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Abstract: With the rapid increase in the development of the cloud data centers, it is expected
that massive data will be generated, which will decrease service response time for the cloud data
centers. To improve the service response time, distributed cloud computing has been designed
and researched for placement and migration from mobile devices close to edge servers that have
secure resource computing. However, most of the related studies did not provide sufficient service
efficiency for multi-objective factors such as energy efficiency, resource efficiency, and performance
improvement. In addition, most of the existing approaches did not consider various metrics. Thus,
to maximize energy efficiency, maximize performance, and reduce costs, we consider multi-metric
factors by combining decision methods, according to user requirements. In order to satisfy the
user’s requirements based on service, we propose an efficient service placement system named fuzzy-
analytical hierarchical process and then analyze the metric that enables the decision and selection
of a machine in the distributed cloud environment. Lastly, using different placement schemes,
we demonstrate the performance of the proposed scheme.

Keywords: distributed cloud computing; service placement; fuzzy system; energy efficiency; resource
management; Internet of Things

1. Introduction

In the past decade, traditional cloud computing technology, which relies heavily on the centralized
cloud data center (CDC), has been widely used. Cloud services have also been offered in the form of
centralized CDCs that can be remote from mobile users. This sometimes entails network delay due to
the centralized CDC structure.

Recently, significant progress has been made in the deployment of cloud services nearer to users,
which provides higher reliability and faster response time. In particular, in distributed cloud services,
a small cloud, such as a distributed cloud, can be connected to provide services to the device users in
order to provide the low latency and rapid response time of mobile devices. By placing and migrating
to the cloud services that have a higher resource near to the mobile users, the distributed cloud offers
faster response time, along with higher scalability and reliability than centralized CDCs [1–3].

One of the important issues in distributed cloud data centers (DDCs) is service placement (SP)
with mobility. The limited coverage of a single server to support mobile users will result in service-level
agreement (SLA) violation, which further leads to a decrease in performance and quality of service
(QoS). Therefore, it is difficult to ensure seamless service [4,5].

Unlike conventional CDCs, DDCs are characterized by a relatively low computing resource and
storage capacity. These DDCs consist of computing devices such as personal computers (PC), tablets,
and laptops.
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To support distributed cloud services efficiently, there is a need to manage and place various
tasks in order to meet various SLAs parameters such as resource utilization, response time, service
availability, latency, and costs. As many different end devices need to connect to the distributed
cloud for SP, a decision should be made, when a service needs migration [6]. For this reason, various
approaches for placement and migration have been studied and proposed for DDCs. To take advantage
of nearby resources and resource management, SP and migration techniques have been playing an
important role [7,8]. However, existing SP and migration schemes have some challenges, which are
covered below.

First, placement and migration techniques in cloud computing have been developed to find
various objectives to maximize energy efficiency [9], minimize costs [10], and maximize performance.
However, in most of the previous approaches, objectives of services are not considered. For example,
References [11,12] mainly focus on energy efficiency, while Reference [11] focuses on performance.
Due to the high uncertainty of user mobility and requirements, it is very difficult to conduct efficient
SP. Thus, in order to meet various requirements, we should also consider various metrics based on
the objective.

Second, the cloud service provider (CSP) needs to balance conflicting objectives such as minimizing
resources wastage, reducing overall operation costs, and minimizing service latency [13]. Specifically,
multi-objective optimization investigates the search methods that are used to find solutions based on
several conflicting performance objectives, such as waiting time minimization, resource utilization
maximization, and profitability maximization [10–13].

It is difficult for the CSP to manage the trade-off between objectives. For example, energy efficiency
is typically optimized at the expense of QoS. From the perspective of the cloud user, the only priority
is the fulfillment of their application resource demands. The resource demand is typically specified
as SLA. Although this approach can provide continuous service with a minimal delay, there are
disadvantages, such as degraded virtual machine (VM) execution performance and increased SP cost.
In addition, some SP algorithms provide a well-balanced SLA efficiently. However, they need to be
avoided since they increase network traffic and energy costs [7,8].

To solve these problems, we propose an SP scheme based on a fuzzy-analytical hierarchical process
(FAHP) and attempt to conduct research on the SP scheme for a multi-objective in DDCs. Especially,
we focus on multi-objectives in energy efficiency and performance improvement. We also provide
analysis of metrics related to efficiency for performance, efficiency for energy, and cost. The evaluation
results show the effectiveness of the proposed scheme. Our contributions are as follow.

(1) Categorization of metrics to improve energy efficiency and performance,
(2) The SP decision whether or not based on the fuzzy system,
(3) Selection for target machine with multi-metrics based on the analytical hierarchical process (AHP)

system through the calculation of weights.

The rest of this paper is organized as follows. Section 2 provides an analysis on related work to
solve the current challenges. In Section 3, we propose an SP system and scheme with steps. In Section 4,
we evaluate and analyze the proposed system and scheme in terms of the efficiency of performance
and energy in DDCs. Lastly, we present our conclusion.

2. Related Work

When service is placed or migrated, service users request their resource requirements from CDCs.
The CSPs need to make a decision on resource allocation for the VMs and select the most suitable target
machine. This process is known as placement. When service is executed, if the resource utilization
is higher than the setting value, it can lead to performance degradation. However, if the resource
utilization is lower than the setting value, it can lead to an increase in cost among CDCs. Thus, it needs
to consider multi-metrics when SP is operated. To respond to changing workloads, there have been
previous approaches for placement schemes [1–15] with various objectives.
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Thus, this section provides a comprehensive review of existing placement schemes and illustrates
the analysis of metrics, according to objectives with placement schemes.

2.1. SP

The objective of the SP is to find an efficient placement that does not violate the SLA while
minimizing resource wastage and cost. To execute SP, as shown in Figure 1, SP steps are as shown in
Figure 1 and described in the three subsections that follow.
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2.1.1. Load Detection

This step must set a threshold limit to decide when a certain server is over-utilization or
under-utilization. The load detection step can be divided into overload (hotspot) detection and
underload (coldspot) detection.

• Hotspot Detection: In the existing works, when the monitoring value or predictive value such as
resource utilization, waiting time, and user mobility information exceeds the set threshold, this
is considered a hotspot [16] in CDCs. Getting rid of hotspots can ensure the QoS and minimize
resource wastage.

• Cold Spot Detection: If a specific VM detects low utilization than the set threshold, this state can
be termed a “Cold Spot.” It is the aim of SP to remove this state through migration to other active
hosts. For efficient SP, it needs to appropriately see that VMs are selected to solve the over-loaded
or under-loaded host.

2.1.2. Placement Decision

The VM decision step decides which VMs should be placed or migrated to minimize the resource
wastage of the over-loaded or under-loaded host as well as to satisfy user requirements such as
reducing service response time, energy consumption, and cost. Thus, it is important to detect the
VM state such as resource usage, and energy consumption in the load detection step, and to choose
optimized metrics depending on user requirements for the VM decision.

2.1.3. Placement Action

In this step, the selected VM (service) in the previous step is placed on another VM. CDCs and
DDCs need to place and migrate to minimize resource wastage, balance workloads, maximize energy
efficiency, and save cost.

In this step, the proper VM is selected to place for resource management and efficiency service
operation in CDCs and DDCs. Due to its importance, the problem of VM placement in the CDCs and
DDCs became the focus of practical studies, and numerous VM placement methods have proposed
algorithms for decisions, which included VMs (or services) to be placed (or migrated).

In previous work, for various user requirements, VM placement schemes have been proposed
considering different metrics such as resource utilization, response time, etc. [3,4,9], according to
the objective.

Due to the scaling of cloud infrastructures and dynamic workload, when services are placed or
migrated, considering the target machine is another challenge. Accordingly, various research studies
have been proposed for decision making for selecting between VMs and physical machine (PM) [9].
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The decision for the target machine has to consider multi-metrics such as resource utilization, energy
consumption, and latency [12,16], according to user requirements.

For selecting a source machine and target machine, it is important to detect an over-load and
under-load state [17]. When a server does not have enough resources for the operating service, it is
called a hotspot, which means it is overloaded and needs to place some services to another server [17].
Hotspots contribute to performance degradation as well as reduce energy efficiency. In addition, if the
server state detected is a cold spot, it also contributes to performance degradation as well as reduced
energy efficiency.

Thus, when a service is placed, it aims to find the best target machine, which leads to the
improvement of performance, and energy efficiency of the CDCs and the reduced operation cost of the
CDCs and DDCs. Large-scale CSPs face the challenging problem of how to place resources over areas
so as to reduce the total cost while providing an adequate level of performance, by taking into account
the dynamic demand.

2.2. SP Approaches

Recently, the problem of placement in CDCs has been studied extensively. In this section,
we present a categorization of previous studies that have proposed architectures and approaches for
VM placement. Furthermore, we present analyzed metrics from previous approaches, according to
the objective.

2.2.1. Architecture

SP approaches have been studied in two different cloud architectures: the architecture of the
solution, that uses a (1) centralized architecture or (2) a distributed architecture.

A centralized architecture usually has a long latency than a distributed architecture, and the
performance may degrade as the demand increases. However, the most studied cloud architecture is
the centralized CDCs. Thus, a distributed architecture study for SP schemes is definitely required in
the future.

2.2.2. Approaches

This section describes the existing VM placement approaches in the previous work. To address
limitations, we propose an SP scheme based on multi-criteria decision-making (MCDM) [8]. Figure 2
shows the classification for CDC. In other words, the metric affects the priority for selecting VM.
According to a used metric in the proposed system, it can select the target machine.

Selecting the optimal services for SP from among the increasing number of various cloud services
in the cloud data centers (CDCs) is a great challenge. Many cloud services will be available in the
CDCs that will further complicate the service of selecting the best or most optimal services for the
user from among many different types of services. Therefore, cloud service selection will be a great
challenge. To solve this challenging research problem, a decision-making method is required to assist
the users in service selection [11–15].

In References [15–17], the author proposes a new model for SP in CDCs using the AHP method,
which is one of the most efficient MCDM techniques. This method can find the most suitable service in
the CDCs for the SP. Typically, each alternative is evaluated with the decision metric, and each metric
is assigned a weight based on its importance. The alternatives are ranked according to the relative
closeness of the ideal solution. The closer the alternative is, the better. VMs are sorted from the highest
overloaded to the idle ones based on some metrics such as CPU, RAM, and NET, etc. Each attribute is
given a weight. There are many MCDM methods, as shown in Figure 2. However, the analysis layer
process (AHP) is popular since the MCDM method is used in many areas to make decisions based on
weights in order to meet conflicting goals.
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However, almost all the proposed SP schemes consider one or two objectives and metrics, as
shown in Table 1. In this paper, we consider multi-objectives and multi-metrics for satisfying the
user’s requirements.
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Table 1. Related work on placement.

[18] [19] [20] [21] Proposed Scheme

Goal Minimize
energy cost

Maximize
energy
efficiency

Minimize the
number of
active nodes

Maximize
resource
utilization

Energy efficiency
and improvement of
performance

Algorithm Reinforcement
Constraint
satisfaction
problem

GA AHP, Fuzzy,
TOPSIS Fuzzy-AHP

Method Decision of the
power mode Selection of VM

Decision for the
number of
nodes

Combination of
MCDM

Selection of Target
machine

Metric CPU Latency Runtime CPU, RAM resource, latency, etc.

Pros
Improvement
of user
satisfaction

Load balancing Performance
improvement

Resource
utilization
improvement

Consideration of
multi-objectives

Cons
Consideration
of CPU
utilization

Consideration
energy only

Small–Scale
environment Accuracy Need for more tests

in real environments

Common with
our work Use of metrics for resource utilization

Different with
our work Consideration of multi-metrics with satisfying user requirements

2.3. Service Placement Metric

The SP scheme helps reduce energy consumption and maximizes performance in CDCs. As shown
in Table 2, we categorize related works according to the objective and metric.
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Table 2. Related work on SP.

Metric Decision Value Algorithm

[22] Response time, QoS SP GA
[23] Resource wastage SP GA
[24] Cost Load dispatching Greedy, GA
[25] Cost Task distribution Mixed ILP
[26] Network latency SP ILP
[27] Power consumption SP Weight
[28] Delay SP Markov
[29] Resource usage Resource allocation Consensus
[30] Energy SP First-fit
[31] Delay SP Own algorithms

Proposed scheme Multi-metrics SP Fuzzy-AHP

We consider multi-metrics to find a good balance between metrics to minimize the trade-off. The
performance degradations can increase the execution time, which, in turn, decreases the energy savings
in order to define the balance between them.

We further summarize and compare the SP scheme based on the decision method described in
Table 2. Most of these SP schemes attempt to influence decision making when researchers try to include
one or two metrics such as resource usage, response time, and cost. To ensure that their SP meets
the specific performance requirements, the algorithms must be improved to be more flexible. The SP
process introduces various trade-offs, such as that between delay and cost. However, it is difficult to
develop an efficient, high-performance SP approach that is energy-efficient and optimizes the balance
between allocated resource and SP overhead.

There are many approaches for SP. Although these approaches address important and distinct
aspects, to the best of our knowledge, each is insufficient for a scheme that applied current requirements
considering conflicting goals.

To find a good balance between metrics, in this paper, we categorize metrics according to the
objective: performance, energy efficiency, and cost.

The explanation for objectives is given in the following three sub sections.

2.3.1. Performance

An SP deals with fast and efficient approaches to provide resource management, maintenance,
and fail-over. Many approaches are attempts to provide better performance.

Table 3 shows the suggested metrics to evaluate the performance of SP in previous studies.
We have categorized the SP metrics for performance. In recent studies, the following six metrics
were typically selected to evaluate SP performance: execution time, waiting time, resource utilization,
transferred data, number of migrations, and throughput. These metrics are optimized in Table 3,
according to different behaviors, such as the retrieval of maximal or minimal values. In addition,
most of the approaches focus on minimization of the placement time. Time minimization reduces the
execution time, downtime, and waiting time [1–7]. Time minimization is an important metric due to
the affection of the performance of VMs.
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Table 3. Performance metric.

Metric Explanation Optimization
Behavior

Previous Research
Reference Number

Execution time (ET) The amount of time from start
to finish during SP Minimize ET [7,8]

Waiting time (WT)

The amount of time that a
certain VM is occupied
resource, while the other VM is
waiting for using the resource.

Reduce WT [14,26]

Resource utilization (RU) The average percentage for RU Maximize RU [9,15,23–25]

Transferred data (TD) The amount of transfer data
during the SP Reduce TD [25]

Number of migrations (NM) The NM for SP Minimize NM [30]

Throughput (TP) The number of tasks until
completion of SP. Maximize TP [32]

2.3.2. Energy Efficiency

Recently, high EC has led to an increase in CDCs’ operating costs and a decrease in service
performance. As a result, concerns about energy efficiency are also growing.

Therefore, the SP approaches for preserving server energy are important for CSP and service users.
Table 4 shows the metrics that have been used to evaluate the energy efficiency of SP in previous

studies. Recent studies that have evaluated SP energy efficiency typically applied one or more of the
following four metrics: RU, EO, NM, and EC.

Table 4. Energy efficiency metric.

Metric Explanation Optimization
Behavior

Previous Research
Reference Number

Resource utilization (RU) The amount of resource usage
for service execution Maximize RU [9,10,19,20]

Energy overhead (EO) The amount of extra resources
usage to perform SP Reduce EO [33–35]

Number of migration (NM) The NM for SP Minimize NM [17]

Energy consumption (EC) Amount of energy to perform
SP in CDC Reduce EC [10,13,30,34]

Previous approaches to reduce EC have included RW minimization, and RU maximization for
resource management [9,10,17,19,20]. Table 4 presents a list of the metrics adopted in previous research
and their optimization behavior.

2.3.3. Cost

Cost efficiency of placement and migration try to reduce the CDCs’ service operation cost.
In previous approaches, SP methods have been studied to minimize cost while considering QoS.
Table 5 shows the cost metrics in the cost-efficient SP and migration approaches. We categorized the
SP metrics. The following three metrics were typically applied in recent studies: VM cost, PM cost,
and the distance between VMs and service users. These metrics were optimized according to different
behaviors to minimize metrics. The approaches for cost saving are explained as follows. The following
metrics were also considered for different service types.
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Table 5. Cost metrics.

Metric Explanation Optimization Behavior Previous Research

VM cost (VC)
The operation cost of using the
VMs when services are
executed in CDC

Minimize VC [12,25,34]

PM cost (PC) The cost of using the PM in the
specific period Minimize PC [36–38]

Distance between VMs
and service users (DS)

Distance between the VMs and
the service users Minimize DS [39,40]

3. Proposed Method

Cloud computing supports several service types with resource management. Thus, SP schemes
have to consider various service types and objectives (energy efficiency [41–46], performance [47], and
cost). In the proposed system, the input metric for multi-objective factors, such as performance and
energy efficiency, is not limited.

We propose SP schemes that include the following functions.

• Determine services that need to be placed through resource monitoring for the detection of
overload or underload.

• Determine the target machine based on the AHP system by calculating weights such as prediction
values for resources.

3.1. Proposed Architecture

The fuzzy system has been used in many areas for decision-making. Thus, we used the fuzzy
system to reflect the uncertainty of the placement condition. It can control SP, according to the objective,
by determining the VMs that require placement and selection of the target machine, according
to calculated weights. It helps improve performance and minimize resource wastage in DDCs.
The fuzzy-AHP system architecture and phase for SP are as follows.

As shown in Figure 3, the proposed system consists of three main functions: Fuzzy System, AHP
System, and placement manager.

• In the fuzzy system, it consists of two main functions: fuzzy inference system and rule
configure system.

• Fuzzy inference system (FIS) provides an appropriate target machine to meet service requirements
when resources reach the threshold assigned for the service. In this rule-configure system (RCS),
the initial rule is to reflect the current uncertainty of the placement condition. After the adaptive
rule has been configured, the stability of the range of RU is increased by reconfiguring the range.
We can set the objective rule for application to the fuzzy system by reconfiguring the range.
We present a detailed explanation fuzzy system in Section 3.2.

• In the AHP system, we describe how to measure the action. In exploring the optimal placement
scheme, Table 2 defines relative value-based weight for our set of policies based on Table 4.
The evaluated ranking is reflected by the rationality of the ranking scale. The ranking is
a numerical scale that indicates the relative importance of metrics through a comparison. We use
the standard Saaty ’AHP [48,49] 9-level scales, which Table 2 shows. Table 2 describes the notation
for the proposed scheme. We send this result to the placement manager for weigh the calculation.

• The placement manager consists of two modules: decision and action for placement. In the
decision module, it is the decision on the SP situation whether or not based on the fuzzy system
values. In the action module, we can perform placement based on the result of the AHP system
considering the target machine. As a result of our calculation, we can select the target machine.
In the next section, we will explain the detailed proposed scheme by the step.
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3.2. Steps of the Proposed Scheme

We propose an efficient placement scheme considering the metric. We propose an efficient
placement scheme considering the metric. In steps 1 and 2, we gather information based on requirements
and the resource state for SP. In steps 3 to 7, a fuzzy system is conducted for the SP decision. Then
an AHP system is conducted in steps 8 to 10 for target machine selection. As shown in Figure 4,
the detailed steps for the proposed SP scheme are as follows.

• Step 1. Resource monitoring and profiling. The first step is to monitor the resource state of an ongoing
service. It is needed for monitoring and profiling the SP decision and selecting the target machine.

• Step 2. Service requirement analysis. Based on the demand of the user requirement, we categorize
objectives and needed metrics.

• Step 3. Establish a fuzzy variable (create a membership function (MF)). The concept of a fuzzy system is
based on steps 3 to 5: fuzzification, rule construction and evaluation, and defuzzification [24]. The
MF is used to calculate the probability values of an alternative for selecting the target machine.
The input metric for the alternative is sent to the fuzzification phase in the fuzzy system, as shown
in Figure 6.

• Step 4. Fuzzy inference (rule construction). Rules are designed by the importance of the metric
relationship. Algorithm 1 represents our Fuzzy block with fuzzify and defuzzify to set MF.

• Step 5. Defuzzifying. In this step, we can obtain the output value of the “Placement decision” and
“Target machine list” through the defuzzifying process.

• Step 6. Placement decision. In the configuring system, through the configuration of rules, we obtain
a more objective decision value. In this step, if the “placement decision” is detected, we go to the
AHP system.

• Step 7. Perform the AHP system. We construct the hierarchy structure based on AHP. AHP is an
MCDM approach that can be used to solve complex decision problems. The main steps of AHP
include making a hierarchy, assigning weights to each metric, investigating the consistency check
of the system, and, ultimately, making a decision (determining the priorities of options). To select
a service, this phase is the most important step. In this paper, we considered one scenario for
energy and performance. A hierarchy structure of the performance metric is designed, as shown
in Figure 5, based on previous approaches.

• Step 8. Determine the decision table. We explain how to measure the decision. When an efficient SP
scheme is applied, Table 6 defines the relative value for the policies based on Table 7. According
to the relative value, we can calculate the weight.
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Algorithm 1: Fuzzy block (fuzzify and defuzzify setting).

FUZZIFY CPUConsumption
TERM low: = (0, 1) (73, 1) (77, 0);
TERM mediumLow: = (73, 0) (76, 1) (79, 1) (81, 0);
TERM medium: = (79, 0) (81, 1) (84,1) (86, 0);
TERM mediumHigh: = (84, 0) (86, 1) (89, 1) (91, 0);
TERM high: = (89, 0) (91, 1) (100, 1);

END_FUZZIFY

FUZZIFY RAMConsumption
TERM low: = (0, 1) (73, 1) (77, 0);
TERM mediumLow: = (73, 0) (76, 1) (79, 1) (81, 0);
TERM medium: = (79, 0) (81, 1) (84,1) (86, 0);
TERM mediumHigh: = (84, 0) (86, 1) (89, 1) (91, 0);
TERM high: = (89, 0) (91, 1) (100,1);

END_FUZZIFY

DEFUZZIFY NecessityOfPlacement
TERM safe: = (0,0) (5,1) (10,0);
TERM standBy: = (10,0) (15,1) (20,0);
TERM nonUrgentSP: = (20,0) (25,1) (30,0);
TERM urgentSP: = (30,0) (35,1) (40,0);
METHOD: COG; // Use ‘Center of Gravity’ defuzzification method
DEFAULT: = 0; // Default value is 0 (if no rule activates defuzzifier)
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• Step 9. Calculate the weight for metric. We use a ranking method by priority. A ranking is a numerical
scale of the numbers that indicate how many numbers are more important with respect to the
metric to which they are compared. We use the standard Saaty AHP 9-level scales, as shown in
Table 6. In this system, we have to perform a comparison of every combination of two VMs at the
same level (pairwise comparison) so that it is stated mathematically. The evaluation begins with
the metric that represents the delimitation of the trade-off. We also use the S (Score) as the example
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to represent how the weight is defined. As shown in Table 8, thus, we get the matrix-based
Equations (1)–(3).

Wm =
∑

Wn (1)

Wn =
Vn−1

Vn
(2)

s.t max
∑

Wm (3)
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Table 6. Relative value.

Relative Importance Value

Equal importance 1
Somewhat more important 3
Definitely more important 5

Much more important 7
Extremely important 9
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Table 7. Relative value-based weight.

M1 M2 . . . Mn

M1 S1/S1 S1/S2 . . . S1/Sn
M2 S2/S1 S2/S2 . . . S2/Sn
. . . . . . . . . . . . . . .

Mn Sn/S1 Sn/S2 . . . Sn/Sn

Table 8. Notation used in this paper.

Notation Description

M1 Resource utilization of VM
M2 Capacity of VM
M3 The number of VM migrations for SP
M4 The time of delay during the SP
M5 Response time during SP
Mn Metric n
Sn Relative score n
Wn Sum of weight
Wm Weight for metric
RU Resource utilization of VM
CU CPU utilization of VM
MU Memory utilization of VM

P Percentage of resource utilization
RT Response time of service
WT Waiting time of service
NM Number of VMs

Table 6 defines relative score-based policies. In addition, in Table 8, we present the used metric
explanation. Figure 5 presents an example of the AHP structure of user requirements in order to decide
among cloud service candidates.

A number of the previous studies [9–13,19–24,41–46] considered RU as a metric when services
were placed or migrated. In this paper, we also considered the RU metric in the evaluation of all
such cases with respect to parameters such as performance and energy efficiency. The CSP can decide
to assign the weight according to relevant requirements. SP is performed from VM as well as other
devices operated by the user. Therefore, RU is calculated to depend on the user’s mobility and the
probability of the utilization of resources based on the previous usage demonstrated over time, which
is shown in Equation (4).

The equation for RU is as follows.

UtilizationVM j =

∑n
i=1 p

time
(4)

For example, low ET is better than a high ET, so we must get a high score. Thus, we present
a mathematical method for a reciprocal number. In Equations (5) and (6), we represent two metrics,
cpu utilization (CU) and memory utilization (MU), based on RU in order to apply them to situations,
such as underload and overload.

CU: CU is the average percentage of utilization (p) of the resource for VM. CU is used for weight
calculation. According to weight, it can decide priority. Based on priority, we can get an alternative for
target machine selection. The equation for CU is as follows.

CU =

{
p p ≤ 70

140− p p > 70
(5)
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The score for CU is equal to or under 70%. If it is higher than the threshold, the score is decreased.
If CU is 65%, we get a score of 65. If CU is 90%, we get a score of 50. The reason we calculate the
equation this way is that, when the CU gets a hotspot, service leads to latency [1].

MU: MU is the average utilization (p) of VM resources. The following equation calculates the MU
scores for weight.

MU =

{
p p ≤ 50

100− p p > 50
(6)

We propose an SP scheme with metrics that combine score demand based on the user requirements.
In this equation, t represents the average amount of time taken for the system to process a request. The
following equation obtains a score for RT.

RT =
1
t

(7)

• Step 10. Calculate the final weight for selecting the service.

Equation (8) determines the target machine with values such as RU, RT, and prediction of WT.
In addition, we can calculate selection VM through Equations (8)–(10).

Target Servicep = RU + RT + WT (8)

Target Servicee = RU + NM (9)

Selection Service = Max(Target servicei) (10)

• Step 11. Action of placement. After making decision of the target machine for SP, then we operate
on SP.

4. Evaluation

In this section, we evaluate our model. Through experiments, we prove the most influential
metric categorized according to the objective in Section 2.3. To reach our goals of energy efficiency and
performance improvement, SP is needed as well as definition and categorization metrics, according to
user requirements, which is described in Section 2.3. Thus, with categorized metrics, we evaluate the
SP according to the given case. Each experiment is repeated 20 times.

We divide the two cases used for the validation of the proposed scheme. Each case consists of
energy efficiency and performance. We also compare our scheme with other policies.

4.1. Evaluation Environment

In this section, we show the result of the evaluation of our SP scheme. To compare SP efficiency,
we used the simulation tool called CloudSim. Table 9 detailed the test environment. In our experiment,
we implemented our algorithms in CloudSim 3.0.3 and analyzed the performance of our proposed
scheme. We considered heterogeneous data centers, half of which were HP ProLiant G4 and the rest
were HP ProLiant G5 servers. The energy consumption was calculated based on HP ProLiant G4, HP
ProLiant G5 CPU usage, and power consumption. The fuzzy rules were defined and integrated into
CloudSim by using the JFuzzyLogic tool [13].

After creating the VMs on CloudSim, the VMs were placed in a different location. The scheme
was able to evaluate the capability of such methods on SP. The reason for implementing test datasets
and environments from different hosts is as follows. We wanted to test the generality and adaptability
of new host CPU data to realize a multi-objective SP. In this work, we used real-world workload data
that is provided from, PlanetLab [25]. These data were collected from the VMs of different servers.
The workload is representative of an IaaS cloud environment such as Amazon EC2, where VMs are
created and managed by several independent users. This dataset included the resource requirements
of the service submitted by 100 users to a cluster of two hosts. With our settings, we generated
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requests for each user as if the users were running the service in an IaaS cloud environment such
as EC. For each user, we executed the proposed scheme that assigned a resource VM based on the
resource requirements of the service. Whenever a user submitted requirements, our proposed SP
scheme checked the feasibility corresponding to PlanetLab specifications, as if it could accommodate
the service and conduct service SP to the target machine.

Table 9. Evaluation environment.

Type Value

CPU Intel core i5-4690 3.50 GHz
RAM 16GB

CDC environment
Number of CDCs 2
Number of hosts: 4
Number of VMs: 16
Number of cores: 2
Number of VM instance types: Small Instance: 1 EC2 Compute Unit, 1.6 GB *4
Number of services: 25

4.2. Reltion of Metric for Energy Efficiency

In this section, before verification of the efficiency of the proposed method, we present the
importance of the relationship between metrics. In addition, we show membership function (MF)
is used for the decision of placement. We can set the rule through MF and then make a decision for
placement based on the rule.

4.2.1. Importance of Balance between Metrics

Figure 7 shows the relationship of WT and reliability. For measurement, we set the WT per 100 ms.
Then the placement measurement is conducted 200 times.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 26 

Table 9. Evaluation environment. 

Type Value 
CPU Intel core i5-4690 3.50 GHz 
RAM 16GB 

CDC 
environment 

Number of CDCs 2 
Number of hosts: 4 
Number of VMs: 16 
Number of cores: 2 
Number of VM instance types: Small Instance: 1 EC2 Compute Unit, 1.6 GB *4 
Number of services: 25 

After creating the VMs on CloudSim, the VMs were placed in a different location. The scheme 
was able to evaluate the capability of such methods on SP. The reason for implementing test datasets 
and environments from different hosts is as follows. We wanted to test the generality and adaptability 
of new host CPU data to realize a multi-objective SP. In this work, we used real-world workload data 
that is provided from, PlanetLab [25]. These data were collected from the VMs of different servers. 
The workload is representative of an IaaS cloud environment such as Amazon EC2, where VMs are 
created and managed by several independent users. This dataset included the resource requirements 
of the service submitted by 100 users to a cluster of two hosts. With our settings, we generated 
requests for each user as if the users were running the service in an IaaS cloud environment such as 
EC. For each user, we executed the proposed scheme that assigned a resource VM based on the 
resource requirements of the service. Whenever a user submitted requirements, our proposed SP 
scheme checked the feasibility corresponding to PlanetLab specifications, as if it could accommodate 
the service and conduct service SP to the target machine. 

4.2. Reltion of Metric for Energy Efficiency 

In this section, before verification of the efficiency of the proposed method, we present the 
importance of the relationship between metrics. In addition, we show membership function (MF) is 
used for the decision of placement. We can set the rule through MF and then make a decision for 
placement based on the rule. 

4.2.1. Importance of Balance between Metrics 

Figure 7 shows the relationship of WT and reliability. For measurement, we set the WT per 100 
ms. Then the placement measurement is conducted 200 times. 

 

Figure 7. WT/reliability trade-off. 
Figure 7. WT/reliability trade-off.

As shown in Figure 7, waiting time is increased while the number of failure VMs decreased.
The result of the test indicate that we can find that WT is related to performance metrics such as service
ET. Thus, we have to consider various metrics, according to objectives.

4.2.2. Decision of Placement

For the decision of placement, we use the fuzzy system. In this section, we represent the decision
of placement using MF.

• MF for the resource metric.
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F = x,µF(x)
∣∣∣x ∈ X (11)

At this step, metric values are mapped to the appropriate linguistic values by the corresponding
universal set. For example, if X is the universal set, then its elements are denoted by x, such that the
fuzzy set F in X is a set where µF(x) is an MF of x in F. This step maps each element of X onto a value
between 0 and 1 [25]. In this paper, we used MF to represent the fuzzy number. Based on the linguistic
input value, the interface module selects the appropriate rule to be applied and produces the linguistic
output value. Both the fuzzifier and defuzzifier use an MF to convert numerical values to linguistic
values and vice versa. The MF maps each numerical value to a membership value (certainty level)
between 0 and 1 (0 completely uncertain, 1 completely certain). Algorithm 1 describes our fuzzy block,
which uses fuzzify and defuzzify techniques to determine the MF. Figures 8 and 9 show the results of
Algorithm 1.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 26 
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In other words, to allow the fuzzy value to map for any metric configuration, we set the range for
metrics such as CPU consumption to value between 0 and 1. The MFs for CPU consumption and RAM
consumption are shown in Figure 8.

As shown in Figure 8a, there are five rules ranging from low to high. We decided on an MF range
from low to high. This represents essential parts for SP. In this step, the proposed scheme obtains
more reliability than the existing model. The initial MF range is narrow, which is shown in Figure 8a.
After configuring for MF, MF ranges of “medium” and “mediumHigh” are widened, as in Figure 8b.
Through the proposed system, we can configure the fuzzy value. By fuzzy value configuring, we can
obtain a more objective metric than the conventional fuzzy system in the decision step. The RU of
cloud services changes dynamically. Because of uncertainty, it is difficult to satisfy user’s requirements
from the mathematical representation.
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To solve this limitation, we used a fuzzy system with a dynamically changed section. We called it
a control point when the value of “Necessity of Placement” is detected. We present the fuzzy-value
configuring stage in Figure 9.

• MF for the decision of placement

When “Necessity of Placement” is higher than the threshold, placement, or migration that occurs.
Figure 8 shows the result of the MF decision of placement. The fuzzification stage maps an input
metric to the appropriate MF. In the inference stage, we represent an appropriate if-then rule and make
a result based on the rule.

The output value converts the combined result back into a specific control output value.
To transform the results into the output value, defuzzification is performed. In these processes,
we used the center of gravity method, which is a common and useful defuzzification stage in fuzzy
systems. Figure 8 represents MF for a result of the decision of placement.

Through the output value, we can decide whether to perform the SP action.

4.3. Result of Evaluation

In this section, we report an experiment to examine and prove the effect of the metric.

4.3.1. Fuzzy-Variable Configuration

We studied the effect of the NMs on the energy efficiency metric with the following scenario.
As shown in Table 10, we set the fuzzy-rule for proving the categorized metric in Section 2.3.

Table 10. Scenario for energy efficiency.

Scenario Number Power RU NM WT

1 Very high Very high Very high Very high
2 Very high Very low Very low Very low
3 Very low Very high Very low Very low
4 Very low Very low Very low Very low
5 Very low Very low Very high Very low
6 Very low Very low Very low Very high

Table 10 shows the scenarios for energy efficiency over 30 experiments. Each evaulation used
a different rule value. Evaluations using the existing scheme were performed for a comparison.
In Table 11, we present the explanation of the existing algorithm.

Table 11. Existing algorithm.

Policy Description

THR The static threshold policy
LR A commonly used regression analysis

ARIMA A is a forecasting method in which the future values a series based on the metric
LSTM A learning algorithm based on time series data

Figure 10a presents EC according to a scenario such as the one in Table 10. We can analyze the
effect of the weighted metric on the EC for SP of energy efficiency. In Figure 10a, we can see that EC of
Scenario 5 is higher than those of other scenarios. We can also see from Figure 10b that trends in terms
of EC and the NM of tasks increase with the rise of EC. These observations reveal that the NM metric
has the most influence on energy efficiency.
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4.3.2. Proposed Placement Scheme Efficiency for Performance and Energy Efficiency

In this section, as shown in Table 12, we define the policy of each individual case. The fuzzy rule
used in order to measure the effectiveness of metrics is as follows.

Table 12. Policy of case 1.

Metric Fuzzy Rule

CU

Very Low Very High

MU
RU

Power
NM
WT

Table 12 shows an explanation of the metric with policy. To measure the impact of policy
considered in the rules on the target machine, we apply the calculation results for the case.

As shown in Figure 11, we calculated the weight values according to the alternatives in the AHP
system based on Table 12. For example, it can be seen that, in M1 and M3, A5 is selected as the
best alternative. To prove the efficiency of the proposed SP scheme, we divided them into two cases
(performance and energy efficiency).
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Although most of the existing work focused on the cloud service decision for SP in CDCs, the
studies have been limited to a single metric. However, in this study, both single and multiple decision
analysis approaches are performed by considering different metrics for performance, energy, and costs
in the decision problem to determine the importance of different metrics. Our technique was also
used to select the best service among different service providers based on the weights of different
decision-making metrics.

• Case 1: Performance

In this case, for placement performance, we consider three metrics RU, RT, and WT. Figure 12a
shows the selection VM for different alternatives. As shown in Figure 12, we calculate weight.
Figure 12b shows total alternative ranks for case 1 for the performance, in the following order (from
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We tested the performance of the scheme by measuring the ET during the entire experimental
period. Each experiment was tested 30 times to ensure objectivity. Then we calculated the average for
the worst-case execution time (WCET). We selected the target machine based on the results shown
in Figure 12b. According to the result of the AHP score for the proposed scheme, we compared the
results of the ET for SP with LR, Random, and LSTM. In Figure 13, we show that the decrease in ET of
LSTM was approximately 9.5% less than that of the proposed scheme. This proves that our scheme
increases SP efficiency better than existing schemes.
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• Case 2: Energy efficiency

In this case, for placement energy efficiency, we consider five metrics CU, MU, RU, PW, and NM,
as shown in Figure 14a. Figure 14b shows the total alternative ranks for case 2 for the energy efficiency,
in the following order (from best to worst): A2, A1, A3, A4, and A5. We selected the target machine
based on Figure 14b that shows the result of the AHP score. Then, we performed the placement by
selecting the target machine, according to the result in Figure 14b.Appl. Sci. 2019, 9, x FOR PEER REVIEW 21 of 26 
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Through our scheme, we selected the target machine based on Figure 14b and then performed SP.
We compared the result of the EC with Threshold, LR, ARIMA, and LSTM in this paper. As shown in
Figure 15, the evaluation results of the proposed scheme verified lower EC than the other methods.
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Regarding energy, the proposed scheme showed an EC decrease about 23% lower when compared
to the threshold scheme. For the test and evaluation, we constantly increased the number of VMs.
When the number of VMs was smaller, the difference in EC became larger, as shown in Figure 15.
Thus, the test result confirmed that our scheme is efficient in small data centers like distributed
cloud environments.

Figure 16 also shows the importance of considering and configuring the metric from Fuzzy (sc1)
to Fuzzy (sc3) by the policy. According to the result of the configuring metric, its weight changed.
As a result, we saw the different result and verified the importance of the metric. Thus, our SP scheme
maximizes the placement efficiency using a configuring metric, according to requirements.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 26 

Figure 15. Thus, the test result confirmed that our scheme is efficient in small data centers like 
distributed cloud environments. 

Figure 16 also shows the importance of considering and configuring the metric from Fuzzy (sc1) 
to Fuzzy (sc3) by the policy. According to the result of the configuring metric, its weight changed. As 
a result, we saw the different result and verified the importance of the metric. Thus, our SP scheme 
maximizes the placement efficiency using a configuring metric, according to requirements. 

 

Figure 16. EC according to policy Fuzzy (sc1): Energy, Fuzzy (sc2): Performance, Fuzzy (sc3): Cost. 

5. Conclusions 

The development of huge CDCs and a variety of DDCs has led to the enormous degradation of 
performance and EC in DDCs [11]. In addition, users move frequently. Thus, it is essential for CDCs 
to conduct SP considering a variety of elements for energy efficiency and performance efficiency with 
resource management. 

Therefore, various approaches have been studied for the DDCs. In particular, to take advantage 
of nearby resources and resource management, SP and migration techniques have been playing an 
important role. In addition, user requirements are increasing with the various service types. 

We proposed an efficient SP scheme to solve these limitations and satisfy user requirements. In 
this paper, we focused on performance and energy efficiency. Moreover, the proposed system 
allowed efficient placement for a variety of requirements as well as tested cases such as performance 
and energy efficiency. Through the results of the test cases, we proved that the ET of the proposed 
scheme was about 39% faster than that of the threshold scheme. In addition, the proposed system 
reduced EC by up to around 32% in comparison with the threshold scheme. Using the results of the 
evaluation, our proposed scheme was verified to be more energy-efficient and performance-efficient 
than the general scheme. 

Our proposed scheme can efficiently manage resources and improve user satisfaction according 
to services of various objectives. We hope this algorithm can contribute to distributed cloud 
environments when services are placed and migrated. 

However, this study has a few limitations. More research and evaluation are needed to consider 
various environments and user requirements. In addition, the difficulty in making an optimal 
decision about a dynamically changed service state needs to be addressed. Therefore, in future 
studies, we will run our scheme with various services and compare it with diverse approaches to 
advance the scheme. 

Author Contributions: Conceptualization, E.-N.H. Software, A.-Y.S. Supervision, E.-N.H. Validation, A.-Y.S. 
Visualization, A.-Y.S. Writing—original draft, A.-Y.S. Writing—review and editing, E.-N.H. 

Funding: This research received no external funding. 

Figure 16. EC according to policy Fuzzy (sc1): Energy, Fuzzy (sc2): Performance, Fuzzy (sc3): Cost.

5. Conclusions

The development of huge CDCs and a variety of DDCs has led to the enormous degradation of
performance and EC in DDCs [11]. In addition, users move frequently. Thus, it is essential for CDCs to
conduct SP considering a variety of elements for energy efficiency and performance efficiency with
resource management.
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Therefore, various approaches have been studied for the DDCs. In particular, to take advantage
of nearby resources and resource management, SP and migration techniques have been playing an
important role. In addition, user requirements are increasing with the various service types.

We proposed an efficient SP scheme to solve these limitations and satisfy user requirements.
In this paper, we focused on performance and energy efficiency. Moreover, the proposed system
allowed efficient placement for a variety of requirements as well as tested cases such as performance
and energy efficiency. Through the results of the test cases, we proved that the ET of the proposed
scheme was about 39% faster than that of the threshold scheme. In addition, the proposed system
reduced EC by up to around 32% in comparison with the threshold scheme. Using the results of the
evaluation, our proposed scheme was verified to be more energy-efficient and performance-efficient
than the general scheme.

Our proposed scheme can efficiently manage resources and improve user satisfaction according to
services of various objectives. We hope this algorithm can contribute to distributed cloud environments
when services are placed and migrated.

However, this study has a few limitations. More research and evaluation are needed to consider
various environments and user requirements. In addition, the difficulty in making an optimal decision
about a dynamically changed service state needs to be addressed. Therefore, in future studies, we will
run our scheme with various services and compare it with diverse approaches to advance the scheme.
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Abbreviations

The following abbreviations are used in this manuscript.

DDC Distributed Data Center
CDC Cloud Data Center
SP Service Placement
SLA Service Level Agreement
AHP Analytical Hierarchical Process
IoT Internet of Things
QoS Quality of Service
CSP Cloud Service Provider
FAHP Fuzzy-AHP system
VM Virtual Machine
PM Physical Machine
MMO Multi objective optimization
MF Membership Function
RU Resource Utilization
NM Number of Migrations
WT Waiting Time
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