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Abstract: Spatiotemporal fusion methods provide an effective way to generate both high temporal
and high spatial resolution data for monitoring dynamic changes of land surface. But existing fusion
methods face two main challenges of monitoring the abrupt change events and accurately preserving
the spatial details of objects. The Flexible Spatiotemporal DAta Fusion method (FSDAF) was proposed,
which can monitor the abrupt change events, but its predicted images lacked intra-class variability
and spatial details. To overcome the above limitations, this study proposed a comprehensive and
automated fusion method, the Enhanced FSDAF (EFSDAF) method and tested it for Landsat–MODIS
image fusion. Compared with FSDAF, the EFSDAF has the following strengths: (1) it considers the
mixed pixels phenomenon of a Landsat image, and the predicted images by EFSDAF have more
intra-class variability and spatial details; (2) it adjusts the differences between Landsat images and
MODIS images; and (3) it improves the fusion accuracy in the abrupt change area by introducing a new
residual index (RI). Vegetation phenology and flood events were selected to evaluate the performance
of EFSDAF. Its performance was compared with the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM), the Spatial and Temporal Reflectance Unmixing Model (STRUM), and
FSDAF. Results show that EFSDAF can monitor the changes of vegetation (gradual change) and flood
(abrupt change), and the fusion images by EFSDAF are the best from both visual and quantitative
evaluations. More importantly, EFSDAF can accurately generate the spatial details of the object and
has strong robustness. Due to the above advantages of EFSDAF, it has great potential to monitor
long-term dynamic changes of land surface.

Keywords: image fusion; high spatiotemporal resolution; EFSDAF; FSDAF; Landsat; MODIS

1. Introduction

High spatial resolution remote sensing images with highly frequent observations are significant
for monitoring dynamic changes of land surface [1–4], especially for monitoring short-term and
abrupt change events such as floods and forest fires [5,6]. However, due to technical and budget
limitations, existing single satellite sensors cannot simultaneously generate high temporal and high
spatial resolution images [2,7,8]. For example, the remote sensing images acquired from Landsat, SPOT,
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and Sentinel 2 satellites have a high spatial resolution (10–30 m), but they have a long coverage period
of 5–30 days (hereinafter called “fine resolution” images). The other satellites images (e.g., MODIS
and VIIRS) have a daily sampling frequency, but spatial resolution ranges between 250 and 1000 m
(hereinafter called “coarse resolution” images). To overcome this constraint, spatiotemporal fusion
methods of remote sensing data have been developed to synthesize high spatial and temporal resolution
images for monitoring the dynamic changes of land surface by fusing coarse resolution images and
fine resolution images [9,10]. In the past decade, the synthetic high spatiotemporal resolution images
have been widely used in vegetation phenology monitoring [9,11], urban surface temperatures [12–14],
urbanization [15], crop yield estimating [16,17], and monitoring sudden and short-term change events
(e.g., flood) [18].

According to the literature, the existing spatiotemporal fusion methods can be classified into three
categories [19–21]: weight function-based, unmixing-based, learning-based. Weight function-based
methods estimate the fine resolution images by weighting the similar neighboring information of all
input images. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [7] was the
earliest proposed and most widely used spatiotemporal fusion method, which blended the Landsat
and MODIS imagery to synthesize Landsat-like images by using a weighted function, but STARFM
cannot predict heterogeneous landscape. Then, the Spatial Temporal Adaptive Algorithm for mapping
Reflectance Change (STAARCH) [2] and the Enhanced STARFM (ESTARFM) [8] were developed to
improve STARFM’s performance in disturbance areas and heterogeneous areas, respectively. However,
both STAARCH and ESTARFM required two pairs of MODIS and Landsat images for input data,
which are less suitable in cloudy places. Unmixing-based methods predict the fine resolution images
by unmixing the coarse resolution images based on the spectral mixing theory. The Multi-sensor
Multi-resolution Technique (MMT) [22] was originally proposed based on unmixing, and existing
fusion methods based on unmixing were an improvement to MMT. Methods, such as the Spatial
Temporal Data Fusion Approach (STDFA) [23] and the Spatial and Temporal Reflectance Unmixing
Model (STRUM) [24], were typical unmixing-based methods. The advantages of unmixing-based
methods have high computational efficiency, which can generate the time series of images with high
spatiotemporal resolution. However, the fusion methods based on unmixing only unmix the coarse
resolution images, which did not consider mixed pixels phenomenon of fine resolution images, and its
predicted fine resolution images lacked intra-class variability and spatial details [19,25]. In addition,
most of both the weight function-based methods and unmixing-based methods supposed the land
cover will not change between base date and prediction date, which cannot monitor the abrupt
change events.

Learning-based methods have been proposed in recent years, which employ the machine
learning algorithms to perform feature learning between coarse resolution images and fine resolution
images [26], and simulating the fine resolution images based on the structural similarity of the input
images. The SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM) [27] was
the first learning-based algorithm, which established a correspondence between the fine resolution
and coarse resolution images through the dictionary pair learning to generate the predicted fine
resolution images. Following SPSTFM, Song [28] developed another dictionary-based algorithm
that only required a pair of coarse resolution and fine resolution images. One of the important
improvements of the learning-based methods is that it can predict land cover change events. Although
many fusion methods of learning based have recently been proposed, such as Error-Bound-regularized
SParse coding (EBSPTM) [29], Extreme Learning Machine (ELM) [30], and Hybrid Color Mapping
(HCM) [31], the learning-based fusion methods are relatively novel, which have not been widely
used [32], In addition, learning-based methods only consider the statistical relationships between
the fine resolution images and coarse resolution images instead of any physical properties of remote
sensing signals [28], which predicted fine resolution images cannot exactly remain spatial detail feature
and shapes of objects.
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Previous literature shows that existing fusion methods have two main improvements including
monitoring the abrupt change events and accurately capturing the spatial details of land surface.
To solve the problems, hybrid methods were proposed in recent years, and the Flexible Spatiotemporal
DAta Fusion method (FSDAF) [32] was a typical hybrid method. FSDAF was based on spectral
unmixing analysis and a thin plate spline (TPS) interpolator and combined the weighted function
to predict fine resolution images. Because the information of land cover change can be captured
by using a TPS interpolator for the MODIS images at the prediction date, the FSDAF can monitor
abrupt change events and has been widely used recently. However, the FSDAF did not consider mixed
pixels for Landsat images, and its predicted fine resolution images lacked intra-class variability and
spatial details. Specifically, the FSDAF has the following three limitations: (1) it directly performs the
hard-classification for Landsat image, and its predicted Landsat-like images lack intra-class variability
and spatial details; (2) it directly assigns the temporal changes of coarse resolution images to fine
resolution images without considering the differences between Landsat and MODIS images; and (3)
it introduces a homogeneity index (HI) to guide the residual distribution, which is derived from the
classification map at the base date. The HI will not be suitable for guiding the residual distribution
when there are land cover changes and misclassifications [33]. In addition, more input parameters
were required to be set before the operation of FSDAF, which increased the computational complexity.

To solve the above limitations of the FSDAF method, this study developed a comprehensive and
automated fusion method, an enhanced FSDAF (EFSDAF), and tested it by fusing the Landsat images
and MODIS images. Compared with FSDAF, EFSDAF has the following strengths: (1) it considers the
mixed pixels in Landsat images and uses a globally representative spectral linear mixture model (SVD)
of the Landsat pixels for spectral unmixing; (2) it adjusts the differences between Landsat images and
MODIS images using a linear model; and (3) it proposes a new residual index (RI) to guide the residual
distribution based on the interpolator results of MODIS images at the base date and prediction date.
In addition, EFSDAF is an automated spatiotemporal fusion method that does not require additional
input parameters compared to FSDAF. In this study, we tested the EFSDAF in the areas of vegetation
phenology and flood events and compared it with three other popular fusion methods: STARFM,
STRUM, and FSDAF.

2. Method

2.1. Definitions and Notations

Before introducing the details of EFSDAF, some important definitions and notations are given
here for convenience and clarity.

TB and TP define the base date and the prediction date, respectively. S2 is the number of fine
resolution pixels within one coarse resolution pixel. m represents the m-th endmembers within one
coarse resolution pixel or one fine resolution pixel. (xi, yi) and

(
xi j, yi j

)
denote the coordinate index of

the i-th coarse resolution pixels and the j-th fine pixels within the i-th coarse pixels, respectively, and j = 1
. . . s2. The coarse resolution images observed at TB and TP are stored in CB(xi, yi, b) and CP(xi, yi, b),
and the fine resolution images observed at TB and TP are stored in FB

(
xi j, yi j, b

)
and FP

(
xi j, yi j, b

)
. b is

the number of bands for coarse resolution images and fine resolution images. AB
F

(
xi j, yi j, m

)
and

AP
F

(
xi j, yi j, m

)
denote the abundances of the fine resolution pixels at TB and TP, and AB

C(xi, yi, m) and
AP

C(xi, yi, m) denote the abundances of the coarse resolution pixels at TB and TP, respectively.

2.2. Theoretical Basis of EFSDAF

Like FSDAF, the input images of EFSDAF include, a MODIS image at TB, a Landsat image at
TB and a MODIS image at TP. The output of EFSDAF is a predicted fine resolution image (e.g.,
Landsat-like) at TP. Unlike FSDAF, EFSDAF considers more than one land cover type in both the
Landsat images (30 m) and MODIS images (500 m). Therefore, the endmembers determination and
abundances extraction of the Landsat image at TB are firstly carried out in EFSDAF. EFSDAF includes
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five main steps: (1) endmember determination and spectral unmixing for Landsat image at TB; (2)
temporal prediction (FTP) for no land cover change from TB to TP; (3) spatial prediction (FSP) for land
cover change at TP; (4) residual distribution by using a new residual index (RI); and (5) final prediction
of a Landsat-like image using neighborhood in a sliding window. The workflow of EFSDAF is outlined
by the flowchart in Figure 1. Detailed descriptions of each step in EFSDAF are given below. The code
of EFSDAF can be found at the URL https://github.com/max19951001/EFSDAF.git.

Figure 1. Flowchart of the proposed Enhanced Flexible Spatiotemporal DAta Fusion (EFSDAF) method.

2.2.1. Endmember Determination and Spectral Unmixing for Landsat Images at TB

Endmember extraction and spectral unmixing of Landsat images at TB are the first step and key
step for EFSDAF in this paper due to the heterogeneity of land surface with more than one land cover
type in Landsat pixels. In this study, a globally representative spectral linear mixture model (SVD
model) [34–36] shared by Small for Landsat images was selected as endmembers that were classified
into three types: substrate (S), vegetation (V), and dark surface (D) [20], and as a linear method, the fully
constrained least squares (FCLS) [37] method was applied to the spectral unmixing. The abundance
AB

F

(
xi j, yi j, m

)
calculated by FCLS varies from 0 to 1, and the sum of AB

F

(
xi j, yi j, m

)
is 1.

2.2.2. Temporal Prediction (FTP ) for No Land Cover Change from TB to TP

• Temporal changes of each endmember at the MODIS pixels

https://github.com/max19951001/EFSDAF.git
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The temporal prediction of EFSDAF assumes no land cover change from TB to TP. In other words,
the endmembers and abundances of Landsat pixels will not change from TB to TP. According to the
linear mixture model [38], the values of Landsat pixels are a linear mixture of endmembers’ values and
abundances. Hence, the values of Landsat pixels at TB and TP can be expressed as:

FB
(
xi j, yi j, b

)
=

nm∑
m=1

AB
F

(
xi j, yi j, m

)
×RB

F(m, b) + ϕ (1)

Fp
(
xi j, yi j, b

)
=

nm∑
m=1

Ap
F

(
xi j, yi j, m

)
×Rp

F(m, b) + ϕ (2)

where nm defines the number of endmembers and m is the m-th endmembers for one Landsat pixel,
RB

F(m, b) and RP
F(m, b) denote the reflectance values of each endmember for all Landsat image bands at

TB and TP, respectively. ϕ is the system error. According to the above assumption, the endmembers
and abundances of Landsat pixels will not change from TB to TP, i.e., AB

F = AP
F , and ϕ is constant. From

Equations (1) and (2), we have:

∆F
(
xi j, yi j, b

)
=

nm∑
m=1

AB
F

(
xi j, yi j, m

)
× ∆RF(m, b) (3)

where ∆F denotes the temporal changes of the Landsat images. ∆RF are the reflectance changes of
each endmember for all Landsat image bands. Among the variables above, if ∆RF is known, ∆F can be
calculated by a linear mixture model. Therefore, the key is to solve ∆RF.

Similar to the temporal changes of Landsat images, the temporal changes of MODIS images from
TB to TP can be expressed as:

∆C(xi, yi, b) =
nm∑

m=1
AB

C(xi, yi, m) × ∆RC(m, b). (4)

where ∆C denotes the temporal changes of the MODIS images. ∆RC are the reflectance changes of
each endmember for all MODIS image bands. Among the variables above, ∆C could be calculated
through ∆C = CP −CB. Due to the previous assumption of no land cover change from TB to TP, the
types and spatial distributions of the endmembers should be the same for Landsat and MODIS images
in the same regions. Hence, AB

C can be aggregated from AB
F with:

AB
C(xi, yi, m) = 1

s2

s2∑
k=1

AB
F

(
xi j, yi j, m

)
(5)

where AB
C(xi, yi, m) is calculated by averaging the endmember abundances of all Landsat pixels in

one MODIS pixel. However,AB
C(xi, yi, m) is the ratio of the number of Landsat pixels for class m to

s2 in FSDAF. Although ∆C(xi, yi, b) and AB
C(xi, yi, m) from Equations (4) and (5) are known variables,

Equation (4) cannot be solved because there are nm unknown values of ∆RC(m, b).
In this study, assuming that the land cover types are the same for a small area according to the first

law of geography [39] stating that near things are more related than distant things, it is reasonable that
∆RC(m, b) are the same in a small area [20]. However, FSDAF assumes that the temporal changes of
each class are the same among all MODIS pixels, which does not match the actual situation. A sliding
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window of MODIS pixels is introduced to perform spatial unmixing in this study, and the size of the
window should be larger than the number of endmembers [40]. The equations [32] are as follows:

∆C(x1, y1, b)
...

∆C(xi, yi, b)
...

∆C(xn, yn, b)


=



AB
C(x1, y1, 1) AB

C(x1, y1, 2) · · · AB
C(x1, y1, m)

...
...
...

AB
C(xi, yi, 1) AB

C(xi, yi, 2) · · · AB
C(xi, yi, m)

...
...
...

AB
C(xn, yn, 1) AB

C(xn, yn, 2) · · · AB
C(xn, yn, m)





∆RC(1, b)
...

∆RC(l, b)
...

∆RC(m, b)


(6)

where ∆RC(m, b) can be calculated by computing a least squares best fit solution. Selecting k of the
purest MODIS pixels of each endmember in the sliding window for least squares best fit aims to reduce
the errors by collinearity [32]. The final determined MODIS pixels for least squares best fit should be
smaller than the size of the sliding window and larger than the number of endmembers.

• Adjustment of the differences between the Landsat images and MODIS images

Theoretically speaking, the reflectance values of the Landsat pixels corresponding to the MODIS
pixels are the same. However, due to the physical differences of the sensors, the effects of bandwidth,
weather conditions, and atmospheric correction, differences between MODIS images and Landsat
images are inevitable. As with previous studies [20,41], a linear model is introduced in this study to
adjust the differences between Landsat images and MODIS images.

RB
F(m, b) = a1(b) ×RB

C(m, b) + b1 (7)

RP
F(m, b) = a1(b) ×RP

C(m, b) + b1 (8)

where a1(b) and b1 are the slope and interception of the linear model, respectively. From Equations (7)
and (8), the differences between ∆RC(m, b) and ∆RF(m, b) can be calculated as the following Equation (9).

∆RF(m, b) = a1(b) × ∆RC(m, b) (9)

∆RF(m, b) can be obtained from Equations (5)–(9) in this study. However, the ∆RF(m, b) of FSDAF
were calculated by assigning the temporal changes of MODIS images to Landsat images without
considering the differences of Landsat and MODIS images.

• Temporal prediction for the fine resolution image at TP

∆F is linearly mixed with AB
F from Equation (3), and the final temporal prediction can be calculated

by Equation (10) as follows:

FTP
(
xi j, yi j, b

)
= FB

(
xi j, yi j, b

)
+ ∆F

(
xi j, yi j, b

)
(10)

Although the final temporal prediction can be calculated by Equation (10), all of the above
calculations are based on the assumption of no land cover change from TB to TP. Hence, the temporal
prediction cannot accurately predict abrupt change events from TB to TP. In addition, because this
prediction only uses the information of the temporal changes between TB and TP, we call Section 2.2.2
the temporal prediction.

2.2.3. Spatial Prediction (FSP) for Land Cover Change at TP

• Analysis and calculation of the residual
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The temporal prediction from Section 2.2.2 is not an accurate prediction when there are land
cover changes. Specifically, there is a certain deviation between the true values (Fp) and the temporal
prediction values (FTP). This study introduces a residual R between the FP and the FTP as follows:

1
S2

s2∑
s=1

FP
(
xi j, yi j, b

)
= 1

S2

s2∑
s=1

FTP
(
xi j, yi j, b

)
+ R(xi, yi, b) (11)

Furthermore, the value of one MODIS pixel is equal to the average of all of Landsat pixels within
one MODIS pixels and a system deviation ϕ [7]. Hence, the values of MODIS pixels at TB and TP can
be expressed as:

CB(xi, yi, b) = 1
s2

s2∑
s=1

FB
(
xi j, yi j, b

)
+ ϕ (12)

CP(xi, yi, b) = 1
s2

s2∑
s=1

FP
(
xi j, yi j, b

)
+ ϕ (13)

From Equations (11)–(13), we have:

R(xi, yi, b) = ∆C(xi, yi, b) − 1
S2

 s2∑
s=1

FTP
[
xi j, yi j, b

]
−

s2∑
s=1

FB
[
xi j, yi j, b

] (14)

As can be seen from the above Equations (11)–(14), the calculation and distribution of the residual
R is a key step for obtaining the final prediction at TP.

• Spatial prediction of the MODIS image at TP

As described above, the source of the residual R is in the area of land cover change. However,
the information of land cover change can only be obtained from the MODIS image at TP. Therefore,
downscaling the MODIS image to Landsat image level is the vital step to obtain the information of
the land cover change at TP. In EFSDAF, a Thin Plate Spline (TPS) interpolation method is applied
to downscale the MODIS image at TP. TPS is a spatial interpolation technique for point data based
on spatial dependence [42], which was used to the spatiotemporal fusion method because it has high
interpolation accuracy [32,43]. The interpolation result of the MODIS image at TP will be marked as
FSP

P

(
xi j, yi j, b

)
, which is another prediction of the Landsat image at TP. Unlike FSDAF, the MODIS image

at TB is also interpolated using the TPS method to calculate the residual index (RI) in Section 2.2.4 for
EFSDAF, and its result will be marked as FSP

B

(
xi j, yi j, b

)
. Because the spatial information is obtained

from MODIS images using the TPS interpolator method, we call Section 2.2.3 spatial prediction.

2.2.4. Residual Distribution by Using a New Residual Index (RI)

From Equation (11), the predicted Landsat-like image is calculated by adding a reasonable residual
based on the temporal prediction. Therefore, the residual distribution is the key step for the final
prediction. In FSDAF, a homogeneity index (HI) derived from the classification map of the Landsat
image at TB was introduced to guide the residual distribution. Because the HI only depends on the
classification map at TB, it will be unreasonable when the land cover type has changed from TB to TP

or the classification map is wrong [33]. Hence, a new residual index (RI) is proposed to reasonably
guide the residual distribution in this study, and more residual will be assigned to the area of land
cover change. According to Section 2.2.3, the spatial variation ∆FBP

(
xi j, yi j, b

)
can be expressed as:

∆FBP
(
xi j, yi j, b

)
=

∣∣∣∣FSP
P

(
xi j, yi j, b

)
− FSP

B

(
xi j, yi j, b

)∣∣∣∣ (15)

where ∆FBP
(
xi j, yi j, b

)
defines the changes of interpolation results of MODIS images from TB to TP,

and the larger ∆FBP
(
xi j, yi j, b

)
, the larger the changes of land cover type. In EFSDAF, we assume the
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changes of land cover type occur in a small area. If ∆FBP
(
xi j, yi j, b

)
in one Landsat pixel is greater

than the average of the ∆FBP, and we think the Landsat pixel
(
xi j, yi j

)
is the area of land cover change.

The RI can be calculated as follows:

RI
(
xi j, yi j, b

)
=

∑n
k=1 Ik
nw

(16)

where Ik is equal to 1 when the k-th Landsat pixels is determined to the pixel of land cover change
within a sliding window; otherwise, Ik is equal to 0. nw defines the window size. The RI is the ratio
of the numbers of Ik = 1 in the window to nw. The range of RI is 0–1, and a larger RI indicates more
residual to the area of land cover change.

Then we use the same weighting function to distribute the final residual as FSDAF. The weighting
function is defined as follow:

CW
(
xi j, yi j, b

)
= Ehe

(
xi j, yi j, b

)
×RI

(
xi j, yi j, b

)
+ Eho

(
xi j, yi j, b

)
×

(
1−RI

(
xi j, yi j, b

))
(17)

where Ehe
(
xi j, yi j, b

)
= R(xi, yi, b), and Ehe

(
xi j, yi j, b

)
is the residual for the area of land cover change.

Eho
(
xi j, yi j, b

)
= FSP

P

(
xi j, yi j, b

)
− FTP

(
xi j, yi j, b

)
, and Eho

(
xi j, yi j, b

)
is the residual for area of no land

cover change.
The final residual r

(
xi j, yi j, b

)
can be calculated as follows:

r
(
xi j, yi j, b

)
= s2

×R(xi, yi, b) ×W
(
xi j, yi j, b

)
(18)

where W
(
xi j, yi j, b

)
is the normalized CW

(
xi j, yi j, b

)
.

According to Equations (10) and (11), the final changes of the Landsat images between TB and TP

can be obtained from Equation (19):

∆F f
(
xi j, yi j, b

)
= r

(
xi j, yi j, b

)
+ ∆F

(
xi j, yi j, b

)
(19)

where ∆F f
(
xi j, yi j, b

)
and ∆F

(
xi j, yi j, b

)
are the final changes of Landsat images and the changes of

temporal prediction from TB to TP, respectively.

2.2.5. Final Prediction of the Landsat-Like Image Using Neighborhood in a Sliding Window

Theoretically, the final prediction of Landsat-like image Ftp
(
xi j, yi j, b

)
at TP can be obtained by the

following equation.
Ftp

(
xi j, yi j, b

)
= FB

(
xi j, yi j, b

)
+ ∆F f

(
xi j, yi j, b

)
(20)

However, uncertain errors are inevitable in EFSDAF because of the complexity of the calculation
process and the characteristics of pixel-by-pixel. In addition, the final prediction will lead to block
effects because the residual distribution is for the MODIS pixels. In this study, EFSDAF adopts the
same solution as STARFM, which uses the information of neighborhood to reduce the uncertainties
and smooth final prediction in a sliding window. The final predicted Landsat-like image F f p

(
xi j, yi j, b

)
can be calculated by Equation (21), and detailed information can be found in STARFM [7].

F f p
(
xi j, yi j, b

)
= FB

(
xi j, yi j, b

)
+

n∑
k=1

wk × ∆F f
(
xi j, yi j, b

)
(21)

where n is the number of similar pixels for Landsat pixels in a sliding window, and wk is the weight for
each similar pixel.
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3. Testing Experiment

3.1. Study Area and Data

The EFSDAF is proposed to accurately monitor dynamic changes of land surface including gradual
change (e.g., vegetation phenology) and abrupt change events (e.g., flood). In this study, vegetation
phenology and flood events are selected to evaluate the performance of EFSDAF.

The selected two datasets were from the datasets shared by Emelyanova [10], which were collected
in the Lower Gwydir Catchment in Northern New South Wales, Australia (149.2815◦ E, 29.0855◦ S,
hereinafter called “Gwydir”) and have been widely applied in the evaluation of spatiotemporal fusion
methods [10,20,21,32,44]. All images were atmospherically corrected and geographically co-registered,
which was resampled to 25 m with the nearest neighbor method by Emelyanova. In EFSDAF, we
aggregated the MODIS pixels to 500 m resolution in the process of residual distribution. Two pairs
of Landsat and MODIS images of the first dataset (vegetation phenology) were acquired on 5 July
2004 and 6 August 2004 in Gwydir, and the size of the selected images is 1400× 1400 pixels. The first
dataset was a typical heterogeneous region, and temporal dynamic changes were mainly caused by
phenological change from 5 July to 6 August 2004. The selected Landsat and MODIS images of the first
dataset are shown in Figure 2. The second dataset (flood) was acquired on 11 November 2004 and 12
December 2004, and the size of selected images is 800 × 800 pixels. A large flood occurred from 26
November 2004 to 12 December 2004, and the dataset was a typical abrupt change area. The selected
Landsat and MODIS images of the second dataset are shown in Figure 3.

Figure 2. Test data with gradual change (vegetation phenology) in Gwydir. (a) Landsat image of 5 July
2004; (b) Landsat image of 6 August 2004; (c) and (d) MODIS images of the same periods as Landsat
images. All images use NIR-red-green as R-G-B.
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Figure 3. Test data with abrupt change (flood) in Gwydir. (a) Landsat image of 26 November 2004; (b)
Landsat image of 12 December 2004; (c) and (d) MODIS images of the same periods to Landsat images.
All images use NIR-red-green as R-G-B.

3.2. Comparison and Evaluation of EFSDAF with STARFM, STRUM, and FSDAF

In this study, we compared EFSDAF with three other fusion methods: STARFM, STRUM, and
FSDAF. Because these three fusion methods have been widely used, and each of them only needs one
pair of Landsat and MODIS images at TB and one MODIS image at TP as input data.

All fusion images are qualitatively and quantitatively evaluated by comparing the predicted
Landsat-like image with true images at TP. The qualitative evaluation is to visually compare the
predicted images with the true images, and the differences between the predicted images of the four
fusion methods are magnified and highlighted by using yellow elliptical circles and black squares.
Representative assessment indexes as quantitative evaluation are used to objectively evaluate the
predicted images and true images pixel by pixel, and they are Average Difference (AD), Root Mean
Square Error (RMSE), Correlation Coefficient (CC), and Structure Similarity (SSIM) [45], respectively.
The evaluation criteria are as follows: the closer AD and RMSE are to 0, the closer the predicted value
to the true value; the closer CC and SSIM are to 1, the more similar the predicted images are to the
true images.

4. Results

4.1. Experiment in Gradual Change Area (Vegetation Phenology)

From Figure 4, the predicted Landsat-like images by four methods can monitor the changes of
vegetation growth, and the results of the four fusion methods are similar to the true image on the
whole. However, the yellow elliptical circles in Figure 4 show the differences of the four methods,
and we can get that STARFM blurs the boundaries of different objects, STRUM produces block effects,
FSDAF cannot retain the spatial details, and EFSDAF is closest to the true image. Especially, EFSDAF
can accurately retain the boundaries of objects from Figure 5, and it can capture more spatial details of
the object than FSDAF.
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Figure 4. Visual comparison of the predicted Landsat-like images by STARFM, STRUM, FSDAF, and
EFSDAF in dataset 1 (vegetation phenology). From left to right, green-red-NIR (standard false color)
composites of (a) a true Landsat image of 6 August 2004; (b–e) predicted images of 6 August 2004
by STARFM, STRUM, FSDAF, and EFSDAF, respectively. (Figure 4 shows the predicted Landsat-like
images of 6 August 2004 by four fusion methods in gradual change area, and the yellow elliptical
circles represent the intuitive differences of the four fusion methods. The zoom-in black square areas
marked in Figure 4 are used to visually evaluate the performance of the four methods for the vegetation
phenology in heterogeneous regions (Figure 5)).

Figure 5. Zoomed in scenes of the black square areas marked in Figure 4. From left to right, (a) true
Landsat image of 5 July 2004(base date); (b) true Landsat image of 6 August 2004(prediction date); (c–f)
predicted images of 6 August 2004 by STARFM, STRUM, FSDAF and EFSDAF, respectively.

From quantitative indices of four methods in Table 1, the fusion results by four methods can
achieve high accuracy. For all six bands and the mean, it can be seen that the accuracy of EFSDAF is
the highest by comparing it with the other three methods, which have lower AD and RMSE, as well as
higher CC and SSIM. Taking the mean of all bands as an example, the CC values of the four methods
are 0.807, 0.826, 0.858, and 0.883 from left to right, respectively. In addition, because the vegetation
phenology change happened in dataset 1, the prediction accuracy of band 4 (NIR) can better illustrate
the performance of the four methods. From the scatter plot of Figure 6, it can be confirmed that the
synthetic image values by EFSDAF are closer to the true values than the other three methods.

Figure 6. Scatter plots of the true values and predicted values for NIR band in dataset 1. From left to
right, (a–d) the scatter plots for STARFM, STRUM, FSDAF and EFSDAF, respectively.
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Table 1. The quantitative assessment of the Landsat-like images by STARFM, STRUM, FSDAF, and
EFSDAF in dataset 1.

STARFM STRUM FSDAF EFSDAF

AD

B1 0.0267 0.0264 0.0262 0.0260
B2 0.0205 0.0203 0.0197 0.0197
B3 0.0176 0.0182 0.0169 0.0167
B4 0.0442 0.0480 0.0385 0.0379
B5 0.0244 0.0237 0.0233 0.0209
B7 0.0250 0.0266 0.0237 0.0226

Mean 0.0264 0.0272 0.0247 0.0225

RMSE

B1 0.0319 0.0299 0.0295 0.0284
B2 0.0270 0.0250 0.0245 0.0229
B3 0.0249 0.0244 0.0232 0.0212
B4 0.0588 0.0646 0.0542 0.0504
B5 0.0329 0.0322 0.0310 0.0270
B7 0.0341 0.0363 0.0322 0.0297

Mean 0.0349 0.0354 0.0324 0.0299

CC

B1 0.653 0.732 0.778 0.803
B2 0.724 0.781 0.812 0.845
B3 0.852 0.869 0.895 0.915
B4 0.891 0.850 0.897 0.914
B5 0.856 0.871 0.880 0.918
B7 0.865 0.853 0.886 0.905

Mean 0.807 0.826 0.858 0.883

SSIM

B1 0.504 0.575 0.617 0.632
B2 0.683 0.744 0.798 0.804
B3 0.836 0.852 0.865 0.890
B4 0.885 0.848 0.893 0.902
B5 0.854 0.869 0.887 0.908
B7 0.862 0.848 0.881 0.892

Mean 0.771 0.789 0.823 0.839

4.2. Experiment in Abrupt Change Area (Flood)

From the visual comparison, only FSDAF and EFSDAF can capture the information of land cover
change in Figure 7, it can be more clearly and accurately seen from the zoom-in black area in Figure 8.
In addition, the spatial details restored by EFSDAF are most complete and most similar with the true
image from the yellow elliptical circles of Figure 7. From the yellow elliptical circles of Figure 8, the
small flood change information can be accurately captured by EFSDAF, but it cannot be captured
by FSDAF.

Figure 7. Visual comparison of Landsat-like images predicted by STARFM, STRUM, FSDAF, and
EFSDAF in dataset 2 (flood). From left to right, green-red-NIR (standard false color) composites of (a)
true Landsat image of 12 December 2004; (b–e) predicted images of 12 December 2004 by STARFM,
STRUM, FSDAF, and EFSDAF, respectively. (Figure 7 presents the predicted Landsat-like images of 12
December 2004 by four fusion methods in the abrupt change area, and the yellow elliptical circles of
Figure 7 represent the differences of the four fusion methods. The zoom-in black square areas marked
in Figure 7 are used to more clearly compare the fusion results by the four methods in the land cover
change area (Figure 8)).
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Figure 8. Zoomed in scenes of the black square areas marked in Figure 7. From left to right, (a)
true Landsat image of 26 November 2004 (base date); (b) true Landsat image of 12 December 2004
(prediction date); (c–f) predicted images of 12 December 2004 by STARFM, STRUM, FSDAF, and
EFSDAF, respectively.

Comparing the results of the quantitative indices in Table 2, STARFM and STRUM present similar
results, and EFSDAF is better than FSDAF (CC 0.808 vs. 0.827, SSIM 0.796 vs. 0.815 for band 4).
Furthermore, since the water body information shows lower reflectivity for band 4 (NIR), we compare
the scatter plots of band 4 for the four methods in Figure 9. It can be concluded that FSDAF and
EFSDAF are far superior to STARFM and STRUM, and EFSDAF is better than FSDAF.

Table 2. Quantitative assessment of the Landsat-like images by STARFM, STRUM, FSDAF, and EFSDAF
in dataset 2.

STARFM STRUM FSDAF EFSDAF

AD

B1 0.0104 0.0104 0.0096 0.0094
B2 0.0137 0.0141 0.0130 0.0127
B3 0.0165 0.0167 0.0155 0.0151
B4 0.0249 0.0259 0.0238 0.0227
B5 0.0487 0.0520 0.0423 0.0425
B7 0.0444 0.0472 0.0394 0.0392

Mean 0.0264 0.0277 0.0239 0.0235

RMSE

B1 0.0152 0.0145 0.0137 0.0136
B2 0.0214 0.0207 0.0196 0.0193
B3 0.0260 0.0249 0.0236 0.0231
B4 0.0364 0.0371 0.0342 0.0326
B5 0.0643 0.0685 0.0560 0.0560
B7 0.0560 0.0595 0.0505 0.0502

Mean 0.0366 0.0375 0.0329 0.0324

CC

B1 0.595 0.617 0.654 0.667
B2 0.607 0.628 0.665 0.672
B3 0.594 0.626 0.663 0.674
B4 0.789 0.771 0.808 0.827
B5 0.759 0.725 0.785 0.791
B7 0.743 0.710 0.752 0.763

Mean 0.681 0.679 0.721 0.733

SSIM

B1 0.583 0.611 0.644 0.645
B2 0.577 0.613 0.643 0.653
B3 0.565 0.610 0.642 0.648
B4 0.778 0.761 0.796 0.815
B5 0.748 0.714 0.768 0.772
B7 0.705 0.669 0.714 0.719

Mean 0.659 0.663 0.701 0.709



Appl. Sci. 2019, 9, 3693 14 of 19

Figure 9. Scatter plots of the true values and the predicted values for NIR band in dataset 2. From left
to right, (a–d) the scatter plots for STARFM, STRUM, FSDAF and EFSDAF, respectively.

5. Discussion

The proposed EFSDAF method in this paper was an improvement on FSDAF. EFSDAF considered
the mixed pixels of both Landsat images and MODIS images, and it predicted the Landsat-like images
by combining spectral unmixing analysis and TPS interpolator. The experiment results showed that
the fusion results by EFSDAF were better than FSDAF.

5.1. Improvements of EFSDAF Compared with FSDAF

The fusion results of EFSDAF were better than FSDAF due to the following reasons. Firstly,
EFSDAF considered the mixed pixels phenomenon of the fine resolution image (e.g., Landsat), which
was the most significant improvement of EFSDAF. In this study, the SVD model was introduced to
perform the spectral unmixing by using a fully constrained least squares method. Moreover, the
abundances of MODIS pixels were calculated by averaging the abundances of all Landsat pixels in one
MODIS pixel, and the final changes of Landsat images were solved by a linear mixture that combined
the abundances of endmembers and the variations of endmembers for Landsat images from TB to Tp.
Hence, the proposed EFSDAF considered the intra-class variability, and it can reserve more spatial
details than FSDAF, which can be seen in the yellow elliptical circles of Figures 4 and 7. Secondly, the
spatial unmixing of the coarse resolution image (e.g., MODIS) was performed in a sliding window,
which was different from the spatial unmixing of FSDAF using the whole MODIS image. It was more
in line with the actual situation by using sliding windows for spatial unmixing due to the heterogeneity
of land surface. The size of the sliding window for spatial unmixing was recommended to 7× 7 MODIS
pixels because the fusion accuracy is the best. Furthermore, selecting k purest MODIS pixels of a
sliding window for spatial unmixing ensured the minimal impacts of collinearity [32]. Thirdly, the
differences between the Landsat and MODIS images were considered, which included the differences
of the sensors and the pre-processing errors. In this study, we used a linear model to adjust the
differences between the Landsat and MODIS images, but FSDAF did not consider the differences.
Finally, a new residual index (RI) was introduced to guide the residual distribution instead of the
homogeneity index (HI) of FSDAF. The HI will not be suitable to guide the residual distribution when
there are land cover changes or misclassification [33] because it was calculated from the classification
map at TB. The proposed RI adequately considered the source of the errors, and it was based on
the differences of the interpolator results between the MODIS image at TB and the MODIS image at
TP. Greater differences represent more significant land cover change and will have a larger RI value.
The RI was calculated in a sliding window, and the size of the window should not be too large because
the result will not be accurate for the edge of different land cover types. The recommended size was
51× 51 Landsat pixels according to Section 2.2.5 in this study. More information of land cover change
can be monitored by EFSDAF from the yellow elliptical circles in Figure 8e,f. In addition, EFSDAF is an
automated fusion method compared to FSDAF because additional input parameters were not required.
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5.2. Influence of Endmember Variability on EFSDAF

The endmember variability directly affected the abundances of the Landsat image which may
further affect the final fusion precision of EFSDAF. Hence, we evaluated the performance of EFSDAF
by using different endmember numbers. In this study, the SVD model shared by Small and 3~5
endmembers extracted from the Landsat image at TB were selected to test the influence of endmember
variability on EFSDAF, and the final results of the two datasets were shown in Table 3 below (three
bands for testing, NIR-red-green). As can be seen from Table 3, the predicted results of EFSDAF
using four different endmembers are close in the two datasets. Therefore, the influence of endmember
variability on the final fusion results can be negligible, and EFSDAF is robust to endmember variability.
For the automated operation of EFSDAF, the SVD model of Landsat image was used to perform the
spectral unmixing in this study.

Table 3. The fusion precision of EFSDAF by using different endmember numbers in two datasets
(NIR-red-green).

Dataset 1 Dataset 2

Endmember SVD 3 4 5 SVD 3 4 5

AD
Green 0.0197 0.0198 0.0197 0.0198 0.0127 0.0128 0.0130 0.0130
Red 0.0167 0.0168 0.0168 0.0168 0.0151 0.0152 0.0156 0.0156
NIR 0.0379 0.0390 0.0381 0.0374 0.0227 0.0227 0.0230 0.0236

RMSE
Green 0.0229 0.0229 0.0229 0.0230 0.0193 0.0193 0.0197 0.0197
Red 0.0212 0.0213 0.0213 0.0213 0.0231 0.0232 0.0236 0.0238
NIR 0.0504 0.0504 0.0496 0.0490 0.0326 0.0327 0.0331 0.0336

CC
Green 0.845 0.845 0.846 0.843 0.672 0.674 0.656 0.657
Red 0.915 0.914 0.914 0.914 0.674 0.675 0.659 0.650
NIR 0.914 0.914 0.915 0.918 0.827 0.827 0.822 0.815

SSIM
Green 0.804 0.804 0.805 0.802 0.653 0.645 0.625 0.626
Red 0.890 0.889 0.889 0.889 0.648 0.647 0.635 0.618
NIR 0.902 0.902 0.906 0.908 0.815 0.815 0.810 0.800

5.3. The Effect of Input Images on the Predicted Values of EFSDAF

Like FSDAF, the minimum input images were used to predict the final Landsat-like images in
EFSDAF. Hence, the fusion accuracy of EFSDAF was directly influenced by the input images [10,19].
Particularly, the spatial information and temporal information of the input images would be fully
utilized in EFSDAF. Figure 10 showed the differences between the predicted Landsat-like image of
EFSDAF and input images in dataset 2. From Figure 10b–d, it can be seen that the land cover type
has changed, and the information of land cover change can be captured by comparing Figure 10b
with Figure 10c. However, there was an obvious difference between the predicted image in the yellow
ellipse area of Figure 10b and the true image (Figure 10a). After comparing and analyzing the input
images and the predicted image in Figure 10a,d, it can be concluded that the input MODIS image at
TP lacks the information of land cover change in the yellow ellipse from Figure 10c; therefore, the
final predicted image in Figure 10a was different from the true image at TP from Figure 10a. However,
comparing the abrupt change area of MODIS images from TB to TP in Figure 10c,d, EFSDAF can
completely capture the spatial details in Figure 10b. In other words, EFSDAF can only accurately
monitor the information of abrupt change in MODIS images. Hence, the quality of the input images is
crucial to the fusion accuracy of EFSDAF.
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Figure 10. Differences comparison between the predicted image by EFSDAF and input images in
dataset 2. From left to right: (a) Landsat image at TP; (b) Landsat-like image by EFSDAF at TP; (c)
MODIS image at TP; (d) MODIS image at TB.

5.4. Applications of EFSDAF to other Remote Sensing Products and Sensors

The EFSDAF in this study was tested using surface reflectance values of MODIS and Landsat
images, but the purpose of EFSDAF is to study various complex surface dynamics. Therefore, EFSDAF
can be applied to vegetation monitoring (e.g., NDVI), crop growth, and other sudden events such as
urbanization, forest fires, and landslides. In addition, with the frequent launch of satellites for the
Earth Observation System in recent years, existing satellite sensors such as Sentinel 2 MSI (10, 20,
60 m) images can replace Landsat images as fine resolution images, and like Sentinel 3 OLCI (300 m),
NPP-VIIRS images (375/750 m) can replace MODIS images as coarse resolution images. We are looking
forward to testing EFSDAF for other applications as well as satellite sensors.

5.5. Limitations of EFSDAF

EFSDAF can predict both gradual change and abrupt change events, but it cannot accurately
monitor tiny changes (e.g., small flood information in this study) because tiny changes are not shown
in one MODIS pixel. In other words, the changes of 20× 20 Landsat pixels can be displayed in one
MODIS pixel in this study. Therefore, the prediction accuracy of tiny changes can be improved by
blending Landsat images (30 m) and Sentinel 3 OLCI images (300 m), but the predicted images still
cannot monitor all actual changes. In addition, the computational efficiency of EFSDAF is the slowest
compared with other three methods due to the complexity of the calculation process. However, the
computational efficiency of fusion methods will be ignored in the future with the rapid development
of high-performance computing platforms like Google Earth Engine (GEE) [46].

6. Conclusions

In order to improve the shortcomings of FSDAF, this study developed the Enhanced FSDAF
(EFSDAF) to accurately monitor dynamic changes of land surface. EFSDAF improved FSDAF in the
following aspects: (1) unlike existing spatiotemporal fusion methods of unmixing based (e.g., STRUM,
FSDAF), EFSDAF considered the mixed pixels of fine resolution images (Landsat), and the fusion
results by EFSDAF takes into account intra-class variability and can accurately reserve the spatial
details of land surface; (2) the differences between the coarse resolution images and the fine resolution
images were adjusted; (3) a new residual index (RI) was proposed to guide the residual distribution,
which improved the fusion accuracy in the abrupt change area. Experimental results demonstrated
that:

(1) EFSDAF can accurately monitor both the gradual change and abrupt change events. More
importantly, EFSDAF can reserve more spatial details of land surface and has a stronger
robustness than FSDAF.

(2) EFSDAF can monitor more information of land cover change than FSDAF by introducing a new
residual index (RI) to guide residual distribution because the proposed RI considers the actual
source of residual.
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(3) EFSDAF is an automated fusion method because it does not need additional input parameters,
which has great potential to monitor long-term dynamic changes of land surface using high
spatiotemporal images.

In addition, we also expect that EFSDAF can be applied to other products of remote sensing and
other satellite sensors.

Author Contributions: C.S. designed and developed the EFSDAF code and wrote the manuscript. X.W. directed
and revised the manuscript. M.Z. and X.L. processed the experimental data. L.N. and H.H. made the Figures and
Charts. X.Z. revised the manuscript.

Funding: This study was financially supported by National Natural Science Foundation of China [Grant number
41971387 and Grant number 41071271], Shaanxi Province Natural Science Foundation [Grant number 2015JM4132],
Strategic Priority Research Program of Chinese Academy of Sciences, China [Grant number XDA2004030201], and
Shaanxi Key Laboratory of Ecology and Environment of River Wetland [Grant number SXSD201701].

Acknowledgments: The authors are grateful to I. Emelyanova for sharing test data in the remote sensing
community and thank C. Small for sharing the spectra of Global SVD Endmembers. Thanks to the FSDAF code
shared by Xiaolin Zhu and the STRUM code provided by Jianhang Ma. Most of all, I want to thank my girlfriend
Qiaona Sun for the constant support and encouragement.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, X.; Lo, C. Using a time series of satellite imagery to detect land use and land cover changes in the
Atlanta, Georgia metropolitan area. Int. J. Remote Sens. 2002, 23, 1775–1798. [CrossRef]

2. Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data
fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and
MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [CrossRef]

3. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.;
Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research.
Remote Sens. Environ. 2014, 145, 154–172. [CrossRef]

4. Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.;
Narasimhan, R.; Kim, D. Global characterization and monitoring of forest cover using Landsat data:
opportunities and challenges. Int. J. Digital Earth 2012, 5, 373–397. [CrossRef]

5. Zhang, F.; Zhu, X.; Liu, D. Blending MODIS and Landsat images for urban flood mapping. Int. J. Remote
Sens. 2014, 35, 3237–3253. [CrossRef]

6. Filipponi, F. Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study
on the 2017 Italy Wildfires. Remote Sens. 2019, 11, 622. [CrossRef]

7. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance:
Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218.

8. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion
model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

9. Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of
dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal
adaptive reflectance fusion model. Remote Sens. Environ. 2009, 113, 1988–1999. [CrossRef]

10. Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I. Assessing the accuracy of blending
Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A
framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [CrossRef]

11. Gao, F.; Hilker, T.; Zhu, X.; Anderson, M.; Masek, J.; Wang, P.; Yang, Y. Fusing Landsat and MODIS data for
vegetation monitoring. IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [CrossRef]

12. Zhao, Z.-Q.; He, B.-J.; Li, L.-G.; Wang, H.-B.; Darko, A. Profile and concentric zonal analysis of relationships
between land use/land cover and land surface temperature: Case study of Shenyang, China. Energy Build.
2017, 155, 282–295. [CrossRef]

13. Wu, P.; Shen, H.; Zhang, L.; Göttsche, F.-M. Integrated fusion of multi-scale polar-orbiting and geostationary
satellite observations for the mapping of high spatial and temporal resolution land surface temperature.
Remote Sens. Environ. 2015, 156, 169–181. [CrossRef]

http://dx.doi.org/10.1080/01431160110075802
http://dx.doi.org/10.1016/j.rse.2009.03.007
http://dx.doi.org/10.1016/j.rse.2014.02.001
http://dx.doi.org/10.1080/17538947.2012.713190
http://dx.doi.org/10.1080/01431161.2014.903351
http://dx.doi.org/10.3390/rs11060622
http://dx.doi.org/10.1016/j.rse.2010.05.032
http://dx.doi.org/10.1016/j.rse.2009.05.011
http://dx.doi.org/10.1016/j.rse.2013.02.007
http://dx.doi.org/10.1109/MGRS.2015.2434351
http://dx.doi.org/10.1016/j.enbuild.2017.09.046
http://dx.doi.org/10.1016/j.rse.2014.09.013


Appl. Sci. 2019, 9, 3693 18 of 19

14. Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat
and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [CrossRef]

15. Wang, J.; Huang, B. A spatiotemporal satellite image fusion model with autoregressive error correction
(AREC). Int. J. Remote Sens. 2018, 39, 6731–6756. [CrossRef]

16. Gao, F.; Anderson, M.; Daughtry, C.; Johnson, D. Assessing the variability of corn and soybean yields in central
Iowa using high spatiotemporal resolution multi-satellite imagery. Remote Sens. 2018, 10, 1489. [CrossRef]

17. Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204,
31–42. [CrossRef]

18. Huang, C.; Chen, Y.; Zhang, S.; Liu, R.; Shi, K.; Li, L.; Wu, J. Blending NPP-VIIRS and Landsat OLI Images for
Flood Inundation Monitoring; CSIRO: Canberra, Australia, 2015.

19. Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal fusion of multisource remote sensing data: literature
survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527.

20. Ma, J.; Zhang, W.; Marinoni, A.; Gao, L.; Zhang, B. An improved spatial and temporal reflectance unmixing
model to synthesize time series of landsat-like images. Remote Sens. 2018, 10, 1388. [CrossRef]

21. Chen, B.; Huang, B.; Xu, B. Comparison of spatiotemporal fusion models: A review. Remote Sens. 2015, 7,
1798–1835. [CrossRef]

22. Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based multisensor multiresolution image fusion.
IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [CrossRef]

23. Wu, M.; Niu, Z.; Wang, C.; Wu, C.; Wang, L. Use of MODIS and Landsat time series data to generate
high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model.
J. Appl. Remote Sens. 2012, 6, 063507.

24. Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat
and MODIS data fusion. Remote Sens. Environ. 2015, 156, 34–44. [CrossRef]

25. Belgiu, M.; Stein, A. Spatiotemporal image fusion in remote sensing. Remote Sens. 2019, 11, 818. [CrossRef]
26. Chen, B.; Huang, B.; Xu, B. A hierarchical spatiotemporal adaptive fusion model using one image pair. Int. J.

Digital Earth 2017, 10, 639–655. [CrossRef]
27. Huang, B.; Song, H. Spatiotemporal reflectance fusion via sparse representation. IEEE Trans. Geosci. Remote

Sens. 2012, 50, 3707–3716. [CrossRef]
28. Song, H.; Huang, B. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans.

Geosci. Remote Sens. 2012, 51, 1883–1896. [CrossRef]
29. Wu, B.; Huang, B.; Zhang, L. An error-bound-regularized sparse coding for spatiotemporal reflectance fusion.

IEEE Trans. Geosci. Remote Sens. 2015, 53, 6791–6803. [CrossRef]
30. Liu, X.; Deng, C.; Wang, S.; Huang, G.-B.; Zhao, B.; Lauren, P. Fast and accurate spatiotemporal fusion based

upon extreme learning machine. IEEE Geosci. Remote Sens. Lett. 2016, 13, 2039–2043. [CrossRef]
31. Kwan, C.; Budavari, B.; Gao, F.; Zhu, X. A hybrid color mapping approach to fusing MODIS and landsat

images for forward prediction. Remote Sens. 2018, 10, 520. [CrossRef]
32. Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing

satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [CrossRef]
33. Liu, M.; Yang, W.; Zhu, X.; Chen, J.; Chen, X.; Yang, L.; Helmer, E.H. An Improved Flexible Spatiotemporal

DAta Fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation
index time series. Remote Sens. Environ. 2019, 227, 74–89. [CrossRef]

34. Sousa, D.; Small, C. Global cross-calibration of Landsat spectral mixture models. Remote Sens. Environ. 2017,
192, 139–149. [CrossRef]

35. Small, C.; Milesi, C. Multi-scale standardized spectral mixture models. Remote Sens. Environ. 2013, 136,
442–454. [CrossRef]

36. Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 2004, 93, 1–17. [CrossRef]
37. Heinz, D.C. Fully constrained least squares linear spectral mixture analysis method for material quantification

in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [CrossRef]
38. Ma, W.-K.; Bioucas-Dias, J.M.; Chan, T.-H.; Gillis, N.; Gader, P.; Plaza, A.J.; Ambikapathi, A.; Chi, C.-Y. A

signal processing perspective on hyperspectral unmixing: Insights from remote sensing. IEEE Signal Proces.
Mag. 2013, 31, 67–81. [CrossRef]

39. Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation indices from
different sensor systems. Remote Sens. Environ. 2003, 88, 412–422. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2014.02.003
http://dx.doi.org/10.1080/01431161.2018.1466073
http://dx.doi.org/10.3390/rs10091489
http://dx.doi.org/10.1016/j.rse.2017.10.046
http://dx.doi.org/10.3390/rs10091388
http://dx.doi.org/10.3390/rs70201798
http://dx.doi.org/10.1109/36.763276
http://dx.doi.org/10.1016/j.rse.2014.09.012
http://dx.doi.org/10.3390/rs11070818
http://dx.doi.org/10.1080/17538947.2016.1235621
http://dx.doi.org/10.1109/TGRS.2012.2186638
http://dx.doi.org/10.1109/TGRS.2012.2213095
http://dx.doi.org/10.1109/TGRS.2015.2448100
http://dx.doi.org/10.1109/LGRS.2016.2622726
http://dx.doi.org/10.3390/rs10040520
http://dx.doi.org/10.1016/j.rse.2015.11.016
http://dx.doi.org/10.1016/j.rse.2019.03.012
http://dx.doi.org/10.1016/j.rse.2017.01.033
http://dx.doi.org/10.1016/j.rse.2013.05.024
http://dx.doi.org/10.1016/j.rse.2004.06.007
http://dx.doi.org/10.1109/36.911111
http://dx.doi.org/10.1109/MSP.2013.2279731
http://dx.doi.org/10.1016/j.rse.2003.08.010


Appl. Sci. 2019, 9, 3693 19 of 19

40. Zurita-Milla, R.; Kaiser, G.; Clevers, J.; Schneider, W.; Schaepman, M. Downscaling time series of MERIS full
resolution data to monitor vegetation seasonal dynamics. Remote Sens. Environ. 2009, 113, 1874–1885. [CrossRef]

41. Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. An improved high spatial and temporal data
fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery. Inf.
Fus. 2016, 31, 14–25. [CrossRef]

42. Dubrule, O. Comparing splines and kriging. Comput. Geosci. 1984, 10, 327–338.
43. Chen, X.; Li, W.; Chen, J.; Rao, Y.; Yamaguchi, Y. A combination of TsHARP and thin plate spline interpolation

for spatial sharpening of thermal imagery. Remote Sens. 2014, 6, 2845–2863. [CrossRef]
44. Jarihani, A.; McVicar, T.; Van Niel, T.; Emelyanova, I.; Callow, J.; Johansen, K. Blending Landsat and

MODIS data to generate multispectral indices: A comparison of “Index-then-Blend” and “Blend-then-Index”
approaches. Remote Sens. 2014, 6, 9213–9238. [CrossRef]

45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: from error visibility to
structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef]

46. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2009.04.011
http://dx.doi.org/10.1016/j.inffus.2015.12.005
http://dx.doi.org/10.3390/rs6042845
http://dx.doi.org/10.3390/rs6109213
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	Definitions and Notations 
	Theoretical Basis of EFSDAF 
	Endmember Determination and Spectral Unmixing for Landsat Images at TB  
	Temporal Prediction (FTP  ) for No Land Cover Change from TB  to TP  
	Spatial Prediction (FSP ) for Land Cover Change at TP  
	Residual Distribution by Using a New Residual Index (RI) 
	Final Prediction of the Landsat-Like Image Using Neighborhood in a Sliding Window 


	Testing Experiment 
	Study Area and Data 
	Comparison and Evaluation of EFSDAF with STARFM, STRUM, and FSDAF 

	Results 
	Experiment in Gradual Change Area (Vegetation Phenology) 
	Experiment in Abrupt Change Area (Flood) 

	Discussion 
	Improvements of EFSDAF Compared with FSDAF 
	Influence of Endmember Variability on EFSDAF 
	The Effect of Input Images on the Predicted Values of EFSDAF 
	Applications of EFSDAF to other Remote Sensing Products and Sensors 
	Limitations of EFSDAF 

	Conclusions 
	References

