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Abstract: An internal permanent magnet synchronous machine (IPMSM) was designed for heavy-load
traction vehicles applied in port transportation. Based on finite element analysis (FEA), the rotor iron
core topology was optimized with the most attention paid to cogging torque and torque ripple. The
influences of the iron core on the air-gap magnetic flux density, the back electro-motive-force harmonic,
the cogging torque and the torque ripple were investigated. The design scheme of minimizing
cogging torque and output torque ripple was obtained. Focused on the relationship between the
rotor parameters and the torque ripple, the relative sensitivity factor was proposed and analyzed.
Finally, the torque ripple was reduced from 14.4% to 3.84%, after further optimization of the rotor
design parameters. The reliability and stability of the IPMSM were also covered. Additionally, the
experimental study of the prototype was carried out to verify the FEA results.
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1. Introduction

A permanent magnet synchronous machine (PMSM) has the merits of high torque density, high
efficiency, and dynamic performance [1–5]. It has been widely applied in manufacturing and the electric
vehicle (EV) driving system [6–9], and traction applications [10]. In this paper, a 130 kW 12-pole/72-slot
internal PMSM (IPMSM) is designed for traction vehicles applied in port transportation, where a
heavy-load torque-output capability and good start performances are required. In this paper, more
attention is paid to the torque ripple, since it can generate vibration and radial electromagnetic force
fluctuations [11–13], and consequently degrade the reliability and stability of the machine’s system,
and the start and brake performances of the traction vehicle, which are critical to port transportation.

The methods to reduce the motor torque ripple are mainly based on optimizations of motor
design and control strategy, respectively. In reference [14], a PMSM model was established, and motor
parameters were studied by finite element analysis (FEA). The structural parameters which affect the
maximum efficiency of PMSMs were obtained. A training sample method based on a depth learning
neural network algorithm was proposed to analyze the PMSM output characteristics. This method can
effectively narrow the time required for performance analysis and optimization. In order to reduce
torque ripple, a stator with an odd number of slots per pole pair and an IPM rotor with multiple layers
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of flux barriers were studied in [15]. It has been demonstrated that torque ripple can be reduced to
less than 5%, by using a stator with an odd number of slots per pole pair, and an IPM rotor with
optimized barrier configurations, without using stator/rotor skewing or rotor pole shaping. In [16],
a non-parametric optimization technique to find a new magnetic circuit which minimized a torque
ripple and maximized the driving torque of IPMSM was examined. Reference [17] proposes a new
optimization method by employing hybrid rear-earth and Ferrite magnets. The torque performance
of the optimal rotor design provided a decrease in the torque ripple from 56.2% to 2.8% by being
consistent with almost 20% increases to the average torque. The computationally efficient FEA is
introduced in [18], and after optimization of the rotor topology, a 37% increase of the average torque
was obtained. In addition, the cogging torque was significantly reduced when the machine was
optimized. In reference [19], a novel technique was adopted to reduce cogging torque and torque ripple
by using an asymmetrical V-type rotor configuration; the proposed model contains the peak-to-peak
value 0.43 Nm, which is reduced by 66.67%, compared with that of the conventional version (1.29 Nm).
Moreover, a harmonic current optimization design method based on experimental harmonics was
proposed in reference [20]. By injecting two test signals into the machine, the optimal harmonic current
can be found by comparing the two schemes to obtain the minimum mechanical loss and torque ripple.
The proposed scheme has advantages in computational efficiency and simple implementation. Along
with the optimization of topologies, the advanced control schemes were also introduced to reduce the
torque ripple of the permanent magnet machines [21–24].

The main contribution of this paper to give a comprehensive optimization of the rotor topology,
considering multi-variable parameters. The influence of the rotor surface shape, the location of
the permanent magnet and the iron bridge on the torque ripple were considered. The sensitive
factors affecting the output torque ripple of the machine were obtained. Finally, the prototype was
manufactured and tested to validate the FEA results.

2. Machine Topology and Finite Element Model

The research object of this paper is a 130 kW, 1500 rpm IPMSM. The FEA model of the IPMSM
and design specifications are given in Figure 1 and Table 1, respectively. The transient mathematical
model of two-dimensional electromagnetic field calculation is presented in Equation (1). In the FEA
model, the IPMSM machine is supplied by a current source [25].
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where Ω is the calculation region, Az and Jz represent the magnetic vector potential and the source
current density in the z-axial component respectively (in A/m2), Js is the equivalent face current
density of the permanent magnet (in A/m2), and σ is the conductivity (in S/m). Γ1 indicates the
parallel boundary conditions, Γ2 indicates the PM boundary condition, and µ1 and µ2 represent the
relative permeability. Equation (1) presents the calculation basics of the IPMSM and indicates that the
electromagnetic performances are directly related to the part of machine topology which is located
near the airgap. Thus, more attention is paid to the rotor surface arc.

In order to simplify the calculation and analysis, it is assumed that [26]:

1. A displacement current and the skin effect in the stator windings are ignored.
2. Materials are isotropic. Permeability and conductivity of the materials are constant except the

stator core and the rotor yoke.
3. The displacement current is ignored.
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Figure 1. Finite element model of the 12-pole/72-slot internal permanent magnet synchronous
machine (IPMSM).

Table 1. Key design specifications and parameters of the IPMSM.

Main Specifications Value Key Parameters Value

Rated power output 130 kW Number of poles 12
Rated speed 1500 r/min Number of slots 72

DC bus voltage 540 V Stator outer diameter 190 mm
Rated current 235 A Stator inner diameter 129.5 mm

Winding connection mode Y Core length 240 mm
Number of phases 3 PM width 9 mm
Rate torque output 830 Nm PM length per pole 45 mm

3. Optimization, Considering the Cogging Torque and Torque Ripple

The cogging torque is the torque generated by the interaction between the iron core and the
magnet when current is not applied. For a heavy-load machine, the cogging torque mainly degrades
the performance at low speed and high torque. In this paper, the variations of cogging torque and
output electromagnetic torque under different conditions were studied by optimizing the shape of the
rotor surface core, the topology of the rotor PM, and the shape of the iron bridge. The variation of
cogging torque and output electromagnetic torque under different conditions are studied.

First of all, the electromagnetic torque Tθ(t) at any time t can be calculated by integrating the
tangential stress σ (θ, t), on the rotor over the surface [27],

(θ, t) =
Bc(θ, t)Br(θ, t)

µ0
(2)

Tθ(t) =
r2

µ0

∫ la

0

∫ 2π

0
Bc(θ, t)Br(θ, t)dθdt (3)

where Bc(θ, t) and Br(θ, t) are the circumferential and radial flux density components around the
air-gap circumference; la is the stack length; r is the rotor outer radius. And Bc,r(θ, t) is obtained by,

Bc,r(θ, t) =
1
µ0

F(θ, t)
δ(θ, t)

(4)

where F(θ, t) is the distributed magneto-motive-force, and δ(θ, t) is the effective air-gap length, which
is related to the slots of the stator.

Equations (2)–(4) indicate that the cogging torque and electromagnetic torque are calculated based
on the flux density distributions in the air-gap, which are directly related to the shape of the rotor pole
surface. Thus, the air-gap flux density distributions and rotor pole surface arc were studied, as follows.
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3.1. The Optimization of the Rotor Iron Core by Adopting a Rotor Pole Arc Offset

3.1.1. Air-Gap Flux Density Distributions

First of all, the electromagnetic torque, torque fluctuation, electromagnetic vibration, and noise is
directly related to the air-gap flux density distributions. Reducing the harmonic content in air-gap
flux density can effectively weaken cogging torque and torque ripple. Because the excitation magnetic
field of the PMSM is sinusoidal when the air-gap magnetic field waveform is close to the sinusoidal
waveform, the cogging torque and torque ripple of the PMSM can be effectively reduced, and the
control accuracy of the PMSM can be improved. By streamlining the core of the rotor surface, the shape
of the air-gap magnetic field can be optimized. The rotor surface arc offset was employed, as illustrated
in Figure 2, where R is the offset distance; i.e., the distance of the rotor pole arc center from the rotor
center. The conditions from 0 to 50 mm were analyzed. As a result, the air-gap length became uneven
along the rotor surface. The degree of said unevenness grew with the increase of R. Figure 3 shows
the 2-D FEA calculated air-gap flux density distributions and the corresponding harmonic contents.
After the eccentric design, the air-gap magnetic field was more sinusoidal. With the increase of the
offset distance of the rotor outer surface, the amplitude of the air-gap magnetic density fundamental
current increased gradually, while the other harmonic components decreased. The distortion rate of
the air-gap magnetic field decreased after the eccentricity of the rotor outer circle increased. Under
the traditional conditions, without rotor surface offset, the amplitude of the air-gap magnetic density
fundamental wave is 0.97 T, which can be increased by 13.4% when the offset distance is 40 mm.
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3.1.2. Back Electro-Motive-Force Waveforms

The variation of the EMF waveform and harmonic content with different rotor core shapes is
given in Figure 4, where the total harmonic distort (THD) is calculated by,

THD =

√∑
∞

i=2 B2
gi

Bg1
× 100(%) (5)

As can be seen, the back-EMF waveforms tend to be more sinusoidal with the increase of offset
distance, and the harmonics of higher order are weakened, especially the 11th order one. It should
be noted that the fundamental back-EMF is 359.8 V when the offset distance is 40 mm, which is 8.4%
greater than the condition of non-eccentric; i.e., 332 V. Since the fundamental content of air-gap flux
density increases with offset distance, it consequently results in a greater back-EMF.
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3.1.3. Cogging Torque and Torque Ripple

The cogging torque and the electromagnetic torque under different eccentricities are shown in
Figures 5–7. The peak value of cogging torque was 20.3 Nm when the offset distance was 0, which is
2.4% of the rated output torque. Peak values were 15.2 Nm and 17.9 Nm when the offset distances were
20 mm and 40 mm, respectively, which is 11.8% and 25.1% lower than that when the offset distance was
0. When the air-gap was uniform, the average value of output electromagnetic torque is 912.4 Nm, the
peak value of torque fluctuation was 176.7 Nm, and the fluctuation coefficient was 13.8%. Employing
an eccentric rotor pole arc would reduce the cogging torque; however, the average torque output
would also be reduced with the increase of the offset distance. As can be found in Figure 6, when the
offset distance was 40 mm, the average output electromagnetic torque decreased to 876.5 Nm, which is
3.9% lower than the case of non-offset, and the torque ripple was 74.8 Nm, which is 57.7% lower than
the case of non-offset.

Figure 7 shows the comprehensive comparison of the cogging torque, average torque and torque
ripple under different eccentricities. Firstly, the cogging torque varied nonlinearly with offset distance.
The cogging torque achieved its greatest and smallest values, i.e., 33.4 Nm and 6.33 Nm, when the
offset distances were 5 mm and 15 mm, respectively. Secondly, the average torque output decreased
with the increase of offset distance; and the average torque achieved the lowest value when the offset
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distance was 40 mm. In the next part, the topology of the permanent magnets and the iron bridge were
optimized to minimize the torque ripple.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 16 
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3.2. Optimization of Permanent Magnet and Iron Bridge

The topology and location of permanent magnets and the iron bridges are also critical to the electric
performances, especially for the torque output performances. First of all, several key parameters of the
rotor PM are studied below. The key parameters of the rotor PM are R2, wrib, hrib, and wb, as can be
found in Figure 1. The wb and hrib are directly related to the permanent magnet flux leakages, while
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wrib and R2 show more influences on q-axis inductances, thus torque output capabilities. The torque
performances were obtained by 2-D FEA, as shown in Figure 8, where the torque ripple coefficient krip
is defined as

krip =
torque ripple

average torque
(6)

1. As shown in Figure 8a, the average torque changed slightly with the variation of R2. Thus, the
influence of R2 on the torque output capabilities was negligible. However, the torque ripples
and thus krip varied greatly with R2. When R2 was 52.5 mm, the output torque ripple was the
smallest and tended to be stable, with a value of 70 Nm and a krip of 5.8%, which is acceptable in
heavy-load traction vehicles.

2. As shown in Figure 8b, the output torque was almost unchanged with the increase of distance
between the poles, i.e., wrib, because the back-EMF and inductances remained unchanged. As
for the torque ripple, it achieved the peak value of 51.2 Nm and krip of 7.9% when wrib was 16
mm, and exhibited a nonlinear trend with the variation of wrib. The lowest krip was 4.18% when
wrib was 18 mm, which is much lower than the case of 16 mm. This can be explained, as when
the wrib is changed, the pole arc coefficient and the air-gap magnetic field harmonic content
changes significantly.

3. As shown in Figure 8c, both the output torque and torque ripple reduced linearly with the increase
of hrib; an apparent variation was found in the torque ripple especially. The average output torque
was 897.1 Nm and the krip wass 8.78% when hrib was 10 mm; meanwhile, they were 863.2 Nm and
3.8% respectively, when hrib was 12 mm. Comparing those two cases, it was found that with the
cost of 3.8% reduced torque output, the krip could be reduced by 45.6%.

4. Figure 8d shows that wb had a negligible influence on torque ripples, since it mainly provides
necessary mechanical strength, and will enlarge the permanent magnet leakage fluxes, and should
be designed as small as possible.
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3.3. The Comprehensive Optimization of the Rotor’s Key Paramenters

3.3.1. The Three Key Rotor Parameters

The above analysis gives the relationship between the key parameters in the rotor with the
torque performances, respectively. In this part, Figure 9 shows the variation of torque performances
considering the wrib, hrib, and wb comprehensively, when R2 was 47.5 mm. As shown in Figure 9a,
the average torque varied from 858.7 Nm to 894 Nm when the hrib changed; and hrib showed greater
influence on torque output than the other two parameters. It can be clearly seen from Figure 9b
that when the wrib changed, the torque ripple varied from 64.6 Nm to 123.8 Nm. The torque ripple
coefficient krip could be considered more sensitive to wrib than to hrib and wb. Overall, Figure 9 provides
a reference for optimizing the design of IPMSM with V-type magnets. If the torque ripple is taken as
the optimization objective, the minimum torque ripple is 46.4 Nm with a torque ripple coefficient of
3.84%, and the torque waveforms are compared by Figure 10. Table 2 summarizes the influences of the
key parameters on the average torque and torque ripple. Table 2 shows the optimization priority of the
three key parameters: hrib should be optimized firstly to get high torque output capability; then wrib is
optimized aiming at low torque ripple; finally, wb is optimized to get overall better torque output and
lower torque ripple.
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Figure 10. Demonstration of the design and optimization process.

Table 2. The influence of the three key parameters on torque performances.

Item hrib wrib wb

Average torque High influence medium medium
Torque ripple medium High influence medium

3.3.2. Torque Performances of the Final Machine

Figure 10 shows the design and optimization process of the IPM motor, which is divided into
three steps: Firstly, the initial key motor parameters including the wrib, wb, and hrib were obtained in
step 1, aiming at acceptable torque and power that were close to the requirements. The torque and
torque ripple were 910 Nm and 14.4% when step 1 was finished. Secondly, the rotor pole surface
offset was employed, and optimized along with the split ratio (obtained by Dro/Dso), wm, hm, and R2

by multi-objective genetic algorithm carried out on JMAG. Figure 11 shows the influences of the Dro,
wm, hm on the torque performances. The optimized torque was 902 Nm, which was lower than the
result in step 1, since the efficiency was considered in step 2. Meanwhile the torque ripple was reduced
to 8.7%. Finally, the deep optimizations of the three key rotor parameters, wrib, wb, and hrib were
carried out, aiming at low torque ripple and high mechanical strength. Figure 12 compares the torque
output performances due to different optimization methods mentioned in the previous section. Table 3
shows the comparison of the initial and final parameters. The average torque, torque ripple, and krip of
the original machine before optimization was 910 Nm, 183 Nm, and 14.4%, respectively. When the
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eccentric rotor pole arc was employed, the average torque and torque ripple was 902 Nm and 8.77%,
respectively. Then the rotor key parameters were furthermore optimized based on the eccentric rotor
pole model. Finally, after a comprehensive optimization of the rotor topology and parameters, the
torque ripple was reduced to 46.5 Nm with krip = 3.84%, which was much better than the original
model, at the cost of a slight drop in average torque output.
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Table 3. Comparison of initial and final optimized key rotor parameters.

Parameter Initial Optimized Obtained

Dro 240 mm 254 mm

in step 2 of the design processR2 45 mm 64.5 mm
hm 8.2 mm 8.9 mm
wm 48 mm 45.2 mm

wb 2 mm 3.2 mm
in step 3 of the design processhrib 11 mm 4.5 mm

wrib 18 mm 9 mm

3.3.3. Brief Discussion on Different Optimization Methods

Here, the output torque ripple optimization method and results are compared with other methods
mentioned in the references, as shown in Table 4.

1. Reference [3] analyzes an IPMSM machine which has a similar V-type magnets topology with the
machine in this paper, but a slightly different pole-slot fit. Reference [9] optimizes an IPMSM
machine by using asymmetric rotor topology. Overall, the torque ripple is larger than the that
obtained in this paper.

2. References [5,7,8] present the optimization of IPMSM machines with I-type magnet location.
As can be seen, the torque ripples can be significantly reduced after the optimization, which,
however, are still larger than that present in this paper, except for the machine in [7]. It should be
emphasized that the complex hybrid Ferrite and rear-earth permanent magnets are employed
in [7] to reduce the torque ripple, which, meantime, will cause greater machine cost and much
more manufacturing difficulties, and consequently degrade its potential in industrial applications.

Table 4. Comparison of optimization methods presented in references.

Machine Type Optimization Method Torque Ripple (%)

Original Optimized

V-type IPMSM
(this paper) Rotor topology 183 Nm (14.4%) 46.4 Nm (3.84%)

V-type IPMSM [15] Pole and slot matching 61 Nm (8.2%) 29.2 Nm (4.6%)

V-type IPMSM [19] Asymmetrical rotor 1.29 Nm (12.5%) 0.44 Nm (4.38%)

I-type IPMSM [16] Rotor topology 2.15 Nm (12.55%) 2.04 Nm (6.95%)

I-type IPMSM [17] Rotor topology 44.6 Nm (56.2%) 26.3 Nm (2.8%)

I-type IPMSM [18] Computationally efficient FEA 1.61 Nm (10.6%) 1.02 Nm (4.9%)
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4. Experimental Validations

In order to verify the FEA results, a prototype of the proposed machine after optimization was
manufactured, as shown in Figure 13. The holes were adopted on the rotor iron to reduce the weight
and inertia. Figure 14 shows the testing platform, which contained the 200 kW dynamometer machine
to provide the electromagnetic load, a YOKOGAWA power analyzer, an industrial condensing unit,
DSP controller, etc. Water cooling was also employed.

Figure 15 and Table 3 compares the FEA calculated and measured torque results which were
obtained at the rated operation (235 A) and peak torque output operation (540 A), respectively. It
should be emphasized that the calculated and measured waveforms exhibited different torque ripple
frequencies due to the relatively high sample time of the torque transducer, and the measured torque
ripples were smaller than the calculated results. Overall, satisfying agreement was achieved between
FEA results and experimental measurements, with the discrepancies of near 4%, considering the
manufacturing and measuring tolerances. Figure 16 shows the FEA calculated and measured efficiency
map. The efficiency was measured to cover the whole torque-speed region when the DC bus voltage
was 540 V. The iron loss and copper loss were counted in the FEA calculations, which were carried out
when the temperature was 80 ◦C, while in the experimental measurements, the iron loss, copper loss,
and mechanic loss were counted in, and the measured temperature in stator was near 80 ◦C when the
cooling water was 20 ◦C. As can be seen, good agreement was achieved. It was found that nearly 80%
of the total operation region had an efficiency above 90%, and 45% of the total operation region had an
efficiency above 95%.
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5. Discussions

It should be emphasized that the average torque is also very important to a heavy-load traction
vehicle, although this paper is mainly focused on the optimization of cogging torque and torque ripples.
Since the torque ripple may cause big problems to the start and brake performance of a traction vehicle,
which is worse with heavy loads. We suggest that the study on the skewed stator slots can be carried
out in the future work, since it has great potential to reduce the cogging torque and torque ripple,
and is more practical to be manufactured than the skewed rotor for an IPMSM. Nevertheless, the
optimization of average torque and efficiency should also be carried out in future work, as should the
analysis of the mechanic behaviors.

6. Conclusions

In this paper, a 130 kW 12-pole/72-slot internal permanent magnet synchronous machine (IPMSM)
was designed for heavy-load traction vehicles applied in port transportation. More attention was paid
to the optimization of cogging torque and torque ripple, since they generate vibrations and radial
electromagnetic force fluctuations, and degrade the start and brake performances of the vehicle, which
are critical to port transportation. By adopting the eccentric rotor pole arc and the comprehensive
optimization of the key parameters of the rotor iron and permanent magnets, the cogging torque can
be reduced from 14.4% to 3.84%, which meets the requirement of a traction vehicle. The optimization
method in this paper is also compared with other methods mentioned in the references. Finally,
the machine prototype was manufactured and tested on a platform with water cooling. The torque
performances and efficiency map are given. Overall, satisfying agreement was achieved between the
FEA results and experimental measurements.
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