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Abstract: The purpose of this article is to present a study aimed at developing a method for the
precise determination of unmanned surface vehicle (USV) movement parameters (heading (HDG),
speed over ground (SOG) and rate of turn (ROT)) through appropriate processing. The technique
employs a modified weighted ICP (Iterative Closest Point) algorithm and a 2D points layer arranged
in the horizon plane obtained from measurements. This is performed with the help of Light Detection
and Ranging (LIDAR). A new method of weighting is presented. It is based on a mean error in
a given direction and the results of modified weighted ICP tests carried out on the basis of field
measurement data. The first part of the paper characterizes LIDAR measuring errors and indicates
the possibilities for their use in matching point clouds. The second part of the article deals with a
method for determining the SOG and course over ground (COG), based on a modified weighted
ICP algorithm. The main part of the paper reviews a test method aimed at evaluating the accuracy
of determining the SOG and COG by the scan-matching method using a modified weighted ICP
algorithm. The final part presents an analysis comparing the obtained SOG and COG results with
reference results of GNSS RTK measurements and the resulting generalised conclusions.
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1. Introduction

Heading (HDG), speed over ground (SOG) and rate of turn (ROT) are basic movement parameters
which characterize the way a ship’s hull moves in relation to the Earth’s surface. They are crucial in
the decision-making process, particularly when navigating in congested areas, including harbors and
rivers. Currently, these parameters are most frequently determined on a ship using a gyrocompass and
a log, i.e., navigational instruments whose measuring accuracy, according to the International Maritime
Organization (IMO) requirements, is not required to be very high: “Errors in the indicated speed,
when the ship is operating free from shallow water effect and from the effects of wind, current and tide,
should not exceed 2% of the speed of the ship, or 0.2 knots, whichever is greater” [1], “The follow-up
error for different rates of turn should be: less than ±0.5◦ at rates up to 10◦/s; and less than ±1.5◦

between a rate of 10◦/s and 20◦/s” [2], although it determines the precision and the ability to control
the ship’s movement which, consequently, may affect the navigational safety level. It is therefore
reasonable to carry out scientific research aimed at searching for new measuring and data processing
methods in order to minimize measuring errors in a ship’s movement parameters.

For many years, maritime navigation has placed increasing emphasis on the development of
methods to determine position and navigational parameters that could offer an alternative to the GNSS
system [3]. In the age of the development of unmanned surface vehicles (USVs) whose main tasks
increasingly involve independent (autonomous) maneuvering in restricted areas, it is necessary to
develop new methods to obtain precise (accurate) navigational movement parameters (in particular
the HDG, SOG, course over ground (COG), and ROT) [4,5]. Basing the USV decision-making process
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exclusively on the parameters of movement and positions obtained from satellite systems is unjustified,
particularly in port basins in which infrastructure facilities and other ships may suppress and reflect
the system signals [6–8]. Another reason why one should not rely exclusively on such solutions is the
new techniques of satellite signal jamming and spoofing [9].

A good way to avoid the satellite system inconveniences may be the development of locally
operating systems whose actuator is located on a carrier ship, making their operation more difficult to
interfere with. A system with a local range of operation needs no special, external infrastructure to
generate correct data. Recently, the clear development of devices such as Light Detection and Ranging
(LIDAR) [10] has been noted, with increased capacities in terms of the range, accuracy of generated
data and the purchase price. Certain devices have a range above 500 m and high accuracy in angle
and distance measurements, which enables more widespread use of such devices in sea-going ship
navigation. It should also be noted that the measuring capacity of such sensors is not limited by the
radar’s dead zone at close ranges. On the other hand, such a phenomenon is typical of pulse radars
which are commonly used on almost every vessel [11].

This article presents a method for the precise determination of the SOG and COG parameters
through processing, using a modified iterative closest point (ICP) algorithm [12–15] of a horizontal
2D layer of cloud points obtained from LIDAR measurements. The main process is based on the
simultaneous localization and mapping (SLAM) method. In simple terms, this is a method allowing
a map of an unknown environment to be built, which, after processing, is used for navigating in a
particular area. This technique was isolated as a separated area of interest in 1996. The SLAM evolution
was described in [16]. SLAM is rarely used in determining the position of surface vessels. Only a few
applications of the method in the context of its use on an open sea surface are known [17]. On the other
hand, SLAM has become very popular in determining the position of autonomous underwater vehicles
(AUV). A review of the methods applied in determining the positions of AUVs can be found in [18].
Since SLAM is already a relatively well-studied method, many approaches to solving a particular
position-determining problem have emerged. One of the most common solutions to the problem
is the so-called scan-matching. This set of techniques involves matching the subsequent scans of
the surrounding environment which are obtained while exploring a particular area [19]. There are
numerous algorithms variants used to match scans obtained by mapping devices. These include
the ICP algorithm [20,21], ICL [22] and algorithms based on matching histograms of the distance
function [23]. However, given the different methods of matching point clouds, the ICP algorithm
proposed for the first time in [24] outperforms other algorithms in its simplicity and the possibility for
its continuous development.

Considering the use of the SLAM technique to determine the parameters of the vessel’s movement,
it is worth looking at the 2011 article by Callmer et al. [25]. In this case, the authors use the object
approach (landmark) based on the SIFT algorithm and the extended Kalman filter (EKF), and images
from the navigation radar. The results of the work are promising; however, in this case there is a
significant drift of coordinates of the position and parameters of the vessels movement. Another
publication describing the implementation of the SLAM task at sea [17]. The approach presented here
assumes that the map of the environment will be explored on a simultaneous basis by more than
one vehicle/ship. This assumption allows obtaining a much more accurate model of the map of the
environment (global map) by combining many sub-maps obtained by vehicles. This mapping is used
to position each of them.

The approach presented in the article is a scan matching without odometry information. A similar
solution, but based on another scan matching algorithm, was presented in [26]. It involves adjusting
concurrent scans one after another without using dead reckoning data in the alignment algorithm. This
article uses the ICP algorithm with the error metric in the point-to-point version [27]. Other versions
of the metrics are: point-to-line [28], point-to-plane [29], and plane-to-plane [30]. The point-to-point
metric was chosen because of the intuitive way of attaching importance to individual correspondences
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(based solely on the coordinate error of the position of a pair of points), without the need to consider
the uncertainty of the position of the line or plane (for cases of three-dimensional point clouds).

In this article, the emphasis is put on the methods of weighting on the basis of estimated errors
of the position coordinates of a pair of corresponding points. The problem of weighting of pairs in
a navigational approach is presented in [31], and for other applications in [32,33]. This publication
assumes that pairs with a higher distance value between points will be given lower weights compared
to those at a smaller distance from one another. Weighting based on color was also accepted. Another
approach presented in [21] is the weighting depending on the uncertainty of the position of points in
the scan and the uncertainty of the position of the straight line (in the point-to-line variant). It was
assumed that more weight will be put on pairs that have less influence on the error metric. A similar
approach is presented in [34]. The authors carry out tests on three variants of the error measure: point,
line and plane. The approach proposed in this article is similar to this; however, it assumes a different,
more universal distribution of coordinates error. They can be easily implemented not only in the case
of a lidar sensor, but also in the case of navigation radar.

2. Evaluation of the Accuracy of Determining the Coordinates of a Position Using LIDAR

The determination of horizontal coordinates using LIDAR is carried out based on the angle α
and the distance r measured between the sensor and the target, i.e., the light signal reflection point
(Figure 1).
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Figure 1. The principle of measuring 2D horizontal coordinates (x, y) using Light Detection and
Ranging (LIDAR).

The mean error M and the parameters of mean error ellipse (i.e., the lengths of semi-axes a and b)
of the determination of 2D horizontal coordinates (x, y) using LIDAR can be calculated by applying
the law of mean error propagation [35,36]. When the functions of a single result of the following
measurement are known:

α = arc tg
x
y

, (1)
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r =
√

x2 + y2, (2)

equations of the mean errors of positional lines can be written as:

σl(α) = σα/

√(
∂α
∂x

)2

+

(
∂α
∂y

)2

, (3)

σl(r) = σr/

√(
∂r
∂x

)2

+

(
∂r
∂y

)2

, (4)

which enable the determination of mean error of position:

M =
1

sinθ

√
σl(α)

2 + σl(r)
2 =

√
(σα·r)

2 + σr2, (5)

a = σα·r, (6)

b = σr, (7)

where:

θ—the angle of intersection of positional lines, which for LIDAR measurements is always equal to 90◦,
σα—mean error of the angle measurement α,
σr—mean error of the distance measurement r,
r—distance between the sensor and the target,
a—the length of the long semi-axis of mean error ellipse (see Figure 2),
b—the length of the short semi-axis of mean error ellipse (see Figure 2).

It follows from Dependence (5) that the value of mean error M and the length of the long semi-axis
a of the mean error ellipse are significantly affected by the distance r between the sensor and the target.
The calculations assumed that the measurements were performed using the Scanse Sweep LIDAR [37]
for which the manufacturer provides σr = 0.004258·r (rounded value). Thereby one takes into account
the fact that the error value of the angle measurement does not only depend on the beam’s divergence
(footprint of the beam increases as a function of divergence) and the angle of its incidence on the surface
of the object, but also on the accuracy of measuring the angle change by the optical head encoder
that can be affected by environmental conditions such as temperature and humidity, vibrations and
imperfections in the performance of mechanical elements that cooperate with each other. This can be
characteristic for entry level LIDAR devices. The spatial angle resolution can be derived from sampling
frequency that is set up to 1000 Hz (when optical sensor is spinning with frequency 1 Hz the Lidar is
able to sample up to 1000 point for a single spin, 5 Hz—200 points, 10 Hz—100 points). The range
spatial resolution is around 0.1 cm.

Based on the known lengths of semi-axes a and b of the mean error ellipse, and based on the
known direction of α measurement, one can simply generate a covariance matrix cov of the (x, y)
vector coordinates:

cov(x, y) =

 a2
· cos2 αa + b2

· sin2 αa
(
a2
− b2

)
· sinαa· cosαa(

a2
− b2

)
· sinαa· cosαa a2

· sin2 αa + b2
· cos2 αa

, (8)

where αa—is the angle between the semi-axis a of the mean error ellipse and the axis OY (for LIDAR
measurements, equal to α + 90◦).

Then, using this, to determine the mean square error σβ2 of the determination of the position
coordinates, but in the specified direction β:
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σβ2 = Sβ·cov(x, y)·ST
β = sin β·

(
sin β

(
r2
·σα2
· sin2 αa + σr

2
· cosαa

)
−

− cosαa· cos β· sinαa
(
σr

2
− r2
·σα2

))
+

+ sin β·
(
sin β·

(
r2
·σα2
· cos2 αa + σr

2
· sin2 αa

)
−

− cosαa· sinαa· sin β·
(
σr

2
− r2
·σα2

))
,

(9)

where Sβ =
[

cos β sin β
]
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Figure 2. Mean error of the determination of position coordinates in the specified direction. (calculated
using the covariance matrix).

2.1. The Determination of USV Movement Parameters Using the Scan-Matching Method

The taxonomy of the ICP algorithm is carried out in the following successive stages of data
processing [21]:

• Selection (selection of points which are suitable for the alignment);
• Matching (matching points from model cloud to reference points cloud);
• Weighting (giving weight to corresponding points);
• Rejecting (deleting some points based on the robust criterion function);
• Assigning an error metric (choosing point-to-point, point-to-line, point-to-plane or plane-to-plane

error metric);
• Minimizing the metric between selected points.

Selection. Let us assume that a USV determines the change in its position through the translation
vector T(k + 1) and the rotation matrix R(k + 1) determined based on two maps of the surrounding
environment M(k) and M(k + 1), constructed at the moment (k) and the moment (k + 1) following it
(e.g., 2D horizontal layer of cloud points for LIDAR measurements). Let Z(k) and Z(k + 1) represent
two sets

{
(r1(k),α1(k)), . . . , (rn(k),αn(k))

}
and

{
(r1(k + 1),α1(k + 1)), . . . , (rn(k + 1),αn(k + 1))

}
of

measurements of the distance r and direction α, carried out in relation to n field obstacles (see Figure 1).
On their basis, set of points M(k) =

{
p1(k), . . . , pn(k)

}
and M(k + 1) =

{
p1(k + 1), . . . , pn(k + 1)

}
will be determined, where the coordinates of each point in the formula are calculated via the
following dependence:

pi =

[
xi
yi

]
,

xi = ri· cos(αi),
yi = ri· sin(αi),

(10)

where:
i = 1, . . . , n

They will be used to determine the translation vector T(k + 1) and the rotation matrix R(k + 1)
using the singular value decomposition (SVD) method [38], which will be carried out in combination
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with a change in the position (in subsequent iteration steps) of the set of points from M(k) to M(k + 1)
using the modified weighted ICP method. In reality, there is very little probability that both sets of
points M(k) and M(k + 1) will contain the same number of points. Equalising the number of points
is required for the family of ICP algorithms with point-to-point error metric and therefore, in the
calculations they were carried out by reducing the number of points. From a more numerous set, the
points were randomly removed so that their number would be equal to the number of the points from
a smaller set.

Matching. Literature shows that there are many ways to match points in pairs. One of them
is the k-d tree method presented in [39,40]. Also considered are methods based on the heuristic
search of pairs to reduce the complexity of calculations [41]. In this article, correspondence between
points is created based on the method presented in [42]. It is based on the Delaunay triangulation.
The method generates a two-dimensional grid of triangles based on the reference set M(k). Next, using
the nearest neighbor method, the nearest apex of triangles to the points from the set M(k + 1) are found
(points from M(k)) in such a way that for each point pi(k) the nearest point pid(i)(k + 1) is assigned
(see Figure 3).
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Weighting of the pairs. The modification of the ICP method will involve the application of the
weighting factor w1,...,n(k, k + 1) for calculations for each pair of points (nearest neighbors):

wi(k, k + 1) =
1√

Gi(k, k + 1)
, (11)

where Gi(k, k + 1) is the sum of mean errors of the determination of the coordinates of points pi(k)
and pid(i)(k + 1) in the specified direction β (see Figure 2):

Gi(k, k + 1) = σβ
2
i (k) + σβ

2
id(i)(k + 1), (12)

where σβi(k) is the mean error of the determination of the coordinates of the point pi(k) in the direction
of β (from pi(k) to pid(i)(k + 1)), σβid(i)(k + 1) is the mean error of the determination of the coordinates
of the point pi(k + 1) in the direction of β (from pid(i)(k + 1) to pi(k)), or Gi(k, k + 1) is the mean error
of the determination of the coordinates of the points pi(k) and pid(i)(k + 1) (see Figure 1):

Gi(k, k + 1) = M2
i (k) + M2

id(i)(k + 1), (13)

where Mi(k) is the mean error of the determination of the coordinates of the point pi(k), Mid(i)(k + 1)
is the mean error of the determination of the coordinates of the point pid(i)(k + 1).
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Weighting step gives specific calculated value for each pair. Then in further processing heavier
pairs involve more the translation and rotation parameters (Figure 4).Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 17 
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Rejection. Due to the relatively high noise level of many scans, particularly in the sectors illustrating
long distance measurements, the Huber function [43] which attenuated the outlying measurement
results (affected by gross errors) was also applied in the calculations. This function was arbitrarily
selected from among many functions known and commonly used for this purpose [21,31,44–47].
The robust function rejects or significantly reduces weights of the specific pairs due to robustness
criterion (see Figure 5). The robust function is based on kHu factor presented in Algorithm 1. Rejecting
or weight minimization is performed based on norm of two paired points. In this article the fusion of
the robust function and proposed error weighting is used to derivate the final weight.
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Assigning an error metric. The final function minimizing the value of the matching error E, used
to accurately determine the translation vector T(k + 1) and the rotation matrix R(k + 1), will take the
following form:

E(R, T) =
∑n

i=1
wi(k, k + 1)·‖Rpi(k) + T− pid(i)(k + 1)‖2. (14)

Provided that points pi(k) and pid(i)(k + 1) are located the closest to one another, i.e., are the
nearest neighbors. This method is based on the point-to-point measure of error.

Minimizing the metric between selected points. The method of minimizing the error between
the corresponding points was carried out on the basis of the SVD (Singular Value Decomposition).
The method works equally for the weighted and classical ICP algorithm. In this article a method
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identical to [47] was used. It is required to determine two weighted average coordinates from the cloud
m(k) and m(k + 1), dependent on point clouds (k), (k + 1) and assigned weights in the previous stage:

m(k) =
∑n

i=1 wi·pi(k)∑n
i=1 wi

, (15)

m(k + 1) =

∑n
i=1 wid(i)·pid(i)(k + 1)∑n

i=1 wi
. (16)

Subsequently, we can move on to determine the weighted covariance matrix, which will be used
to calculate the innovation of rotation matrix and translation (in a given iteration of the algorithm)

C =

∑n
i=1

(
wi·pi(k)·p

T
id(i)

(k + 1)
)

∑n
i=1 wi

−m(k)·mT(k + 1). (17)

Using the SVD decomposition method on the C matrix

C = UΣVT. (18)

where matrices U, Σ, V are characteristic matrices for the SVD method. By means of decomposition
carried out on designated matrices, we obtain the innovations in given iteration—it—of the Rit rotation
matrix and the Tit translation:

Rit = VUT, (19)

Tit = m(k) −Rit·m(k + 1). (20)

The obtained values in the Riter and Titer matrices are partial values developed in a given iteration
of the algorithm. Based on this, the set m(k + 1) is translated at last iteration (see Figure 6) and as a
result the translation and rotation is obtained:

R(k + 1) = R1· . . . ·Ritn, (21)

T(k + 1) = (Rit+1·Tit + Tit+1) + . . . + (Ritn·Titn−1 + Titn). (22)

where Rit=1 and Tit=1 are initialized values.
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Figure 6. Left side—2-point clouds; right side—2-point clouds aligned.

The translation vector T(k + 1) =
[

∆x
∆y

]
thus obtained will be used to determine

SOG(k + 1) =

√
∆x2 + ∆y2

∆t
, (23)
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where ∆t is the distance in time between the moment (k) of performing the measurements of Z(k), and
the moment (k + 1) of performing subsequent measurements of Z(k + 1).

On the other hand, the final form of the rotation matrix R(k + 1) =
[

cos ∆θ sin ∆θ
− sin ∆θ cos ∆θ

]
will be

used to determine:

ROT(k + 1) =
arc sin(∆θ)

∆t
, (24)

and
HDG(k + 1) = HDG0 + arc sin(∆θ), (25)

where HDG0 is the initial HDG value determined using other methods (devices) prior to the
commencement of measurement.

2.2. Weighted Matching Point Clouds Using the Mean Direction Error

Figure 7 shows that the mean error value changes significantly as the function of angle β, and the
gradient of these changes will increase while the eccentricity of the ellipse is approaching 1 (the ellipse
will be becoming flat, which occurs where measurements are carried out using LIDAR). Owing to
these particular properties, this error can usefully determine the value of translation and rotation
established while minimalizing the error metric between the points from subsequent measurements
(e.g., point clouds from LIDAR measurements). Figure 8 presents, in the graphical form, how the
positions matched in pairs of points based on the corrections (e.g., those added to the components of
the rotation matrix and translation vector) change; the value of the rotation and translation was made
depending on the values of the sums of mean errors (Equation (9)) calculated along lines connecting the
matched points from (k) and (k + 1) cloud. In order to facilitate the interpretation of the phenomenon,
it was assumed that the mean error ellipses were similar in size.
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As can be seen in Figure 7, greater weight is introduced for the points whose mean errors in the
specified direction (point-to-point direction) is lower–pairs marked as 2 and 3 in Figure 7. The heavier
weight influences the rotation and translation more and that is why pair 2 and 3 are better aligned
comparing with 1 and 4. The use of such a weighting coefficient allows taking into account the spatial
distribution of errors according to the selected direction. For comparison, Figure 8 presents, in a
graphical form, how the positions matched in pairs of points based on the corrections whose values
depended on the values of the sums of mean errors (Equation (5)) calculated for the matched points.
As can be seen each pair (1, 2, 3, 4) influences the rotation and translation in similar manner.

HDG, SOG, and ROT were determined by processing LIDAR scans archived in data packets in
accordance with the methodology presented in Section 2.1. The pseudo-code of the program used for
the calculations using the authors original weighting factor w(k, k + 1) and Huber’s robust function
coefficient kHu = c·Median‖p1,...,n(k) − pid(1,...n)(k + 1)‖ finally took the following form:

Algorithm 1 The weighted ICP
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− 0.5
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  𝑜𝑟 

𝑤𝑖 = ((𝑀𝑖
2(𝑘) + 𝑀𝑖𝑑(𝑖)

2 (𝑘 + 1)))
− 0.5

;

𝑒𝑛𝑑      
  𝑖𝑓 ‖𝐩𝑖(𝑘) − 𝐩𝑖𝑑(𝑖)(𝑘 + 1)‖ > 𝑘𝐻𝑢 

|𝑤𝑖 =
𝑘𝐻𝑢

‖𝐩𝑖(𝑘) − 𝐩𝑖𝑑(𝑖)(𝑘 + 1)‖
∙ 𝑤𝑖;

𝑒𝑛𝑑 

[𝐑, 𝐓] ←  argmin
𝐑,𝐓

∑ 𝑤𝑖‖𝐑𝐩𝑖(𝑘) + 𝐓 − 𝐩𝑖𝑑(𝑖)(𝑘 + 1)‖
2

;

𝑛

𝑖=1

𝑓𝑜𝑟  𝑖 ← 1 𝑡𝑜 𝑛 
|𝐩𝑖(𝒌) = 𝐑 ∙ 𝐩𝑖(𝒌) + 𝐓; 

𝑒𝑛𝑑      

𝑛𝑒𝑤𝑟𝑒𝑠 = ∑
𝑑 (𝐩𝑖(𝑘) − 𝐩id(𝑖)(𝑘 + 1))

𝑛

𝑛

𝑖=1

; 
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3. The Study and the Analysis of the Obtained Results

The main aim of the study was to evaluate the accuracy of the determination of the HDG, SOG and
ROT using a modified ICP algorithm, carried out as a result of their comparison with high-accuracy
reference measurements. The study involved:
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• measurements carried out using LIDAR and a GNSS RTK receiver, and the synchronous recording
of their results,

• the determination of the HDG, SOG and ROT, based on LIDAR measurement results, by the
scan-matching method using both classic and modified versions of the ICP algorithm,

• an analysis comparing the HDG, SOG, and ROT with reference results of GNSS RTK measurements,
based on the accuracy criterion.

The yacht port basin in Gdynia (Poland) was selected for the measurement area. Its boundaries
include high, concrete wharves and a breakwater. Most of the time, good hydro-meteorological
conditions prevail in the area (Figure 9). To carry out the measurements, a small USV (with a length
of 1.62 m, width of 0.40 m, and a draught of 0.11 m) equipped with Scanse Sweep Lidar, a GNSS
RTK receiver Leica Viva CS 15 [48], and an on-board computer connected to them with a RS-422/232C
conversion cable [49], were used to record the measurement results (Figure 10). The measurements
were carried out on a USV sailing with a speed of approximately 1.2 m

s (2.4 kts) over a trajectory
of approximately 220 m, as presented in Figure 10. All data was collected via a mobile computer
wirelessly connected to AUSV (autonomous unmanned surface vehicle, see Figure 11.). While the
USV was sailing, the on-board computer synchronously recorded (when generating a full scan using
LIDAR) the measurement results making up the so-called data sets containing: a LIDAR scan (in the
form of a measurement set Z =

{
(r1,α1), . . . , (rn,αn)

}
), NMEA messages with the position coordinates

of SOG and COG (course over ground) from the GNSS RTK receiver [50]. 865 data sets were thus
collected by recording each subsequent sets every 0.2 s on average, i.e., after a change in the USV
position by approx. 0.25 m.
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Analysis of the Accuracy of Determining the COG and SOG Using a Modified ICP Algorithm

Table 1 presents statistical parameters (i.e., the mean value, standard deviation and the maximum
value) which characterize the computational accuracy of each parameter. The following acronyms
were used to describe ICP’s variants: K_ICP for algorithm without modification, H_ICP for robust
version based on Huber’s function, HM_ICP for robust version based on Huber’s function with mean
error weighting and HD_ICP for robust version based on Huber’s function with directional error
weighting. The lower index ICP was used for values computed by ICP algorithm’s variants and lower
index R was introduced to point the values surveyed with GNSS RTK receiver.

Table 1. Summary of comparative statistical parameters.

Method

Mean Value Standard Deviation Maximum Value

SOGICP−SOGR
(m/s)

∆COGICP−∆COGR
(◦)

SOGICP−SOGR
(m/s)

∆COGICP−∆COGR
(◦)

SOGICP−SOGR
(m/s)

∆COGICP−∆COGR
(◦)

K_ICP −0.031 0.08 0.113 0.57 −0.524 −3.5
H_ICP −0.013 0.05 0.031 0.14 −0.319 0.72

HM_ICP −0.012 0.03 0.031 0.13 −0.185 −0.48
HD_ICP −0.007 0.03 0.026 0.11 −0.18 0.42

A comparison of the parameter values (obtained based on 865 collected data packets) listed in
Table 1 shows that the HD_ICP algorithm was the best in terms of the accuracy of determining the
USVs movement parameters; it is followed by HM_ICP, H_ICP and K_ICP. Figure 12 shows a graph of
SOG_ICP-SOG_R differences.

Figure 12 shows that the accuracy of determining the SOG using the K_ICP method significantly
decreases for scans in the intervals of 〈220, 365〉 and 〈720, 825〉. These scans differ significantly from
each other in rotation angles and include a greater number of erroneous measurement results than the
others. This is undoubtedly due to the turns made by the USV at that time. The accuracy of determining
the SOG using the other methods is, at the same time, considerably higher. These methods probably
achieve that through the attenuation of measurements with gross errors using Huber’s function.
The HD_ICP method proved to be the best in determining the SOG in a significant part of the graph
course. This was also confirmed by the lowest values of the mean error, equal to −0.007 m

s (−0.014 kts)
and of the standard deviation, equal to 0.026 m

s (0.05 kts) presented in Table 1.
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The histogram representing the frequency of occurrence of SOGICP − SOGR differences, presented
in Figure 13, shows even more clearly that in terms of the accuracy of determining the SOG, the HD_ICP
method is better than the others. Most of the values of SOGICP − SOGR differences, determined using
the HD_ICP, HM_ICP, and H_ICP methods, fall within the interval of −0.05~0.05.
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Figure 14 shows that the accuracy of determination of the ∆COG using the K_ICP method
significantly decreases, as in the case of the SOG, for scans in the intervals of 〈220, 365〉 and 〈720, 825〉.
The HD_ICP method also proved to be the best in determining the ∆COG in this case. This was also
confirmed by the lowest values of the mean error, equal to 0.03◦, and of the standard deviation, equal
to 0.11◦, presented in Table 1. Figure 15 shows a histogram representing the frequency of occurrence of
∆COGICP − ∆COGR increment differences.

The histogram representing the frequency of the occurrence of differences ∆COGICP − ∆COGR

shown in Figure 15 enables the conclusion that the HD_ICP method is also the best in terms of the
accuracy of determining the ∆COG. Its advantage over the others can be clearly seen in the interval
of differences ∆COGICP − ∆COGR 〈−0.05, 0.05〉. Given that the ∆ROT results are identical with the
∆COG results, their presentation and analysis have been omitted. Differences in the algorithms’
accuracy are shown at Figure 16 (presenting results of H_ICP and HD_ICP). Differences between
HD_ICP and HM_ICP versions are barely visible, so they were omitted.



Appl. Sci. 2019, 9, 3530 14 of 17

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 17 

 

Figure 14. A graph of ΔCOGICP − ΔCOGR increment differences. 

 

Figure 15. A histogram representing the frequency of occurrence of ΔCOGICP − ΔCOGR increments. 

The histogram representing the frequency of the occurrence of differences ΔCOGICP − ΔCOGR 

shown in Figure 15 enables the conclusion that the HD_ICP method is also the best in terms of the 

accuracy of determining the ΔCOG. Its advantage over the others can be clearly seen in the interval 

of differences ΔCOGICP − ΔCOGR 〈−0.05˚, 0.05˚〉. Given that the ΔROT results are identical with the 

ΔCOG  results, their presentation and analysis have been omitted. Differences in the algorithms’ 

accuracy are shown at Figure 16 (presenting results of H_ICP and HD_ICP). Differences between 

HD_ICP and HM_ICP versions are barely visible, so they were omitted. 

  

(a) (b) 

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

1 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

Δ
 C

O
G

 d
if

fe
re

n
ce

 [
º]

Scan number

K_ICP H_ICP HM_ICP HD_ICP

0

20

40

60

80

100

120

140

160

-0.50 —
-0.45

-0.45 —
-0.40

-0.40 —
-0.35

-0.35 —
-0.30

-0.30 —
-0.25

-0.25 —
-0.20

-0.20 —
-0.15

-0.15 —
-0.10

-0.10 —
-0.05

-0.05 —
0.05

0.05 —
0.10

0.10 —
0.15

0.15 —
0.20

0.20 —
0.25

0.25 —
0.30

0.30 —
0.35

0.35 —
0.40

0.40 —
0.45

0.45 —
0.50

0.50 —
0.55

N
u

m
b

er
 o

f 
sa

m
p

le
s

Δ COG  difference [º]

K_ICP H_ICP HM_ICP HD_ICP

Figure 14. A graph of ∆COGICP − ∆COGR increment differences.
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Figure 16. (a) Grid map computed by ICP with proposed directional weighting—HD_ICP; (b) grid
map computed standard H_ICP.

4. Conclusions

As the study attempted to prove, an ICP algorithm that matches point clouds from a laser
scanner can effectively generate USV movement parameters. The proposed weighting factor based on
the mean error in the specified direction of the determination of the coordinates of the positions of
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scan points enables more realistic (corresponding to the actual movement) matching of subsequent
maps of the surrounding environment. This helps to determine the USV movement parameters with
a higher accuracy. This was confirmed by the study results—inter alia the values of statistical
indices in the form of mean SOGICP − SOGR = 0.007 m

s (−0.014 kts) and standard deviation
SOGICP − SOGR = 0.0025 m

s (0.05 kts) and ∆COGICP − ∆COGR = 0.03◦ and standard deviation
∆COGICP − ∆COGR = 0.11◦. However, it should be noted that the authors’ original weighting factor
should be used in combination with a robust criterion function to reduce measurements with gross
errors (e.g., based on Huber’s function), as only such a solution can be fully applicable. The indicated
mean error values lead us to a generalized statement that the developed method allows measuring
SOG and COG with the accuracy required by the IMO. It should be noted, however, that the test was
carried out in confined waters (harbors, channels, berths, marinas), beyond which the method would
not be effective due to the low LIDAR range. All data used in publication is available at [51].
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