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Abstract: This study suggests a novel beam-column element formulation that utilizes an
equilibrium-driven shear stress function. The beam shear is obtained from the bi-axial states
of micro-planes, through matrix condensation and zero vertical traction assumptions. This properly
remedies the shear stiffening of a one-dimensional beam-column element, keeping its degrees of
freedom to a minimum. For verification of the proposed method, a total of seven shear test results of
reinforced concrete (RC) beams were collected from the literature, in which the key variables were
the reinforcement ratio, the presence of shear reinforcement, and section shape. The advantages
are clearly shown in the shear stresses distributions being accurately described and the global
load-displacement relations being successfully obtained and matching well with various test results.
The proposed model shows satisfactory descriptions of the monotonic load-displacement response of
the RC beams failing in multiple modes that vary from diagonal-tension to flexural-compression.
In addition, more accurate and reliable information of sectional responses including sectional shear
deformation and stresses is collected, leading to better prediction of a potential shear failure mode.
Finally, the advantages of the proposed model are demonstrated by comparing the analysis results of
an RCT-beam by using the different shear assumptions that include the constant and parabolic shear
strains, constant shear flow, and the proposed shear stress function.
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1. Introduction

The modern seismic design provisions for reinforced concrete (RC) structures enforce ductility
requirements to meet target limit states, avoiding brittle failure [1]. As a typical shear failure of an RC
member is often very brittle, more accurate descriptions of shear behavior are imperative in achieving
proper safety goals. Therefore, the shear performance of RC members should be clearly investigated
and adequately modeled. In general, the global responses of reinforced concrete (RC) structures
are often obtained by means of a frame analysis model, where the members can be idealized by a
one-dimensional beam-column element. The conventional method in considering beam shear utilizes
the Timoshenko beam with a shear coefficient. Most shear coefficients known today are strain-driven
functions, such as parabola shear strains [2–5]. Such strain-driven shear functions do not properly
describe nonlinear shear evolution. As a result, the conventional method rarely shows the shear
strength degradation and shear failure that are often observed in loaded RC beams and columns. Many
shear models have been proposed to improve such shear simulations, as follows.

Petrangeli et al. [2,3] developed a flexibility-based element to model shear behavior and its
interaction with axial force and bending moment in RC beams and columns. Based on the fiber section
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discretization, the state of a section was determined by numerically integrating biaxial constitutive
relations over the cross section. While the longitudinal strain field was determined from the plane
section assumption, the shear distributions over the cross section were defined by strain-driven shear
functions, such as constant shear strain, or parabolic shear strain functions. Despite the use of the
micro-plane where the two-dimensional realization of shear was possible, the stain-driven shear
functions gave little hint of shear degradation. A similar development was made by Taylor et al. [4] but
based on the mixed finite element method using the Hu-Washizu variational form, and later extended
by Filippou and Saritas [5] for RC members. As in Petrangeli’s model [2], the shear strain distribution
over the cross section was assumed to be parabolic.

The equilibrium-driven stress function was first introduced in the beam formulation by Vecchio
and Collins [6] called the dual-section analysis. This method well predicted the shear stress distributions
over the cross section of an RC beam. The shear flow of the cross section was determined from the
normal stress difference between two cross sections. Bentz [7] proposed the longitudinal stiffness
method, where the shear flow or the normal force gradients were directly related to the sectional
properties and the sectional shear force. It was a challenging task to write a consistent element
formulation that utilized equilibrium-driven stress functions. The method worked best in the sectional
analysis. However, both Vecchio [6] and Bentz [7] formulations have not yet been studied in the
conventional finite element method.

Recently, finite element analysis software programs [8–10] have been developed based on the
finite element formulations proposed by the afore-mentioned researchers, and they were utilized by
many researchers for their numerical simulations on shear behavior of RC members. Ju et al. [11] have
conducted finite element analyses to investigate the shear stress concentration phenomenon near a
tapered cross section, and Chen et al. [12] carried out a hybrid simulation testing on a precast concrete
shear wall, which combines the structural test and numerical simulation. In addition, Roudane et
al. [13] performed numerical simulations on masonry infilled RC buildings considering construction
stages by using ABAQUS software.

Many shear models available today use strain-driven functions. Unfortunately, the strain-driven
shear functions cause redundant constraints resulting in an over-estimation of shear stiffness and
strength. To overcome such a shortcoming, this paper aims to propose a force-based solution adopting
the equilibrium-driven shear stress function. The longitudinal stiffness method is rewritten in the
context of the conventional finite element method, and a consistent beam formulation is derived based
on the Timoshenko beam theory.

2. Shear Solutions in One-Dimensional Beams

Nodal displacements of a typical beam-column element are obtained by solving differential
equations expressed in terms of the longitudinal coordinate. Therefore, the typical beam-column is
often referred to as a one-dimensional element, although the nodal degrees of freedom can be defined
in two- or three-dimensional spaces. The bending of a slender beam is accurately solved using the
plane section assumption in the realization of a one-dimensional element, a.k.a. the Bernoulli-Euler
beam [14,15]. This simplification yields the stiffer behavior of a short beam, as it neglects shear
deformation, which imposes additional rotation of the cross section. The Timoshenko beam suggests a
solution to this problem. The equilibrium and strain-displacement equations of the Timoshenko beam
can be derived as follows [16],

n′ = p (1a)

ε = u′ (1b)

m′′ = q (1c)

κ = θ (1d)

v′ = −q (1e)
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γ = w′ − θ (1f)

where, n = axial force field; m = bending moment field; q and p = applied transverse and axial load per
unit length, respectively; v = shear force field; κ = curvature field; γ = shear strain field; ε = axial strain
field; w = transverse displacement field; θ = rotation field; and u = axial displacement field. A prime
denotes differentiation with respect to ξ, which locates a position in the reference coordinate system,
as depicted in Figure 1.
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Figure 1. Timoshenko beam.

The Timoshenko beam can accurately describe the shear behavior of homogeneous and linear
beams. The sectional displacements, including axial and transverse displacements and rotation, can
define the normal deformations of each point or layer of the cross section. However, as the required
constitutive model to calculate the corresponding stresses is uniaxial, ad-hoc functions, such as shear
functions, are required to define shear profiles over the cross section, mostly with parabolic shapes or
constant ones. Moreover, the beam shear is uncoupled from the flexural responses, and the description
of nonlinear shear evolution of the composite beams that are composed of nonlinear materials is hardly
achievable. To resolve this problem, this study suggests a new element formulation to determine shear
stress distributions over the cross section.

3. Shear Formulations for Beam Section

The longitudinal stiffness method [7] determines the shear stress distributions based upon
equilibrium. Therefore, the method is rigorous in solving nonlinear beams, such as RC beams.
The longitudinal stiffness method is rewritten in the context of the finite element method, where more
consistent element formulations can be derived.

The shear stresses acting on the surface of a layer of the cross section should be equal to the
horizontal surface shear stresses acting between layers of the beam from equilibrium. This is the basis
by which the shear flow is used to calculate the shear stress distributions. To demonstrate this, let us
consider a free body diagram (distributed load omitted), as shown in Figure 2. The shear flow—the
horizontal shear force per unit distance along the longitudinal axis of the beam—can be evaluated
from equilibrium as:

℘(ζ) =

∫ h
2

ζ
d fx(ζ)bw(ζ)dζ (2)

where, − h
2 ≤ ζ <

h
2 ; d fx(ζ) denotes the difference of longitudinal stresses between cross-sections mn

and m1n1, bw(ζ) is the width of the layer at the depth of ζ, and h is the overall height of the section. The
horizontal shear stress at ζ is obtained by dividing the shear flow by the width of the layer at ζ; i.e.,

vxy(ζ) =
℘(ζ)

bw(ζ)
(3)
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The normal stress gradient or the stress differences between the two sections d fx can be defined as:

d fx(ζ) = [1 0]ddε (4)

where, the first term [10] is multiplied to obtain only the scalar normal stress, d is the 2 × 2 sectional
stiffness matrix of the cross section, which will be defined later, and dε is the 2 × 1 sectional strain vector.
The last term is the sectional strain changes due to the moment change ∆M as shown in Figure 2a,
and related to the 3 × 1 full strains as,

dε = ςde (5)

And

ς ≡

[
1 −ζ 0
0 0 ψ(ζ)

]
(6)

where, ψ is the shear strain function. Depending on how this is defined results in a constant, parabolic,
or other shear distribution. For example, if ψ(ζk) = 1, a constant shear distribution is obtained.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 21 
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Figure 2. Equilibrium in a beam subjected to non-uniform bending moment.

Knowing that Equation (5) defines the sectional strain changes due to the moment change ∆M = V
leads to:

de = [K]−1


0
V
0

 (7)

Herein, Ks is the full stiffness matrix of the cross section, a.k.a. the longitudinal stiffness matrix.
The discretization of Equation (3) and writing the shear stress at the k-th fiber leads to:

νxy(ζk) = ℘(ζk)/bw(ζk) (8)
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where, ℘(ζk) =
k∑

j=1
h f

(
ζ j

)
· d fx

(
ζ j

)
· bw

(
ζ j

)
, and h f

(
ζ j

)
is the height of the j-th fiber. Finally, the shear

stress function at the k-th fiber is obtained from:

ω(ζk)
ν = νxy(ζk)/Vmi (9)

It should be noted that the shear distributions are determined from the sectional equilibrium.
For equilibrium-driven equations, it is extremely difficult to derive a consistent element
formulation in the conventional finite element method, which is based on the displacement-based
formulation. Therefore, the authors seek the answer from the force-based formulation that strictly
satisfies equilibrium.

4. Two-Dimensional Realization of Beam Shear

As shear is at least two-dimensional, two-dimensional representation of shear is indispensable to
obtain more realistic shear distributions. The micro-plane concept is the simplest and widely accepted
method among beam shear models because it can be realized in a one-dimensional beam-column
element. The micro-plane describes bi-axial states, where two correlated uniaxial states are defined in
their principal directions. For an RC beam, the bi-axial states can be defined as follows.

4.1. Concrete Material

There are many constitutive models to simulate the concrete behavior [17–19], and those models
are widely used in the finite element analysis. In all analyses presented in this paper, the uniaxial
behavior of concrete in compression is obtained by applying the modified Kent and Park model [20]
to account for the confining effects provided by stirrups. That uniaxial behavior is scaled by using
the compression softening relation suggested by Vecchio and Collins [21]. In addition, other concrete
models with confinement effect [16–18] can be interchangeably used. To describe tension stiffening,
the shear cracking stress of concrete is calculated by using the ACI expression 0.17

√
f ′c , where f ′c

is in MPa [22]. The post-cracking envelope is obtained by using the equation proposed by Collins
and Mitchell [22]. Figure 3 illustrates the uniaxial behavior of concrete material. It is assumed that
this uniaxial behavior discussed thus far describes the orthotropic concrete material in the principal
directions. The composition of material tangent stiffness for an orthotropic material is discussed
as follows.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 21 
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For an orthotropic material such as concrete, by neglecting the Poisson’s ratio, the material tangent
in the principal directions can be written as:

dp =


E1 0 0
0 E2 0
0 0 G

 (10)

where, E1 and E2 are the Young’s modulus in each principal direction, respectively, which can be
calculated by using the ACI expression 4700

√
f ′c , and G is the shear modulus. The latter can be

determined by:

G =
f1 − f2

2(ε1 − ε2)
(11)

where, f1 and f2 are the principal stresses, and ε1 and ε2 are the principal strains. Equation (11)
satisfies the condition of invariance under the principal axis rotation [23]. The orthotropic material
stiffness should be transformed to the current local coordinate system of the element by using the
following relation:

d̂ = TT
· dp ·T (12)

where the transformation matrix is defined as:

T =


cos2 θ sin2 θ cosθ sinθ
sin2 θ cos2 θ − cosθ sinθ

−2 cosθ sinθ 2 cosθ sinθ cos2 θ− sin2 θ

 (13)

The failure criterion of concrete material can be found in the modified compression field theory
(MCFT) formulation [7], where the two-dimensional plane reinforced concrete response was simplified
with two uni-axial stress-strain relations in the two principal directions. In the principal directions,
the compression failure occurs at the compression strain of −0.003. The steel was considered as smeared
to the corresponding concrete layers, and the confining effects were also reflected, as described in
Figure 3.

4.2. Steel Material

A bi-linear behavior with a certain strain hardening ratio is assumed for steel. The material
tangent for steel can be written as:

d̂ =


Ex 0 0
0 Ey 0
0 0 0

 (14)

where, the subscripts x and y represent the longitudinal and vertical directions, respectively. The
former is the axis of the longitudinal bars, and the latter is that of the stirrups.

In a beam-column element, the aforementioned two-dimensional states should be driven from
the uniaxial strain of each layer of the cross section. This involves the matrix condensation with
the assumption of zero traction in the vertical direction and the shear stress function that was
presented before.

5. Force-Based Element Formulation of the Timoshenko Beam

For the realization of the aforementioned shear functions and two-dimensional beam shear, first,
the element formulation is derived followed by the presentation of the solution strategy. The force-based
element formulation of the Timoshenko beam is derived by directly integrating the governing equations.
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5.1. Direct Integration of the Equations of Equilibrium

Define the following functions as integrals of the applied transverse and axial loads [16]:

Q(ξ) ≡

∫ ξ

0
q(η)dη (15a)

M(ξ) ≡

∫ ξ

0
ηq(η)dη (15b)

P(ξ) ≡
∫ ξ

0
p(η)dη (15c)

The integration of Equation (1c) gives:

m′(ξ) = Q(ξ) + c1 =
(
1−

ξ
L

)
Q(ξ) +

ξ
L

Q(ξ) + c1 (16)

Applying the integration by parts, and integrating the equation above, leads to:

m(ξ) =
(
ξ− ξ2

2L

)
Q(ξ) −

∫ ξ
0

(
η−

η2

2L

)
q(η)dη+ ξ2

2L Q(ξ) −
∫ ξ

0
η2

2L q(η)dη+ c1ξ+ c2

= ξQ(ξ) −
∫ ξ

0 ηq(η)dη+ c1ξ+ c2

= ξQ(ξ) −M(ξ) + c1ξ+ c2

(17)

By solving for the constants and rearranging the equation above, we obtain:

m(ξ) = m0b1(ξ) + mLb2(ξ) +
ξ
L

M−M(ξ) +
[
Q(ξ) −Q

]
ξ (18)

where, b1(ξ) ≡ 1−ξ/L; b2(ξ) ≡ ξ/L; m0 ≡ m(0); mL ≡ m(L); M ≡M(L); and Q ≡ Q(L). The integration
of Equation (1e) and rearrangement give:

ν(ξ) = −Q(ξ) + ν0 (19)

where, ν0 = ν(0). From Equation (19) and knowing that m′ = −ν, we can obtain:

m(ξ) =
∫ ξ

0 Q(η)dη− ν0ξ+ m0

= ξQ(ξ) −
∫ ξ

0 ηq(η)dη− ν0ξ+ m0
(20)

Along with Equation (15), substituting L into Equation (20) and solving for v0 give:

ν0 = −
mL

L
+ Q−

M
L

+
m0

L
(21)

Rearranging Equation (19) leads to:

ν(ξ) = −Q(ξ) −
mL

L
+ Q−

M
L

+
m0

L
(22)

The integration of Equation (1a) and rearrangement give:

n(ξ) = n0 + P(ξ) (23)

where, n0 = n(0).
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Let us denote the force field and the discrete element force parameters as:

σ(ξ) ≡ [n(ξ), m(ξ), ν(ξ)]T (24)

s ≡ [n0, m0, mL]
T (25)

The force field can be written as:

σ(ξ) = bT(ξ)s +σp(ξ) (26)

where, bT(ξ) and the particular force field σp(ξ) are defined as:

bT(ξ) ≡


1 0 0
0 b1(ξ) b2(ξ)

0 1/L −1/L

 (27)

σp(ξ) ≡


P(ξ)

ξ
L M−M(ξ) +

[
Q(ξ) −Q

]
ξ

−
M
L + Q−Q(ξ)

 (28)

The end forces can be defined as:

ŝ ≡ [−n0, ν0, −m0, nL, −νL, mL]
T (29)

as shown in Figure 4.
This can be expressed in terms of the essential force parameters and the applied loads as [16]:

ŝ = Ls + P (30)

where, the equivalent nodal load vector is denoted:

P =
[

0 M/L−Q 0 P −M/L 0
]

(31)

and the matrix L is given by:

LT =


−1 0 0 1 0 0
0 1/L −1 0 −1/L 0
1 1/L 0 1 −1/L 1

 (32)
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5.2. Direct Integration of the Differential Strain-Displacement Equations

Integrating the strain-displacement equations of Equations (1b), (1d), and (1f) gives:
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θL − θ0 −
wL −w0

L
+

1
L

∫ L

0
γ(ξ)dξ−

∫ L

0

ξ
L
κ(ξ)dξ = 0 (33b)

− u0 + uL −

∫ L

0
ε(ξ)dξ = 0 (33c)

This can be written in matrix form as:

LTw−
∫ L

0
b(ξ) e(ξ) dξ = 0 (34)

where,w ≡ [u0, w0, θ0, uL, wL, θL]
T; e ≡ [ε(ξ), κ(ξ), γ(ξ)]T. The detailed derivation of the above

equations can be found in reference [24], and it was developed by adopting the direct integration [25].

6. State Determination

In the direct stiffness method, the equations of motion, which are constructed by assembling the
element state quantities, can be solved by using any Newton-type iteration method. This reduces the
difference between the internal force and external force through iterations. This also holds for the
nonlinear flexibility-based method, as the element stiffness matrix is obtained by inverting the element
flexibility matrix. The latter is obtained from the integration of the quadratic product of the section
flexibility and force interpolation function matrix. However, in contrast to the stiffness-based method,
the flexibility-based method requires an additional iteration loop to satisfy compatibility conditions.
This is discussed in the following.

6.1. Fiber State Determination

The section strain is discretized to obtain the strain at the k-th fiber by using the following equation:

εmik ≡ ςmikemi (35)
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where, εmik ≡ εm(ξik); ξik ≡ ξi(ζk); ξik is the vertical coordinate, as shown in Figure 5; ε ≡[
εx(ζ), γxy(ζ)

]T
, where εx(ζ) and γxy(ζ) are the normal and shear strains, respectively; ςmik is

the base function as defined earlier. The fiber stress ϕ is then obtained from:

ϕ ≡ ϕ̃(ε) (36)

where, ϕ ≡
[

fx(ζ), νxy(ζ)
]T

; fx(ζ) and νxy(ζ) are the normal and shear stresses, respectively.
If a biaxial constitutive law is used for the material, additional strain and stress fields should be

considered; those are εy and fy for strain and stress, respectively. The complete biaxial state of an
infinitesimal element is depicted in Figure 6, and the stress-strain relations are given in Equation (30)
in the incremental form after linearization.

∆ϕ̂v = d̂
v−1
mik ∆ε̂v (37)

where, ϕ̂ ≡
[

fx, fy, νxy
]
; ε̂ ≡

[
εx, εy, γxy

]
. A general approach to retrieve the additional quantities

assumes fy = 0 at any location of a beam. Therefore, through static condensation, the biaxial state can
be reduced to:

∆ϕv = dv−1
mik ∆εv (38)

where, dmik =

[
d̂11 d̂13

d̂31 d̂33

]
−

[
d̂12

d̂32

][
d̂22

]−1[
d̂21 d̂23

]
.
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6.2. Solution Strategy

The flexibility-based method works together with force interpolation functions, for which reason
it is also known as the force-based method. This method allows the solution of the system of equations
without shape functions. A similar principle is taken in the determination of the fiber state, where
shear stress functions (or shear interpolation functions) are known. The predictor and corrector phases,
which determine the section shear force Vmi for the known section strain emi, will be explained in
the following.

6.2.1. Predictor Phase

Step 1: The trial section shear force is determined from the following relation:

Vtrial
mi ≡ ∆Vmi + Vv−1

mi (39)

where, ∆Vmi =
[

0 0 1
]
Kν−1

mi ∆emi.
Step 2: The axial strain is evaluated by using the plane-section assumption but the vertical and

shear strains are calculated through matrix condensation; i.e., in an incremental form:

∆εy = −
[
d̂

v−1
mik (2, 2)

]−1
·

(
d̂

v−1
mik (2, 1) · ∆εx + d̂

v−1
mik (2, 3) · ∆νxy

)
(40)

∆γxy =
[
dv−1

mik (2, 2)
]−1
·

(
∆νxy − dv−1

mik (2, 2) · ∆εx
)

(41)

where, ∆νxy = νtrial
xy − ν

v−1
xy . Since all the strain values are known, the corresponding stresses can be

evaluated by using any biaxial constitutive model. Then, the corrector phase follows, because the shear
stress obtained from a constitutive relation will differ from the trial shear stress.

6.2.2. Corrector Phase

Step 3: In the corrector phase, the shear strain is corrected in a way that reduces the shear stress
residuals. However, in the flexibility method, strain residuals instead of stress are integrated to give
the counterpart in the upper level. Therefore, the section shear strain residual is obtained as:

γR(ξmi) ≡

q∑
k=1

h f (ζk) ·ω(ζk) · γ
R
xy (42)

where, γR
xy ≡

[
dv

mik(3, 3)
]−1
νR

xy, and ω is the shear stress functions discussed later. The superscript R
denotes residual.

Step 4: The section shear force is now corrected by the following relation; i.e.,

Vv
mi = Vtrial

mi −VR (43)

where, VR
≡ Kv

mi γ
R(ξmi).

Step 5: The fiber state should also be corrected as given below:

εv
mik = ε

v−1
mik + ∆ε+ γR

xy1−
[
dv

mik(3, 3)
]−1
ω(ζk)

vVR (44)

ϕv
mik = ι ϕ̃

v
mik +ω(ζk)

vVv
mi1 (45)

where, 1 ≡ [ 0 0 1 ]; ι ≡ diag
([

1 1 0
])

; ϕ̃v
mik ≡ ϕ̃(ε

v
mik) is the fiber resisting stress obtained

from a constitutive relation for a known εv
mik. Note that each step is indicated with a circular number

at the corresponding location in Figure 7 for the illustration purpose.
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6.2.3. Update of Section Stiffness and Resisting Force

The section stiffness is updated by using Equation (26) with the following updated base function:

ςv
mik ≡

[
1 −ζk 0
0 0 ψ(ζk)

]
(46)

where, ψ(ζk) ≡ γxy(ζk)/ϑk; ϑk ≡
q∑

k=1
[h f (ζk) bw(ζk) vtrial

xy (ζk) γxy(ζk)]/Vtrial
mi .

The numerator of the latter is the work done by the internal shear stress. Therefore, it satisfies the
principle of virtual work. Finally, the resisting force vector has the expression:

σv
mi =

q∑
k=1

[
h f (ζk) bw(ζk)

[
ςv

mik

]T
ϕ̃

v
mik

]
(47)
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7. Constitutive Relation

For the v-th iteration, the internal force vector for section i of element m can be obtained from the
relation [25]:

σ = σ̂
(
ev

mi

)
(48)
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where, ev
mi = Cv−1

mi ∆σv−1
mi + ev−1

mi ; emi ≡ em(ξi); Cv−1
mi ≡

[
Dv−1

mi

]−1
is the section tangent compliance from

the previous step; and ∆ denotes an increment operator. The tangent stiffness at the known strain e is
evaluated for element m as:

Dv
mi ≡

[
∂σ̂(e)
∂e

]
e=ev

mi

=
[
Cv

mi

]−1
(49)

Through numerical integration, the element flexibility matrix has the expression:

Fv
m ≡

p∑
i=1

ωibmiCv
mib

T
mi (50)

where, ωi is the weights. Inverting this gives the element stiffness matrix; i.e., [Kv
m]
−1 = Fv

m. The section
tangent stiffness can be calculated from the fiber model. The section tangent stiffness can be obtained
by:

Dv
mi =

q∑
k=1

Akς
T
mikdmikςmik (51)

where, Ak is the area of the k-th fiber on the cross-section, and dmik ≡ ∂ϕmik(ε)/∂ε is the material
tangent as defined earlier.

8. Model Evaluation

The proposed model was evaluated on the RC beam test data reported by Bresler and Scordelis [26].
In this test, they obtained various failure modes, such as diagonal tension, shear-compression, and
flexure-compression failures, by changing the shear span ratios. Another key variable was the existence
of web reinforcement. Among those test specimens, the specimens OA-1 through OA-3, which did not
contain stirrups, and A-1 through A-3, which contained stirrups, were selected in this presentation.
The numbers 1, 2, and 3 denote the IDs that indicate the different shear span ratios, 4.0, 5.0, and
7.0, respectively. Figure 8 illustrates the sectional dimensions of the selected members, while Table 1
summarizes the test program and the results.
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Figure 8. Beam cross-sections (Unit: mm).

Each member was analyzed by using two different elements: A Bernoulli-Euler beam element with
cubic shape functions, and the proposed element. The former, driven from a stiffness-based formulation,
was used to illustrate the flexural response of a beam, and the latter to include the shear effects. In the
analysis model, only a half of each beam was considered, to take advantage of the symmetry. It was
modeled with four elements, each of which had four Gauss-Lobatto integration points.

An arc-length method was used to capture a post-peak response, if any. The numerical response
was terminated when numerical problems arose, usually with the satisfaction of the transverse
equilibrium equations for all shear elements. For the Bernoulli-Euler beam element, the termination
point was selected at a few steps after the post-peak response was obtained.
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Table 1. Dimensions and material properties of test specimens.

Specimen f ′c (MPa) Span (m) a/d Spacing of Stirrups (mm) Failure Mode

OA-1 22.5 3.66 3.97 - Diagonal tension failure
OA-2 23.7 4.57 4.90 - Diagonal tension failure
OA-3 37.6 6.40 6.94 - Diagonal tension failure
A-1 24.1 3.66 3.92 210 Shear compression failure
A-2 24.3 4.57 4.93 210 Shear compression failure
A-3 35.0 6.40 6.91 210 Flexure-compression failure

9. Results

Figure 9 compares the predicted and observed curves of load versus midspan deflection relations.
The prediction by using the Bernoulli-Euler beam element is denoted as predicted without shear, and
the one by using the proposed element as predicted with shear. In the test results, it can be observed
that when no stirrup is present, the strength drops. The strength reduction was significant, especially
in the members with a small shear span ratio.
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Figure 9. Load versus mid-span deflection.
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The predictions without shear present the flexural response only; therefore, there was no effect
of the stirrups. This explains why the predictions without shear in series OA were similar to the
counterparts in series A. As shown in the figure, the predictions without shear showed a higher
member strength and stiffness and higher ductility than those with shear. The discrepancy between
the two predictions, which represents the shear contribution to the deflection, increased proportionally
as the applied load increased. Generally speaking, the curves of the test results corresponded well to
those without shear up to the point of half of the ultimate strength but became closer to them with
shear afterwards. For most cases, the proposed model predicted the strength of the actual beams
satisfactorily, while the model without shear consideration predicted twice as much as the actual
shear strength, depending on the problem. For specimen A-1 and 2, the analysis with the proposed
model was terminated shortly before it reached the actual strength. However, as can be seen in the
figure, the termination points were closely related to the points where the slope of the curve of test
changes abruptly.

Comparison with Other Shear Models

1. Rectangular beam: The analysis results obtained for specimen OA-3 were compared with
those by other shear models, such as (1) constant, or (2) parabolic shear strain model, and (3) constant
shear flow model. The constant and parabolic shear strain models assumed the predefined shear
strain functions over the cross-section first and then estimated the corresponding shear stresses.
The advantage of the shear strain models was that the calculation procedure was simple, but those
models can result in redundant constraints. On the other hand, the constant shear flow model, in
which the shear force acting on the section considered is given first to obtain the shear strain of the
section, can provide a more accurate shear response than the shear strain models.

The constant and parabolic shear strain distributions were obtained by using the following
relations for ψ(ζk) in Equation (6):

ψ(ζk) = 1 (52a)

ψ(ζk) =
3
2

[
1−

(
ζk

h/2

)2]
(52b)

The constant shear flow model by using the secant stiffness method was discussed by Vecchio and
Collins [6]. The shear stresses were determined by dividing a given section shear force by the height of
each fiber (or layer). In the proposed model, the constant shear flow model was applied by replacing
Equation (2) with the following relation:

℘(ζ) =
VTrial

bw(ζ)
(53)

Figure 10 shows the comparison of the load-deflection relations obtained by using four different
shear models. All four models showed similar initial stiffness up to the first cracking point, where
the curves started to diverge. The parabolic and constant shear strain models, which had predefined
shear strain distribution shape, showed a very similar response. In comparison with these models,
the proposed model and constant shear flow models, which were a force-based method, showed a
relatively softer behavior. This discrepancy between the constant/parabolic shear strain methods and
the force-based methods comes from the fact that shear strains over the cross-section were assumed as
the predefined shapes, such as a constant or parabolic, in the constant/parabolic shear strain methods,
while they are not in the force-based method, because the predefined shear strains inevitably create
redundant constraints in the deformability of the cross-section. In the force-based method, the shear
stresses over the cross-section are calculated from equilibrium, and afterwards, the corresponding
shear strains were determined, which does not cause such redundant constraints. The curve obtained
by using the proposed model was closely related to the actual behavior with regards to both stiffness
and strength. It is clear from the figure that the proposed model predicted the shear strength most
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accurately, provided that the termination point caused by the vertical equilibrium instability defined
the shear failure point.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 21 
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2. T-beam: The advantage that the proposed model possesses is that it describes the shear strain
distributions over the cross section very accurately, and, therefore, the state of the section as well.
This can best be illustrated by using T-beams, the section of which has larger shear strength than a
rectangular section with the same depth and height. For this problem, the predefined shear strain
methods, such as constant or parabolic shear strain method, would overestimate the shear strength by
drawing more shear stress in the flange area, and keeping the web area stressed in lower intensity.

A T-beam (beam no.: T2) was selected from the extensive test conducted by Placas and Regan [27].
The sectional dimensions are: The web width is 152 mm; the total depth is 305 mm; the depth to
the center of the steel is 272 mm; As/b′d = 1.46%; the flange breadth is 76 mm; and the flange width
is 610 mm. The material properties are: The compressive concrete strength is 28.1 MPa, and the
yield strength of the longitudinal bar is 620 MPa. The shear span ratio (a/d) is 3.36, and the beam
was subjected to a central-point loading. The beam failed at the shear force of 54.7 kN by diagonal
tension cracking.

Figure 11 shows the applied shear force versus the mid-span deflection curves obtained by
using the four different shear models. The force-based model, including the proposed model and the
constant shear flow model, terminated the analysis around the ultimate shear strength of the beam
observed in the actual test. In contrast, the predefined shear strain models, including the parabolic
shear strain model and the constant shear strain model, led to a shear strength more than twice as
much as the actual shear strength; the analysis with the latter continued beyond the end point shown
in the figure. The predefined shear strain models gave much stiffer response than the force-based
models. For example, at the shear force of 54.7 kN, the constant shear strain model gave the mid-span
deflection value of half as much as that obtained by the proposed model.

To explain these discrepancies, the local behaviors were compared at the critical section (the
effective depth away from the support) at the shear force of 54.7 kN, as shown in Figures 12–14. Figure 12
shows that the moment curvature values were analogous to the previous findings. The proposed model
showed the largest curvature—more than twice as much as that of the constant shear strain model—and
the smallest neutral surface depth. This suggests that the different shear model significantly affects the
flexural behavior for the beam having a non-rectangular section.

Figure 13 shows the shear strain distributions over the cross section at the same level of load. The
proposed model described a parabolic shear distribution at the uncracked region (located top one-third
portion), and dramatically increasing strains towards the bottom. Although a large discrepancy existed
in the shear strain distributions, the contribution to the mid-span deflection of this seemed negligible.
For example, the maximum shear strain estimated by the proposed model and the constant shear
flow model were approximately 0.00135 and 0.00091, respectively, while the mid-span deflections
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were 2.54 mm and 2.79 mm, respectively. Their difference in maximum shear strain is 67% and that in
mid-span deflection is 9%.

Figure 14 shows the shear stress distributions. The proposed model gave a similar shape of the
shear stress distributions to that of the shear strain distribution; a parabolic shape in the uncracked
region, and increasing stress towards the bottom. It is interesting to see the distributions obtained from
the constant shear flow were similar to those from the proposed model. Together with the previous
observations, this suggests that the constant shear flow model is a good approximation for the shear
behavior of a reinforced concrete beam. In contrast, with the predefined shear strain models, a large
portion of the shear stress residues are expected in the flange area. This may have reduced the shear
stress in the web leading to the stiffer response.
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Figure 11. Placas and Regan Beam (T1 specimen).
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10. Conclusions

In this study, the element formulation with the stress-driven shear force functions was derived
and realized in the context of the finite element method. The proposed method showed excellent
agreement with various RC beam test results. The two-dimensional representation of beam shear on
the micro-plane successfully described the sectional shear stresses and strains, hence, allowing shear
degradation and shear failure prediction in the global response. In addition, the coupled bending and
shear behavior was accurately described, and the authors believe that in future studies, the axial load
effects on shear behavior should be easily demonstrated, without any modification of the element
formulation. In addition, since the formulation proposed in this study is very consistent with a strong
applicability for nonlinear finite element analysis, it is expected that the proposed method can be
applied to the existing finite element analysis software without interchangeability problems.

However, it is not clear at this point whether the incomplete post-peak response resulted from the
inherent inconsistency in the element formulation. The inherent inconsistency may be ascribed to the
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use of the plane section assumption along with the stress-driven functions. Theoretically, the error due
to this should disappear at convergence.
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13. Roudane, B.; Adanur, S.; Altunışık, A.C. Numerical Modeling of Masonry Infilled Reinforced Concrete
Building during Construction Stages Using ABAQUS Software. Buildings 2019, 9, 181. [CrossRef]

14. Sınır, S.; Çevik, M.; Sınır, B.G. Nonlinear free and forced vibration analyses of axially functionally graded
Euler-Bernoulli beams with non-uniform cross-section. Compos. Part B-Eng. 2018, 148, 123–131. [CrossRef]

15. Valipour, P.; Ghasemi, S.E.; Mohammad Reza Khosravani; Ganji, D.D. Theoretical analysis on nonlinear
vibration of fluid flow in single-walled carbon nanotube. J. Theor. Appl. Phys. 2016, 10, 211–218. [CrossRef]

16. Hjelmstad, K.D. Fundamentals of Structural Mechanics, 2nd ed.; Springer: Berlin, Germany, 2004.
17. Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng.

1988, 114, 1804–1826. [CrossRef]
18. D’Amato, M.; Braga, F.; Gigliotti, R.; Kunnath, S.; Laterza, M. A numerical general-purpose confinement

model for non-linear analysis of R/C members. Comput. Struct. 2012, 102–103, 64–75. [CrossRef]
19. Laterza, M.; D’Amato, M.; Braga, F.; Gigliotti, R. Extension to rectangular section of an analytical model for

concrete confined by steel stirrups and/or FRP jackets. Comput. Struct. 2017, 176, 910–922. [CrossRef]
20. Kent, D.C.; Park, R. Flexural members with confined concrete. J. Struct. Div. 1971, 97, 1964–1990.
21. Vecchio, F.J.; Collins, M.P. The modified compression-filed theory for reinforced concrete elements subjected

to shear. ACI Struct. J. 1986, 83, 219–231. [CrossRef]

http://dx.doi.org/10.3390/app8040479
http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:9(994)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:9(1002)
http://dx.doi.org/10.1007/s00466-003-0410-y
http://dx.doi.org/10.14359/2515
http://dx.doi.org/10.3390/ma12040657
http://www.ncbi.nlm.nih.gov/pubmed/30795642
http://dx.doi.org/10.3390/su11010163
http://dx.doi.org/10.3390/app8020252
http://dx.doi.org/10.3390/buildings9080181
http://dx.doi.org/10.1016/j.compositesb.2018.04.061
http://dx.doi.org/10.1007/s40094-016-0217-9
http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
http://dx.doi.org/10.1016/j.compstruc.2012.03.007
http://dx.doi.org/10.1016/j.compstruct.2017.06.025
http://dx.doi.org/10.14359/10416


Appl. Sci. 2019, 9, 3503 20 of 20

22. Collins, M.P.; Mitchell, D. Prestressed Concrete Beams; Canadian Prestressed Concrete Institute: Ottawa, ON,
Canada, 1987.

23. Bicanic, N.; Borst, R.; de Gerstle, W.; Murray, D.W.; Pijaudier-Cabot, G.; Saouma, V.; Willam, K.J.; Yanmazaki, J.
Computational Aspects of Structures (Chapter 7). In Finite Element Analysis of Reinforced Concrete Structures II,
Proceedings of the International Workshop, New York, NY, USA, 2–5 June 1991; ASCE: Reston, VA, USA, 1991.

24. Kim, S.H. NFEA Modeling of RC Beams Having Exposed Longitudinal Reinforcement: Effects of Debonding
on Shear Behavior. Ph.D. Thesis, University of Illinois, Champaign, IL, USA, 2008.

25. Hjelmstad, K.D.; Taciroglu, E. Variational basis of nonlinear flexibility methods for structural analysis of
FRAMES. J. Eng. Mech. 2005, 131, 1157–1169. [CrossRef]

26. Bresler, B.; Scordelis, A.C. Shear strength of reinforced concrete beams. ACI J. Proc. 1963, 60, 51–72. [CrossRef]
27. Placas, A.; Regan, P.E. Shear failure of reinforced concrete beams. ACI J. Proc. 1971, 68, 763–773. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:11(1157)
http://dx.doi.org/10.14359/7842
http://dx.doi.org/10.14359/15237
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Shear Solutions in One-Dimensional Beams 
	Shear Formulations for Beam Section 
	Two-Dimensional Realization of Beam Shear 
	Concrete Material 
	Steel Material 

	Force-Based Element Formulation of the Timoshenko Beam 
	Direct Integration of the Equations of Equilibrium 
	Direct Integration of the Differential Strain-Displacement Equations 

	State Determination 
	Fiber State Determination 
	Solution Strategy 
	Predictor Phase 
	Corrector Phase 
	Update of Section Stiffness and Resisting Force 


	Constitutive Relation 
	Model Evaluation 
	Results 
	Conclusions 
	References

