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Abstract: Wi-Fi-based indoor positioning offers significant opportunities for numerous applications.
Examining the Wi-Fi positioning systems, it was observed that hundreds of variables were used
even when variable reduction was applied. This reveals a structure that is difficult to repeat and is
far from producing a common solution for real-life applications. It aims to create a common and
standardized dataset for indoor positioning and localization and present a system that can perform
estimations using this dataset. To that end, machine learning (ML) methods are compared and the
results of successful methods with hierarchical inclusion are then investigated. Further, new features
are generated according to the measurement point obtained from the dataset. Subsequently, learning
models are selected according to the performance metrics for the estimation of location and position.
These learning models are then fused hierarchically using deductive reasoning. Using the proposed
method, estimation of location and position has proved to be more successful by using fewer variables
than the current studies. This paper, thus, identifies a lack of applicability present in the research
community and solves it using the proposed method. It suggests that the proposed method results in
a significant improvement for the estimation of floor and longitude.

Keywords: hierarchical data; fingerprinting; indoor positioning; information fusion; localization;
machine learning; Wi-Fi

1. Introduction

Today, determination of indoor location and position of objects is an important subject,
which provides many applications in various fields such as robotics, asset tracking, warehouse
management, crowd analysis [1–4]. The idea of indoor positioning and localization based on the
strength of wireless signal was first introduced in 2000 [5]. Since then, it has sparked great interest
and become the subject of many research areas. The concepts of positioning and localization are often
confused. The position of an object corresponds to a specific point in a coordinate system such as
longitude and latitude. However, the location of an object provides details of the position such as
office, floor, building, etc. In this regard, localization can be defined as a simpler or categorical state of
the positioning process. Localization is sufficient for applications that require less precision such as
crowd analysis and storage-asset tracking. Positioning, on the other hand, is required for more precise
operations such as robotics.

Today, creating an economic, accurate, and precise system by utilizing the already installed Wi-Fi
infrastructure is one of the most important goals of the research community. To this end, it is essential to
use the pattern created by the propagation and address broadcasting of the Wi-Fi access points. The pattern
provided by the numerous access points that are fixed to various points becomes unique by undergoing
various reflections and weaknesses with the contribution of its spatial structure. This unique pattern
is called Wi-Fi fingerprint. The simple Wi-Fi fingerprint data consist of the received signal strength
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indicator (RSSI) and the media access control (MAC) address data. RSSI is a term used to measure the
quality of a received signal of a client device. RSSI acts as a relative received signal strength because each
chip manufacturer has its own receiver characteristics for the standard of IEEE 802.11. RSSI is simply
an indication of the power level received by the receiver after the antenna and possible cable losses. Thus,
the higher the RSSI value is, the stronger the signal is. If two RSSI values are represented as negative (for
example,−100 and−50), the one that is closer to 0 (−50) is the stronger received signal. However, when the
RSSI information is analyzed with the spectrum analyzer, new fingerprint data called channel status
information (CSI) are generated. In wireless communications, CSI refers to known channel properties
of a communication link. It describes how a signal propagates from the transmitter to the receiver and
represents the combined effect of scattering, fading, and power decay with distance. Short-term CSI
describes instant or very short listening/viewing of an existing channel condition. Long-term CSI, on the
other hand, describes a statistical characterization of the data obtained as a result of the channel being
listened to for long enough to eliminate the influence of other systems in the environment and periodical
factors such as overtime, season of the year, or other patterns. In CSI, 14 new features are included in
the analysis only when the channel power information is used because there are 14 main channels in
IEEE 802.11. Further, the obtained data are mainly affected by environmental effects and channel usage;
therefore, time series analysis is required. It has been demonstrated in many studies that successful
positioning operations are performed by considering these points [6–9]. While examining the positioning
operations with CSI, it is important to note that data coming from the spectrum analyzer have been used
in the positioning process to achieve high performance. However, this feature is not supported by mobile
devices because they are not fully applicable for it.

Until today, many positioning systems based on the changes in the RSSI indicator obtained
from Wi-Fi or Bluetooth signals have been developed [10–14]. Moreover, initiatives inspired by these
studies such as Insiteo [15], Wifarer [16], Insoft [17], The Framework for Internal Navigation and
Discovery (FIND) [18], and MapsIndoors [19] were launched as well. Successful studies with Wi-Fi
fingerprint positioning are found in various areas of subjects today [12,20]. One of the most recent
datasets for Wi-Fi fingerprint-based localization is named “UJIIndoorLoc.” This dataset is obtained
by Torres-Sospedra et al. and makes use of diverse types of studies [12,21,22]. These studies are
mainly focused on adopting the same 525 features. In the process of classification and regression,
it is challenging, time-consuming, and inefficient to apply all the input values directly to learning
algorithms. One of the preferred methods in data reduction is principal component analysis (PCA) [23].
Some researchers use PCA and/or linear discriminant analysis (LDA) to reduce the data features [24].
The total number of features for these studies is greater than 100, even when sufficient raw features
are covered by the reduced feature set. Since the number of wireless access points (WAP) may vary
according to the environment of application and too many features may be employed, it is difficult and
inefficient to implement it for real-world indoor positioning. Using the PCA method, new components
are created according to the feature set, and it is possible to cover all of the features. However, the PCA
method is specifically designed for the structure of that dataset. In this regard, if the Wi-Fi infrastructure
is changed, the PCA-generated system will become useless because of the need to change the properties
of its components. The dataset that is to be used in real-world applications should have common
features found in every environment while also being compatible with the changing number of WAP
and containing few features.

Investigating the previous studies, it was observed that a large number of features were used
while the existing dataset was used without adequate simplification. Prominent studies were also
found in the literature; however, these were either not practical or only valid for specific cases. Thus,
it was not possible to provide an application with common parameters found in every environment.
The main purpose of this study is to develop a method that can be applied for any environment where
WAP mapping data are collected. It aims to create a common and standardized dataset for indoor
positioning and localization and present a system that can perform estimations using this dataset.
In order to achieve this goal, machine learning (ML) methods are compared and the results of successful
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ML methods with hierarchical inclusion are then investigated. Further, new features are generated
according to the measurement point obtained from “UJIIndoorLoc” dataset. Subsequently, learning
models are selected according to the performance metrics for the estimation of location and position.
These learning models are then fused hierarchically using deductive reasoning. The second part of
the paper introduces the dataset adopted in this study and the method of positioning. The third part
presents the results of the study. Finally, a conclusion is suggested according to the results. The main
contribution of this study will be to propose a more general dataset structure for datasets such as
localization and positioning in the hierarchical structure and to provide a more successful retrofit
method in hierarchical situations.

2. Materials and Methods

The overall system for Wi-Fi-based positioning and localization consists of fixed WAP’s, mobile
devices, and positioning services. The stages of this general method are shown in Figure 1. To start with,
new features are generated from the dataset. The generated dataset is split into two categories, namely
training and test. This process is carried out randomly and the ratio of training data and test data is
70% and 30%, respectively. In the next stage, training data are presented to Gaussian naive Bayes (NB),
decision tree (DT), K-nearest neighbors (KNN), support vector machine (SVM), random forest (RF),
and multi-layer perceptron (MLP) algorithms. These learning algorithms were obtained from Scikit-learn
library [25–29]. They are then compared according to the classification and regression performance
metrics, which are explained in the ML section, while the most suitable algorithms are selected for
positioning and localization. In addition, the hierarchical fusing ML (HF-ML) algorithm is shown in
Figure 2. In this algorithm, the dataset is primarily used for the training of building classification. Results
of the building prediction are then combined with the input dataset. Consequently, prediction results
and the input dataset are used for the training of floor prediction. After the training, floor predictions
are combined with the previous dataset. This dataset contains the input dataset, building predictions,
and floor predictions. The resulting dataset of these combined hierarchical prediction procedures is used
in the training of longitude and latitude regression. The selected learning models are fused hierarchically
using deductive reasoning. According to HF-ML, there are two more types of input data, namely
building information and floor information. Since two new variables were introduced, HF-ML was
trained with the training data and the performance was evaluated with the test data. This obtained
model can produce location and position data after applying the feature generation process to the new
data. See the supplementary materials for the codes and the data.
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Figure 2. Hierarchical fusion algorithm.

2.1. Raw Dataset and Properties

This study uses the dataset named “UJIIndoorLoc”, which was obtained at Jaume I University [21].
The dataset was collected from 3 different buildings, each of them having 5 floors. A total of more than
20,946 samples were collected. This dataset is publicly available online [30], and the variables in it are
explained in Table 1. features, and their range are outlined in this table below.

Table 1. Dataset properties.

Feature Properties Range

1–520 WAP RSSI level from −104 to 0 and +100
521 Longitude from −7695.9387549299299000 to −7299.786516730871000
522 Latitude from 4,864,745.7450159714 to 4,865,017.3646842018.
523 Floor Integer values from 0 to 4
524 Building ID Categorical integer values from 0 to 2

525 Space ID Where the capture was taken. Categorical integer values (office,
corridor, classroom)

526 Relative Position 1—Inside, 2—Outside, in front of the door
527 User ID Categorical integer values from 0 to 18
528 Phone ID Categorical integer values from 0 to 18
529 Timestamp UNIX Time

WAP: Wireless Access Point; RSSI: Received Signal Strength Indicator; ID: Identifier.
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2.2. Feature Generation

For the method employed in the study, no data based on the user id, timestamp, phone id,
and space id were used. The study is based on the production of a new dataset in order to provide
an alternative to a system that is less applicable due to the dependence of the data on a specific
location, user, phone, or WAP number. Also, the generated features are explained in Table 2. In this
table, abbreviations of generated features are presented according to the data type and each of these
features are explained. Moreover, the absolute Pearson cross-correlation coefficients of the generated
data are shown in Figure 3. According to this figure, building, longitude, and latitude values are
highly correlated. Also, FirstMAC, SecondMAC, and ThirdMAC features provide better correlation
for output values.
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Table 2. Generated features.

Feature
Abbreviation Type Explanation

FirstMAC Categorical WAP ID of the highest RSSI value.
SecondMAC Categorical WAP ID of the second-highest RSSI value. If not, use the First WAP ID.
ThirdMAC Categorical WAP ID of the third-highest RSSI value. If not, use the Second WAP ID.
LastMAC Categorical WAP ID of the lowest RSSI value. If not, use the Third WAP ID.

FirstP Numeric RSSI value of the first WAP.
SecondP Numeric RSSI value of the second WAP. If not, use the First WAP RSSI.
ThirdP Numeric RSSI value of the third WAP. If not, use the Second WAP RSSI.
LastP Numeric RSSI value of the last WAP. If not, use the Third WAP RSSI.

NSSID Numeric Number of WAP with a RSSI level between 0 and −104. Value of +100 is
excluded because it means there is no signal according to the dataset.

MeanP Numeric Mean RSSI values of WAP with a RSSI level between 0 and −104
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2.3. Machine Learning

Gaussian naive Bayes (GNB) classifier is a probabilistic classifier algorithm based on Bayes’
theorem [31]. Due to its low computational load and high correct classification performance, it has been
widely chosen in the studies aimed for classification. The aim of the naive Bayes classifier is to compute
the i-th observation that is obtained by computing the posterior probability of class c for a given feature
xi. Calculation of the posterior probability is given in Equation (1). In this equation P(c|xi), is the
posterior probability while P(c) is class prior probability and P(xi|c) is the likelihood, which means
probability of i-th feature, and finally, P(xi) is the prior probability of feature i. There are three main
steps in the naive Bayes algorithm. In the first step, the algorithm calculates the frequency values of
each output category according to the dataset. In the second step, the likelihood table is calculated.
In the last step, probability of output class according to Gaussian Distribution is calculated [31,32].

P(c|xi) =
P(c)P(xi

∣∣∣c)
P(xi)

(1)

The K nearest neighbors (KNN) algorithm is a learning algorithm that operates according to the
values of the nearest k-neighbor. The KNN algorithm is a non-parametric method for classification
and regression [33]. It was first applied to the classification of news articles [34]. When performing
learning with the KNN algorithm, firstly, the distance of the data to others is calculated in the dataset
examined. This length calculation is done with Euclidian, Manhattan, or Hamming distance function.
Then, the mean value of the nearest K neighbors is calculated for the data. The K value is the only
hyper-parameter of the KNN algorithm. If the K value is too low, then the borders are going to be
flickering and overfitting will occur, whereas if the K value is too high, the separation borders are
going to be smoother and underfitting will occur. The disadvantage of the KNN algorithm is that in
the distance calculation process, it increases the processing load as the number of data increases.

Decision tree (DT) algorithm is an algorithm that is frequently used in statistical learning and
data mining. It works with simple if-then-else decision rules and is used for both classification and
regression in supervised learning [35]. It has three basic steps. In the first step, the most meaningful
feature is placed as the first (root) node. In the second step, datasets are divided into subsets according
to this node. Subsets should be created in such a way that each subset contains data with the same
value of a feature. In the third step, step one and two are repeated until the last (leaf) nodes in all of the
branches are created. The decision tree algorithm builds classification or regression models in the form
of a tree structure. It splits a dataset into smaller subsets while at the same time an associated decision
tree is incrementally developed. The result of this algorithm is a tree with decision nodes. Decision
trees can handle both categorical and numerical data [36,37].

The RF method is designed in the form of a forest consisting of many DT’s [38]. Each decision tree
in the forest is formed by selecting the sample from the original dataset with the bootstrap technique
and selecting the random number of all variables in each decision node. The RF algorithm consists of
four fundamental steps. First, n features are randomly selected from a total of m features. Second,
the node d using the best split point is calculated among the n features. Third, it checks whether the
number of final (leaf) nodes reaches the target number. If it does, it moves on with the next step; if not,
the algorithm goes back to step one. Finally, by repeating steps one to three for n (number of trees in
the forest) times, a forest is built [38–40].

The adaptive boosting (AB) algorithm is a ML method, which is also known as an ensemble
method. The aim of this method is to create a stronger learning structure by using weak learners.
AB can be used to improve the performance of any ML algorithm. However, it often uses a single-level
decision tree algorithm as a weak learner algorithm since the processing load is much lower than other
basic learning algorithms. The AB algorithm consists of four basic steps. In the first step, the N weak
algorithms are run and the dataset is learned. Each of these N weak learning algorithms is assigned
a weight value of 1/N. In the second step, error values are calculated in each of the learner algorithms.
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In the third step, the weight value of the learning algorithm with a high amount of error is increased.
In the final step, the learning algorithms are summed with weight values and if the desired metric limit
is reached, the total algorithm is output; otherwise, it returns to the second step [41–43]. As the number
of learners in this algorithm increases, the processing load and the learning performance increases.

First introduced by Vapnik, SVM is a supervised learning algorithm based on the statistical
learning theory [44,45]. SVM was originally developed for binary classification problems. While SVM
was only used for classification at first, it eventually began to be used in linear and non-linear regression
procedures as well [46]. SVM aims to find the hyper-plane, which separates classes from each other,
and which is the most distant from both classes. In cases where a linear separation cannot occur,
the data are moved to another space of a higher dimension, and the classification is performed in
that space. While the classification processes aim to separate data from each other by means of
the generated vectors; the regression, in a sense, performs the opposite of this process and aims to
create a hyper-plane by identifying support vectors in a way that they will include as many data
as possible [47]. The SVM is mainly divided into two categories according to the linear separability
of the dataset. Non-linear SVM decision function is given in Equation (2). In cases where the data
cannot be separated linearly, the data are moved to a space of higher dimension, and kernel functions
are used to resolve them. The transformations can be made by using Kernel functions expressed
as K(xi,xj) = Φ(x) Φ(xi) instead of Φ(x) Φ(xi) scalar product given in Equation (2). Also, non-linear
transformations can be made, and the data can be separated in the high dimension thanks to the
Kernel functions. Therefore, Kernel functions have a critical role in the performance of SVM. The most
widely used of these Kernel functions are linear, polynomial, Radial Basis Function (RBF), and Sigmoid,
all of which are given in Table 3 [47–49]. In this table, xi and xj corresponds to window coefficients.
xi is the width parameter and the xj represents the place of the window. In the polynomial function,
the parameter d corresponds to the degree of the polynomial. In radial basis function, on the other
hand, γ is equal to Gaussian function. In this study, only RBF was used as the SVM Kernel function.

f (x) = sign(
N∑

i=1

aiyiΦ(x)Φ(xi) + b) (2)

Table 3. Support vector machine (SVM) kernel functions.

Kernel Function Equation

Linear K
(
xi, x j

)
=

(
xT

i x j
)

Polynomial K
(
xi, x j

)
=

(
xix j

)d

Radial Basis Function (RBF) K
(
xi, x j

)
= exp

(
−γ‖xi − x j‖

2
)
, γ > 0

Sigmoid K
(
xi, x j

)
= tanh

(
kxix j − δ

)
K-fold cross validation is a method used in the performance evaluation of learning

algorithms [50,51]. In the evaluation processes, it is essential to create a dataset for training and
testing and to test the performance of the model that actualizes the learning with training data on the
test dataset. However, performance evaluation may not be reliable because of not having the same
distribution when selecting the training and test data in the dataset, uneven distribution of outliers,
and so on. Therefore, K-fold cross validation method was developed. In this method, training and test
data are integrated and turned into a single dataset. All data are divided into K equal parts. The K
value here is determined by the user. Then, learning and testing are performed for each of the K
sub-sets; here, one of the subsets will be used for the test, and the others are going to be used for the
training. As a result, performance metrics are obtained for each of the sub-sets. The average of the
performance metrics is considered as the performance metric of the K-fold cross-validation. In this
study, the K value was chosen as 10.
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The metrics of classification performance are obtained through the confusion matrix in Figure 4
as outlined in Table 4. The true positive (TP) value in a two-class confusion matrix is the number
of predictions where the predicted value is 1 (true) when the actual value is also 1 (true). The true
negative (TN) value is the number of predictions where the predicted value is 0 (false) when the actual
value is also 0 (false). The false positive (FP) value is the number of predictions where the predicted
value is 1 (true) when the actual value is 0 (false). The false negative (FN) value is the number of
predictions where the predicted value is 0 (false) when the actual value is 1 (true). The mean square
error (MSE), mean average error (MAE), and coefficient of determination (R2) metrics used in the
regression performance evaluation are outlined in Table 5. It represents the sample standard deviation
of the differences between predicted values (ŷ j) and observed values (y j).
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Table 4. Classification metrics.

Metric Equation

Accuracy A = TN+TP
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Precision P = TP
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Recall R = TP
TP+FN

F1 Score F1 = P+R
2

Table 5. Regression metrics.

Metric Equation

Mean Square Error (MSE) MSE = 1
n
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j=1

(
y j − ŷ j
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Mean Average Error (MAE) MAE = 1
n
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3. Results and Discussion

In this section, HF-ML localization and positioning results are presented. The generated dataset
consists of 20,946 rows with 10 columns of constructed features. When the data are split (70% training,
30% test), 4190 samples are available for test and 16,756 for training.
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3.1. Building Classification Results

Building classification is the first step in HF-ML localization and positioning. Only the generated
data are used for classification. The results obtained by ML methods are presented in Table 6.
The accuracy value in this table is provided for both the training and testing. The value given for the
training is the average of the results obtained in the 10-fold cross-validation stage. The precision, recall,
and F1 values obtained for the testing are calculated according to the distribution weights, since there
are three different output values and these outputs are in different numbers in the dataset. According
to the findings, the RF algorithm is considered to be the most successful algorithm in both training and
test metrics. When the results are examined in terms of accuracy metrics, the RF algorithm produces
a value of 0.993 in training and a value of 0.995 in the test. According to the results of the RF algorithm
for the testing data, the confusion matrix is presented in Figure 5. In this figure, it is seen that the
actual values and the predicted values match to a very high degree. Also, there are small numbers of
confusion between close buildings.

Table 6. Building classification results.

ML Method
Accuracy Precision Recall F1

Training Testing Testing Testing Testing

NB 0.673 0.670 0.722 0.670 0.674
KNN 0.963 0.964 0.964 0.964 0.964

DT 0.987 0.993 0.993 0.993 0.993
RF 0.993 0.995 0.995 0.995 0.995
AB 0.916 0.897 0.896 0.897 0.896

SVM 0.605 0.620 0.790 0.620 0.569
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3.2. Floor Classification Results

Floor classification is the second step in HF-ML localization and positioning. For the classification,
the generated data and the predictions produced by the selected RF algorithm according to the results
presented in the previous section are used. The results obtained with the ML methods are presented in
Table 7. The accuracy value in this table is provided for both training and testing. The value given for
the training is the average of the results obtained in the 10-fold cross-validation stage. The precision,
recall, and F1 values obtained for the testing are calculated according to the distribution weights
since there are five different output values and these outputs are in different numbers in the dataset.
The HF tag is added when the generated data are combined with the predictions of RF building
classification. In general, when the performance metrics are considered, the positive effect of HF is
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observed. According to the findings, the HF-RF algorithm is considered to be the most successful
one in terms of both the training and test values. In terms of accuracy metrics, the HF-RF algorithm
produces a high score of 0.951 in training and 0.960 in testing. The confusion matrix of the RF and
HF-RF algorithms are presented in Figures 6 and 7, respectively. In these figures, it is seen that the
actual and the predicted values match to a very high degree. Also, there are small numbers of confusion
between floors close to each other. Comparing Figures 6 and 7, the decrease in the wrong estimated
values is clearly seen.

Table 7. Floor classification results.

ML Method
Accuracy Precision Recall F1

Training Testing Testing Testing Testing

NB 0.340 0.351 0.354 0.351 0.329
KNN 0.810 0.819 0.820 0.819 0.818

DT 0.940 0.953 0.953 0.953 0.953
RF 0.947 0.956 0.957 0.956 0.956
AB 0.580 0.598 0.599 0.598 0.595

SVM 0.552 0.571 0.832 0.571 0.577
HF-NB 0.277 0.283 0.391 0.283 0.279

HF-KNN 0.810 0.819 0.820 0.819 0.819
HF-DT 0.942 0.950 0.950 0.950 0.950
HF-RF 0.951 0.960 0.960 0.960 0.960
HF-AB 0.473 0.508 0.542 0.508 0.512

HF-SVM 0.563 0.585 0.834 0.585 0.594
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3.3. Longitude and Latitude Regression

The algorithms for longitude and latitude estimation have been analyzed with ML using the
generated data and additional HF data. Previously, RF was used for building classification and HF-RF
for floor classification. The NB algorithm was excluded from the longitude and latitude estimation
because it was not used in the regression process. Performance metrics of longitude regression are
presented in Tables 8 and 9. Considering the general performance metrics, application of HF has
a positive effect on longitude estimation. When the algorithms are analyzed in terms of MSE metrics,
the most successful algorithm turns out to be the HF-DT. While the MSE value of the regression with
DT was 270.975, the MSE value of HF-DT decreased to 246.582. The results obtained with HF-DT for
training data have a very low MSE value of 3.751.

Table 8. Longitude regression results of training data.

ML Method MSE MAE R2

KNN 764.771 12.602 0.951
DT 3.751 0.287 1.000
RF 37.373 2.552 0.998
AB 4596.002 59.143 0.703

SVM 16,669.187 106.174 −0.077
HF-KNN 755.945 12.510 0.951

HF-DT 3.751 0.287 1.000
HF-RF 17.743 2.127 0.999
HF-AB 977.574 25.440 0.937

HF-SVM 16,655.674 106.123 −0.076
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Table 9. Longitude regression results of testing data.

ML Method MSE MAE R2

KNN 1306.443 16.713 0.914
DT 270.975 5.495 0.982
RF 173.116 5.939 0.989
AB 4599.668 59.047 0.696

SVM 16,257.159 105.057 −0.076
HF-KNN 1284.751 16.602 0.915

HF-DT 246.582 5.596 0.984
HF-RF 201.812 5.646 0.987
HF-AB 1089.982 26.149 0.928

HF-SVM 16,243.445 105.003 −0.075

The performance metrics obtained as a result of latitude regression are presented in Tables 10
and 11. Considering the general performance metrics, application of HF has a negative effect on
latitude estimation. When the algorithms are examined for MSE metrics, DT appears to be the most
successful algorithm. While the MSE value of the regression with DT is 190.452, the MSE value of
HF-DT is 1284.751. The results obtained with DT for training data have a very low MSE value of 2.171.

Table 10. Latitude regression results of training data.

ML Method MSE MAE R2

KNN 326.695 9.212 0.928
DT 2.171 0.212 1.000
RF 19.486 2.064 0.996
AB 1571.732 32.841 0.655

SVM 4567.286 54.533 −0.002
HF-KNN 755.945 12.510 0.951

HF-DT 3.751 0.287 1.000
HF-RF 17.743 2.127 0.999
HF-AB 977.574 25.440 0.937

HF-SVM 16,655.674 106.123 −0.076

Table 11. Latitude regression results of testing data.

ML Method MSE MAE R2

KNN 550.830 12.227 0.877
DT 190.452 5.107 0.957
RF 98.939 4.924 0.978
AB 1573.053 32.894 0.648

SVM 4538.017 54.721 −0.015
HF-KNN 1284.751 16.602 0.915

HF-DT 246.582 5.596 0.984
HF-RF 201.812 5.646 0.987
HF-AB 1089.982 26.149 0.928

HF-SVM 16,243.445 105.003 −0.075

3.4. Comparison of Findings with Other Studies

Comparison of localization studies are presented in Table 12 and the comparison of positioning
studies are given in Table 13. According to the Table 12, the most successful method seems to be the
one proposed by Bozkurt et.al. [12]. However, when the average of accuracy values obtained as a result
of the proposed method is considered, it ranks second among these studies. According to the Table 13,
the proposed method HF-DT appears to be the most successful one. The results of the extra-trees are
given as root mean square error; however, to compare with the values present in this study, the square
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of the given values are converted into the MSE metrics [11]. Carrying out a literature review, it was
found that the only study to perform both localization and positioning procedures was conducted by
Akram et.al. Also, according to the findings, it was seen that the proposed method provides higher
performance values [14].

Table 12. Comparison of localization studies.

Method [Citiation] Building Accuracy Floor Accuracy Mean

[12] 0.99 0.98 0.985
[52] 0.98 0.92 0.95

HybLoc [14] 0.85 0.85 0.85
Proposed Building Model (RF) 0.99 -

0.97Proposed Floor Model (HF-RF) - 0.95

Table 13. Comparison of positioning studies.

Method [Citiation] Longitude MSE Latitude MSE Longitude MAE Latitude MAE

KNN [11] 205.636 180.365 - -
SVM [11] 252.81 127.238 - -

Extra-Trees [11] 149.084 102.414 - -
HybLoc [14] 6.46 6.46

Proposed Longitude
Method (HF-DT) 3.751 - 0.287 0.212

Proposed Method (DT) - 2.171 - -

4. Conclusions

In this study, first of all, a more applicable, standard, and simple dataset structure was designed,
and then a hierarchical structure of the new dataset as well as a higher performance method was
introduced. Using the proposed method, estimation of location and position has proved to be more
successful by using fewer variables than the current studies. This paper, thus, identifies a lack of
applicability present in the research community and solves it using the proposed method. According
to the results obtained with the application of the method, the following conclusions were obtained.
A simple, standardized, and more efficient dataset has been proposed instead of an indoor positioning
dataset whose implementation is difficult and inefficient. This new, simple, and more standardized
dataset that was proposed instead of the classic dataset has achieved high performance values. Also,
a hierarchical fusion method was proposed to improve the classical ML models. The proposed
HF method resulted in a significant improvement in floor and longitude estimation. The method
was developed from the general to the specific using the Hierarchical structure of the localization
process. Here, by transferring the estimation, it is ensured that the correct parts of the algorithms
are strengthened.

When the findings were examined, RF was found to be the most successful algorithm for building
classification. In terms of accuracy metrics, the RF algorithm produces a value of 0.993 in training and
a value of 0.995 in testing. Also, HF-RF is chosen as the most successful method for floor classification.
In terms of accuracy metrics, the HF-RF algorithm produces a high score of 0.951 in training and
0.960 in testing. In terms of localization, this study concludes that the variable production and the HF
method provide efficiency.

The HF method has led to an improvement in the longitude estimation process, while it has
also been shown to cause deterioration in the latitude estimation process. For this reason, in the
estimation of longitude, HF-DT, which has a 3.751 MSE, was preferred and DT, which has a 3.751 MSE,
was preferred in latitude estimation. In terms of positioning, this study concludes that the variable
production and the HF method provide efficiency. Additionally, it was observed that the method
of variable production proves to be successful. Further, it was concluded that the HF method only
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yields longitude estimation. Therefore, it is promising for the position estimation in indoor areas such
as rooms, corridors, etc. Although there was no attempt to estimate the coordinates in any of the
similar studies, a coordinate estimation was carried out in this study. However, the coordinate estimate
was not as precise as GPS. This study serves as a preliminary study for future localization or indoor
localization systems using Wi-Fi. Thanks to the results of this study, a strengthening technique with
HF-ML method should provide higher performance results in similar hierarchical datasets. This study
is expected to provide higher performance positioning services in indoor spaces in the future. In the
future, studies on wireless signal mapping and campus positioning system are planned considering
the advantage of the proposed dataset structure and method.
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