (FIL) layer aims at assembling features and interactively learns the
correlation between local context and global context. Concatenation and pooling can substitute the FIL
layer, but there is no interactive learning process.

For LCF-GloVe-CDM without FIL layer, performance on restaurant and twitter datasets are
close to the baseline models, and performance on laptop dataset is slightly poor. LCF-GloVe-CDW
without FIL layer performs better on restaurant dataset, but achieves inferior performance on other
two datasets.

For LCF-BERT (CDM/CDW) without FIL, they attain inferior performance on three datasets,
which means FIL layer is of great significance for LCF design.

4.5.4. LCF-Ablations Analysis

According to Table 4, the performance of LCF ablations was significantly reduced. Compared
to baseline models, the LCF-GloVe ablations of PFE layer achieve limited performance on three
datasets, especially on laptop dataset. Both LCF-GloVe and LCF-BERT attain inferior performance
when only the global context or local context is taken into consideration since LCF will lose significant
features. We design a FIL layer to interactively learn the features of the global context and local context.
Without the FIL layer, performance on three datasets drops obviously. The experiments reveal that,
for both LCF-GloVe and LCF-BERT, all the components work fine and bring a huge improvement
among three datasets. For LCF-BERT, if only the local context is taken as input, the performance
decreases by 2–3%. Experimental results show that each component of LCF design is indispensable
and effective.

4.5.5. LCF-GloVe Variations about SRD Threshold

For LCF-BERT, it is hard to evaluate sufficient SRD variation experiments since the BERT-shared
layer is not space-efficient (the number of parameters of LCF-BERT is approximately 2.2× e10), while
the number of parameters of LCF-GloVe is approximately 2.0× e6. In that case, the α is set to be 3 for
CDW and CDM design on three datasets.

In order to find superior α for different LCF design and datasets, a series of experiments about SRD
threshold on LCF-GloVe are conducted to evaluate the best α for different situations. In the comparison
experiments, the SRD of the corresponding model and dataset ranges from 0 to 9, and the local context
will be equal to the aspect itself if the SRD threshold (α) is 0. In these comparison experiments, all the
parameters and hyperparameters are consistent with LCF-GloVe or LCF-BERT except SRD thresholds.
Due to the fluctuation of experimental results, many experiments have been carried out to find the
best results for comparison.

Actually, the SRD threshold is not very sensitive for LCF-GloVe-CDW design, and the
performances on three datasets fluctuates slightly (Our extra experiments prove that CDW and
CDM designs perform well and stably on LCF-BERT.) (see Figures 6–8). The LCF-GloVe CDM design
is stable among the three datasets, and the superior α for all situations can easily be found out (see
Table 5).
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Table 5. Recommendations of SRD threshold (α) for LCF-GloVe variations on different datasets.

LCF TYPE Laptop Restaurant Twitter

CDM 6 3 3
CDW 3 7 5

Figure 6. Accuracy on laptop dataset of LCF-GloVe model under different SRD thresholds (α) .

Figure 7. Accuracy on restaurant dataset of LCF-GloVe model under different SRD thresholds (α) .
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Figure 8. Accuracy on twitter dataset of LCF-GloVe model under different SRD thresholds (α) .

5. Conclusion and Future Works

This paper proposes a new view: local context words of specific aspects are more relevant to the
aspect. LCF designs focus on the local context and learn global context representations in parallel.
This paper introduces SRD to assist locate the local context of each aspect. With the local context of
targeted aspects supervised, LCF models work more stably and precisely in aspect-level sentiment
classification. Both GloVe word embeddings and BERT-shared layer are utilized to improve the
performance of LCF designs. With CDM and CDW applied, LCF-BERT outperforms state-of-the-art
performance in three ABSC datasets. In future, the SRD calculation can be further improved by
considering extra auxiliary information. Besides, the transferability of CDM and CDW designs will be
evaluated whether they can improve the performance of the models those based on self-attention.

6. Case Analysis

In this section, we pick two samples from the laptop dataset and restaurant dataset for case
analysis. They are “I how the black roasted codfish, it was the best dish of the evening” and “Lots of
extra space but the keyboard is ridiculously small”, and we label them as sample-1 and sample-2,
respectively. Sample-1 only contains one aspect and sample-2 contains two aspects. The α is set to 3 for
both samples.

6.1. One-Aspect

The polarity of aspect “dish” is predicted by LCF-ablated models and Table 6 shows the
predicted results. Figures 9 and 10 are visualizations of CDM and CDW processes of aspect “dish”
within sample-1.
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Table 6. Predictions of three aspects.

Model Ablations
Sample-1 Sample-2

Dish Space Keyboard

LCF-GloVe

Only Glo positive negative negative
Only CDM positive positive negative
Only CDW neutral negative negative
Glo-CDM positive positive negative
Glo-CDW positive positive positive

LCF-BERT

Only Glo positive negative negative
Only CDM positive positive negative
Only CDW positive positive negative
Glo-CDM positive positive negative
Glo-CDW positive positive negative

Figure 9. Dynamic mask for local context features during MHSA encoding process on sample-1.
The features of the corresponding positions of local context words in the white boxes will be masked.

Figure 10. Dynamic weighted for local context features during MHSA encoding process on sample-1.
The chroma of the color indicates the concentration level of the context words.

Results in Table 6 show that local context focus mechanism work performs well on one-aspect
samples. Almost no LCF-ablated models make error prediction.

6.2. Multi-Aspect

Accordingly, Figures 11 and 12 are visualizations of CDM and CDW processes of sample-1,
respectively. The polarity of the aspect “space” is predicted by LCF ablated models and Table 6
shows the predicted polarities. The sentiment classification of multi-aspect samples are more
complex compared to one-aspect samples, since each aspect probably has different sentiment polarity.
Moreover, it is important to alleviate the negative influence of less-semantic-relative context words
during learning process.
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Figure 11. Dynamic mask for local context features during MHSA encoding process on aspect “space”
of sample-2. The features of the corresponding positions of local context words in the white boxes will
be masked.

Figure 12. Dynamic weighted for local context features during MHSA encoding process on aspect
“space” of sample-2. The chroma of the color indicates the concentration level of the context words.

Consistently, Figures 11–14 are visualizations of CDM and CDW processes of aspect “space” and
“keyboard”, respectively, within sample-2. The polarities of these two aspects are predicted by LCF
ablated models and Table 6 shows the predicted polarities.

Figure 13. Dynamic mask for local context features during MHSA encoding process on aspect
“keyboard” of sample-2. The features of the corresponding positions of local context words in the white
boxes will be masked.

Figure 14. Dynamic weighted for local context features during MHSA encoding process on aspect
“keyboard” of sample-2. The chroma of the color indicates the concentration level of the context words.

Most of the LCF-ablated models generally give the correct predictions for aspect “space” and
“keyboard”. Table 6 shows that the predictions of LCF-BERT are more accurate and reasonable than
that of LCF-GloVe.

Equipped with the local context focus mechanism, LCF design models can better predict the
sentiment polarities of aspects through the interactive learning of local context features and global
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context features, instead of making predictions merely relying on local context features or global
context features.

While inhibiting the interference brought by distant context words to prediction, it can also
retain the long-term dependencies between the aspect these words and the of local context words.
Experiments show that this can significantly improve the prediction accuracy of the model, and refresh
the best performance on the three commonly ABSC datasets.
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