
applied
sciences

Article

On Video Analysis of Omnidirectional Bee Traffic:
Counting Bee Motions with Motion Detection and
Image Classification

Vladimir Kulyukin * and Sarbajit Mukherjee
Department of Computer Science, Utah State University, 4205 Old Main Hill, Logan, UT 84322-4205, USA
* Correspondence: vladimir.kulyukin@usu.edu

Received: 2 May 2019; Accepted: 29 August 2019; Published: 7 September 2019
����������
�������

Abstract: Omnidirectional bee traffic is the number of bees moving in arbitrary directions in close
proximity to the landing pad of a given hive over a given period of time. Video bee traffic analysis has
the potential to automate the assessment of omnidirectional bee traffic levels, which, in turn, may lead
to a complete or partial automation of honeybee colony health assessment. In this investigation,
we proposed, implemented, and partially evaluated a two-tier method for counting bee motions
to estimate levels of omnidirectional bee traffic in bee traffic videos. Our method couples motion
detection with image classification so that motion detection acts as a class-agnostic object location
method that generates a set of regions with possible objects and each such region is classified by
a class-specific classifier such as a convolutional neural network or a support vector machine or
an ensemble of classifiers such as a random forest. The method has been, and is being iteratively
field tested in BeePi monitors, multi-sensor electronic beehive monitoring systems, installed on live
Langstroth beehives in real apiaries. Deployment of a BeePi monitor on top of a beehive does not
require any structural modification of the beehive’s woodenware, and is not disruptive to natural
beehive cycles. To ensure the replicability of the reported findings and to provide a performance
benchmark for interested research communities and citizen scientists, we have made public our
curated and labeled image datasets of 167,261 honeybee images and our omnidirectional bee traffic
videos used in this investigation.

Dataset: The three image datasets (BEE1, BEE2_1S and BEE2_2S) used in this investigation are publicly
available at https://usu.box.com/s/0a5yurmn7ija15cp236awa1re65mbcnr, https://usu.box.com/s/
p7y8v95ot9u9jvjbbayci61no3lzbgx3 and https://usu.box.com/s/3ccizd5b1qzcqcs4t0ivawmrxbgva7ym,
respectively. The omnidirectional bee traffic videos and the corresponding human bee motion counts
are included in the Supplementary Materials.

Keywords: electronic beehive monitoring; video processing; deep learning; image classification;
machine learning; convolutional neural networks; bee traffic assessment

1. Introduction

Honeybees (Apis mellifera) provide approximately 14% of the overall pollination services in
agricultural production [1]. Honeybee traffic, i.e., the number of bees that move in close proximity
to a beehive per a given time period, is an important indicator of how bee colonies react to foraging
opportunities, weather events, pests, and diseases. For example, pollen supply affects brood rearing
rates [2] and worker longevity [3], both of which may, in turn, affect honeybee traffic. Many commercial
and amateur beekeepers watch honeybee traffic near their hives to ascertain the state of their colonies,
because honeybee traffic carries information on colony behavior and phenology. Honeybee traffic is an
indicator of colony exposure to stressors such as failing queens, predatory mites, and airborne toxicants.

Appl. Sci. 2019, 9, 3743; doi:10.3390/app9183743 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://usu.box.com/s/0a5yurmn7ija15cp236awa1re65mbcnr
https://usu.box.com/s/p7y8v95ot9u9jvjbbayci61no3lzbgx3
https://usu.box.com/s/p7y8v95ot9u9jvjbbayci61no3lzbgx3
https://usu.box.com/s/3ccizd5b1qzcqcs4t0ivawmrxbgva7ym
http://dx.doi.org/10.3390/app9183743
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/18/3743?type=check_update&version=2

Appl. Sci. 2019, 9, 3743 2 of 27

While experienced beekeepers can arguably tell which honeybee traffic patterns are produced by
stressed colonies, they may not always be physically present to observe them in time to administer
appropriate treatment due to fatigue or problems with logistics. The cost of transportation is also a
factor, as many beekeepers drive longer distances to their far flung apiaries due to ever increasing
urban and suburban sprawl. Insomuch as beekeepers cannot monitor their hives continuously,
electronic beehive monitoring (EBM) can help extract valuable information on honeybee colonies
without invasive hive inspections or transportation costs [4,5].

Deep learning (DL) and computer vision (CV) have so far remained relatively unexplored
in EBM [4,6–9]). However, several researchers have used both DL and CV in their projects.
Rodriguez et al. [10] proposed a system for pose detection and tracking of multiple insects and
animals, which they used to monitor the traffic of honeybees and mice. The system uses a deep neural
network to detect and associate detected body parts into whole insects or animals. The network
predicts a set of 2D confidence maps of present body parts and a set of vectors of part affinity fields that
encode associations detected among the parts. Greedy inference is subsequently used to select the most
likely predictions for the parts and compiles the parts into larger insects or animals. No details appear
to be given on what hive was used in the experiments. From the pictures given in the publication,
it appears that the hive used in the experiments is a smaller laboratory hive, not a standard Langstroth
or Dadant hive used by many beekeepers worldwide. The system requires a structural modification
of the beehive in that a transparent acrylic plastic cover located on top of the ramp ensures the bees
remain in the focal plane of the camera. The system uses trajectory tracking to distinguish entering and
leaving bees, which works reliably under smaller bee traffic levels. The dataset consists of 100 fully
annotated frames, where each frame contains 6–14 honeybees. Since the dataset does not appear to be
public, the experimental results cannot be independently replicated.

Babic et al. [11] proposed a system for pollen bearing honeybee detection in surveillance videos
obtained at the entrance of a hive. The system’s hardware includes a specially designed wooden
box with a raspberry pi camera module inside. The box is mounted on the front side of a standard
hive above the hive entrance. There is a glass plate placed on the bottom side of the box, 2 cm above
the flight board, which forces the bees entering or leaving the hive to crawl a distance of ≈11 cm.
Consequently, the bees in the field of view of the camera cannot fly. The training dataset contains
50 images of pollen bearing honeybees and 50 images of honeybees without pollen. The test dataset
consists of 354 honeybee images. Since neither dataset appears to be public, the experimental results
cannot be independently replicated.

DL methods have been successfully applied to image classification [12–14], speech recognition
and audio processing [15,16], music classification and analysis [17–19], environmental sound
classification [20], and bioinformatics [21,22]. Convolutional neural networks (ConvNets) are DL
feedforward neural networks that have been shown to generalize well on large quantities of digital
data [23]. In ConvNets, filters of various sizes are convolved with a raw input signal to obtain a
stack of filtered signals. This transformation is called a convolutional layer. The size of this layer
is equal to the number of convolutional filters. The convolved signals are typically normalized.
A standard normalization choice is non-linear activation functions such as the rectified linear unit
(ReLU) that converts all negative values to 0s [24–26]. The size of the output signal from a layer can be
downsampled with a maxpooling layer, where a window is shifted in steps, called strides, across the
input signal retaining the maximum value from each window. A fully connected (FC) layer treats a
stack of processed signals as a 1D vector so that each value in the output from a previous layer is
connected via a synapse (a weighted connection that transmits a value from one unit to another) to each
node in the next layer. In addition to these layers, there can be custom layers that implement arbitrary
functions to transform signals between consecutive layers.

Krizhevsky, Sutskever, and Hinton [12] did the ground breaking research on applying deep
ConvNet architectures to large image datasets that rekindled interest in deep neural networks.
The researchers trained a deep ConvNet to classify 1.2 million images in the ImageNet LSVRC-2010

Appl. Sci. 2019, 9, 3743 3 of 27

content into 1000 different classes. The network consisted of five convolutional layers, some of
which were followed by maxpooling layers, and three FC layers with a final 1000-way softmax layer
and dropouts [27] of various rates. The network consisted of 60 million parameters and included
650,000 neurons. Variants of this architecture still dominate the image classification literature and
have so far yielded the best results on such publicly available datasets as MNIST [23], CIFAR [28],
and ImageNet [29].

A standard way to improve the performance of deep ConvNets is by increasing the number of
layers and the number of neurons in each layer. For example, Szegedy et al. [30] proposed a deep
ConvNet architecture, called Inception, that improves the utilization of the computational resources
inside the network. The architecture is implemented in GoogLeNet, a deep network with 22 layers.
This network approximates the expected optimal sparse structure by using dense building blocks
available within the network.

A recent development in the state of the art object recognition with ConvNets is the Regions
with ConvNets (R-CNN) [31,32]. Given an image, an R-CNN system uses a class-independent object
location method (e.g., selective search [33]) to generate a set of region proposals, computes a set
of features for each region with a ConvNet, and then classifies these features with a class-specific
classifier such as a support-vector machine (SVM) or another ConvNet. YOLO [34] is an object
detection system that, instead of applying trained models to multiple locations and scoring them for
objects, applies a single neural network to entire images. The network itself divides the image into
sub-images and calculates bounding boxes and probabilities for different locations. SSD [35] is another
approach to object classification by neural networks that starts with a set of pre-computed, fixed size
bounding boxes (called priors) that closely match the distribution of the ground truth object boxes
and regresses the priors to the ground truth boxes. Tiny SSD [36] is a recent development of the SSD
multi-box approach. It is a deep ConvNet based on SSD for real-time embedded object detection. It is
composed of an optimized, non-uniform Fire sub-network stack and a non-uniform sub-network stack
of optimized SSD-based auxiliary convolutional feature layers for minimizing model size without
negatively affecting object detection performance.

In this article, we contribute to the body of research on object recognition in videos by proposing
a two-tier system that couples motion detection with image classification. Unlike R-CNN systems that
use static image features to find candidate regions, our system uses motion to extract possible object
regions and does not extract any additional features from the identified regions with other ConvNets.
Instead, motion detection functions as a class-agnostic object location method that generates a set
of regions with possible objects. Each region is subsequently classified by a class-specific classifier
(e.g., a ConvNet or an SVM) or an ensemble of classifiers such as a random forest (RF) [37]. Our system
is agnostic to motion detection or image classification algorithms in that different motion detection
and image classification algorithms can be coupled.

In this investigation, we focus on designing and evaluating different ConvNet architectures to
classify candidate regions identified by motion detection algorithms and compare their performance
with RFs and linear SVMs. Specifically, we experimented with coupling three motion detection
algorithms available in OpenCV 3.0.0 (KNN [38], MOG [39], and MOG2 [40]) with manually and
automatically designed ConvNets, support vector machines, and random forests to classify objects
in detected motion regions. We contribute to the body of research on EBM by experimentally
demonstrating that computer vision, which has so far not been actively included in EBM systems
(e.g., [4,6–9]), can be put to productive use in estimating omnidirectional bee traffic levels through bee
motion counts.

A long-term objective of this project is to develop an open source, open design, and open
data citizen science platform of software tools and hardware designs for researchers, practitioners,
and citizen scientists worldwide who want to monitor their beehives or use their beehives as
environmental monitoring stations [41]. Our approach is based on the following four principles.
First, the EBM hardware should be not only open design but also 100% replicable, which we ensure

Appl. Sci. 2019, 9, 3743 4 of 27

by using exclusively readily available off-the-shelf hardware components [42,43]. Second, the EBM
software should also be 100% replicable, which we achieve by using and building upon only open
source resources. Third, the project’s hardware should be compatible with standard beehive models
used by many beekeepers worldwide (e.g., the Langstroth beehive [44] or the Dadadant beehive [45])
without any structural modifications of beehive woodenware. Fourth, the sacredness of the bee
space must be preserved in that the deployment of EBM sensors should not be disruptive to natural
beehive cycles.

To ensure the replicability of our findings and to establish performance benchmarks for research
communities, citizen scientists, and apiarists, we have made public our three manually labeled and
curated image datasets (BEE1 [46], BEE2_1S [47], and BEE2_2S [48]) used in this investigation. We have
also included in the Supplementary Materials the omnidirectional bee traffic videos on which we
partially evaluated how closely the bee motion counts returned by the proposed system approximate
the human bee motion counts.

The remainder of this article is organized as follows. In Section 2, we describe the hardware and
software of the BeePi system, our multi-sensor EBM monitor, where we implemented our two-tier
method for counting bee motions to estimate levels of omnidirectional bee traffic in bee traffic videos
from live beehives. In Section 3, we describe our experiments on training, testing, and validating
different classifiers used in the second tier of our method. In Section 4, we present a preliminary
evaluation of the whole system on several bee traffic videos. In Section 5, we discuss our results and
outline several possible directions of our future work. In Section 6, we present our conclusions.

2. Materials and Methods

2.1. Hardware

All video data for this investigation were captured by BeePi monitors, multi-sensor EBM
systems we designed and built in 2014 [49], and have since been iteratively modifying [5,42,43,50,51].
Each BeePi monitor consists of a raspberry pi 3 model B v1.2 computer, a pi T-Cobbler, a breadboard,
a waterproof DS18B20 temperature sensor, a pi v2 8-megapixel camera board, a v2.1 ChronoDot
clock, and a Neewer 3.5 mm mini lapel microphone placed above the landing pad. All hardware
components fit in a single Langstroth super (see Figures 1–3). BeePi units operate either on the grid or
on rechargeable batteries.

BeePi monitors have so far had five field deployments. The first deployment was in Logan,
UT (September 2014) when a single BeePi monitor was placed into an empty hive and ran on solar
power for two weeks. The second deployment was in Garland, UT (December 2014–January 2015),
when a BeePi monitor was placed in a hive with overwintering honeybees and successfully operated
for nine out of the fourteen days of deployment on solar power to capture ≈200 MB of data. The third
deployment was in North Logan, UT (April 2016–November 2016) where four BeePi monitors were
placed into four beehives at two small apiaries and captured ≈20 GB of data. The fourth deployment
was in Logan and North Logan, UT (April 2017–September 2017), when four BeePi units were placed
into four beehives at two small apiaries to collect ≈220 GB of audio, video, and temperature data [50].
The fifth deployment started in April 2018, when four BeePi monitors were placed into four beehives
at an apiary in Logan, UT. This deployment is still ongoing, because in, September 2018, we made
the decision to keep the monitors deployed through the winter to stress test the equipment in the
harsh weather conditions of northern Utah. We have so far collected over 400 GB of video, audio,
and temperature data. Data collection software is written in Python 2.7.9 [52].

Appl. Sci. 2019, 9, 3743 5 of 27

Figure 1. A BeePi monitor box on top of a Langstroth beehive that consists of 3 supers; the camera is
protected against the elements with a specially constructed wooden box. More hardware details are
available at [42,43].

Figure 2. A BeePi monitor consists of a raspberry pi 3 model B v1.2 computer, a pi T-Cobbler,
a breadboard, a waterproof DS18B20 temperature sensor, a pi v2 8-megapixel camera board, a v2.1
ChronoDot clock, and a Neewer 3.5 mm mini lapel microphone placed above the landing pad.
More hardware details are available at [42,43].

Appl. Sci. 2019, 9, 3743 6 of 27

Figure 3. A closer look at the camera looking down on the landing pad. More hardware details
are available at [42,43]. When the monitor is placed on the third super, as shown in the picture,
the monitor’s camera is ≈85 cm above the landing pad and the camera’s field of view in this picture is
≈200 cm high and ≈320 cm wide.

2.2. Bee Motion Counting and Image Data

2.2.1. Bee Motion Counting

In this investigation, we focused on training and evaluating three types of classifiers—
automatically and manually designed ConvNets, RFs, and linear SVMs—to classify motion regions.
The curation of the image datasets, described in detail in the next two sections, is best construed
in the context of the BeePi bee motion counting algorithm shown in Figure 4 and illustrated in
the performance videos in the Supplementary Materials. Once mounted on top of a Langstroth
beehive (see Figure 1), a BeePi monitor captures a 30-s video every 15 min from 8:00 to 21:00 at a
resolution of 360 × 240 or 1920 × 1080 pixels. All frames from each captured video are processed for
motion detection. We experimented with three motion detection algorithms available in OpenCV
3.0.0: KNN [38], MOG [39], and MOG2 [40]. Although all three algorithms performed on par,
we experimentally found that MOG2 worked slightly better than either KNN or MOG, because it was
less sensitive to shadows [51,53].

Figure 4. Video processing in BeePi. More details are available in the performance videos in the
supplementary materials.

Appl. Sci. 2019, 9, 3743 7 of 27

The output of the motion detection module is a set of image regions centered around detected
motion points. We call these image regions motion regions. In Figure 4, the image with the subtitle
“Motion Regions” shows detected motion regions as yellow squares. The yellow squares depict
the cropped region boundaries around each detected motion point. The size of each square is a
height-dependent parameter of the algorithm.

To understand how we chose the values of the height parameter, it is helpful to understand the
basic beekeeping cycle in a Langstroth hive. Initially, after a beekeeper hives a fresh bee package in
a Langstroth beehive, the hive consists of a single deep super (a rectangular wooden box 50.48 cm
long, 41.28 cm wide and 24.45 cm high) with ten empty frames where the newly hived colony starts to
develop. In a hive with a single deep super, a BeePi monitor is placed on top of that super. As the
bees fill the frames in the first deep super with comb, pollen, and brood, the beekeeper places a second
deep super with another ten frames on top of the first deep super to give the bee colony more space to
expand and grow. After the second super is placed on top of the first one, the BeePi monitor is placed
on top of the second super. While Langstoth hives with healthy colonies can potentially grow to be
four or even five supers high, we confined the scope of this investigation to hives with one or two
supers. We refer to the data captured from BeePi monitors on first supers as 1-super data and to the data
captured from BeePi monitors on second supers as 2-super data. When the monitor is placed on a single
super, the monitor’s camera is ≈35 cm above the hive’s landing pad and the camera’s field of view is
≈50 cm high and ≈80 cm wide. When the monitor is placed on the second super, the monitor’s camera
is ≈60 cm above the landing pad and the camera’s field of view is ≈100 cm high and ≈160 cm wide.

When the BeePi monitor is placed on the first super (i.e., the camera is ≈35 cm above the landing
pad), the size of each motion region is set to 150 × 150 pixels (see yellow squares in Figure 5).
We experimentally found this size to be optimal in that, when cropped, 150 × 150 motion regions
had a higher probability of containing at least one full-size bee than the other motion region sizes
we tested. Specifically, to discover this size, we took samples of n × n motion regions from 1-super
videos, where n ranged from 50 to 250 in increments of 10, and manually counted the percentage
of samples containing at least one full-size bee for each sample size. The size of 150 × 150 had the
highest percentage of regions with at least one full-size bee. When the monitor is placed on the second
super (i.e., the camera is ≈60 cm above the landing pad), the size of each motion region is set to
90 × 90 pixels. This size was also experimentally found to be optimal in the same fashion as in the case
of the single super in that 90 × 90 motion regions from 2-super videos contained the highest number
of regions with at least one full-size bee.

Figure 5. Three sample frames of the landing pad of a Langstroth beehive captured from a BeePi
monitor’s camera mounted on top of the first deep super. The yellow squares mark 150 × 150 regions
with detected motion. The performance videos in the Supplementary Materials show how our system
detects bee motions in real time.

Each detected motion region is classified by a trained classifier (e.g., a ConvNet, an RF, or an
SVM) into two classes—BEE or NO-BEE. When a detected motion region is classified by a ConvNet,

Appl. Sci. 2019, 9, 3743 8 of 27

it is resized to fit the dimensions of the input layer of a particular ConvNet (i.e., 32 × 32 pixels
or 64 × 64 pixels). In the case of an RF or an SVM, the size of each detected motion region is left
unchanged. In Figure 4, two motion regions are shown under the title “Motion Region”. The upper
region contains a bee while the bottom one does not. Similarly, in Figure 5, some motion regions
contain bees or parts thereof while others do not. For each video, the BeePi video processing algorithm
returns the number of omnidirectional bee motions within the camera’s field of view over a 30-s period.
We call these numbers bee motion counts and use them as estimates of omnidirectional bee traffic levels.

Algorithm 1 outlines the pseudocode of our bee motion counting method described above.
On Line 2, the video is segmented into frames. In each frame, all motions are detected on Line
3. On Lines 4–13, each motion point is boxed to become a motion region, resized when necessary,
classified by a classifier, and the total bee motion count is increased if a bee is detected in the motion
region. On Line 15, the count of detected bee motions is returned.

Algorithm 1 CountBeeMotions (Video V, MotionDetector MD, Classifier CL, int H, and int W).

1: BeeMotionCount = 0;
2: For each frame F in V Do
3: MotionPoints = Use MD to detect motions in F;
4: For each motion point P in MotionPoints Do
5: MotionRegion = crop H x W box around P;
6: If CL is a ConvNet Then
7: MotionRegion = Resize MotionRegion to the size of CL’s input layer
8: End If
9: CLR = Use CL to classify Box;

10: If CLR == BEE Then
11: BeeMotionCount = BeeMotionCount + 1;
12: End If
13: End For
14: End For
15: Return BeeMotionCount;

2.2.2. BEE1 Dataset

The first dataset of 54,382 labeled images for this investigation, henceforth referred to as BEE1,
was obtained from the videos captured by four BeePi monitors placed on four Langstroth hives
with Italian honeybee colonies. Two monitors were deployed in an apiary in North Logan, UT, USA
(41.7694◦ N, 111.8047◦ W) and the other two in an apiary in Logan, UT, USA (41.7370◦ N, 111.8338◦ W)
from April 2017 to September 2017. The two apiaries were approximately 17 km apart. All four
honeybee colonies were hived by the first author in late April 2017. We refer to the two hives with
BeePi monitors in the first apiary (North Logan) as M1

17 and M2
17 and to the two hives with BeePi

monitors in the second apiary (Logan) as M3
17 and M4

17. (The superscripts refer to monitor numbers;
the subscripts refer to year 2017.) M1

17 and M2
17 were approximately 10 m apart with M1

17 facing west
and M2

17 facing east. M1
17 was under a tree immediately to the north of it and received sunlight only

from 15:00 to 18:30. M2
17 had no trees around it. M3

17 and M4
17 were completely under trees with only

occasional sun rays penetrating the foliage.
Each video had a resolution of 360 × 240 with a frame rate of ≈25 frames per second. We randomly

selected 40 videos from June 2017 and July 2017 and then sampled 400 frames from each video.
Each selected frame was segmented into 32 × 32 images by randomly selecting the start and end
coordinates of each region. This image segmentation process generated a total of 54,382 32 × 32 images.
We used this image curation process, because, in 2017, motion detection was not yet integrated into
the BeePi video analysis algorithm. Instead, a window-sliding approach was used on each frame.

We obtained the ground truth classification for BEE1 by manually labeling the 54,382 32 × 32
images with two categories—BEE (if it contained at least one bee) or NO-BEE (if it contained no bees
or only a small part of a bee). The image dataset from the apiary in North Logan, UT (i.e., M1

17 and
M2

17) was used for validation. The image dataset from the apiary in Logan, UT (i.e., from M3
17 and

M4
17) was used for model training and testing. In BEE1, no differentiation was made between 1-super

Appl. Sci. 2019, 9, 3743 9 of 27

and 2-super images. Figure 6 shows a sample of images from BEE1. There were 19,082 BEE and
19,057 NO-BEE images randomly selected for training, 6362 BEE and 6362 NO-BEE images randomly
selected for testing, and 1801 BEE and 1718 NO-BEE images randomly selected for validation.

Figure 6. A sample of images from BEE1. The first four rows include images classified as BEE. The last
three rows consist of images classified as NO-BEE.

We executed the MANOVA [54] analysis of BEE1 to determine whether its training (class 0),
testing (class 1), and validation (class 2) images are statistically significantly different. We used
the following image features as independent variables in our analysis: contrast [55], energy [56],
and homogeneity [57]. The dependent variables were class 0, class 1, and class 2. The MANOVA
analysis gave the Pillai coefficient of 0.018588, the F value of 107.47, and Pr(> F) < 2.2 × 10−16.
Since the p-value is <0.05, the training, testing and validation datasets of BEE1 are significantly
different in terms of contrast, energy, and homogeneity.

We would like to note in passing that, while some publications that evaluate various data
classification models split their data into training and testing datasets, we prefer to split our data into
training, testing, and validation datasets that are statistically significantly different from each other
according to the MANOVA analysis. This three-way splitting of the data lowers the chances of the
training and testing datasets having a non-empty intersection with the validation dataset. The training
and testing datasets are used for model training and testing (i.e., evaluation). The validation dataset is
used exclusively for model selection. We also ensure that the data for the training and testing datasets
and the data for the validation datasets come from different sources (i.e., different hives).

2.2.3. BEE2 Dataset

The second dataset of 112,879 labeled images for this investigation, henceforth referred to as
BEE2, was obtained from the videos captured by four BeePi monitors on four Langstroth beehives
with Carniolan honeybee colonies in Logan, UT, USA (41.7370◦ N, 111.8338◦ W) in May and June 2018.
All colonies were hived in late April 2018 by the first author. We refer to the four hives with BeePi
monitors as M1

18, M2
18, M3

18, and M4
18. (The superscripts denote monitor numbers; the subscripts refer

to year 2018.) M1
18 and M2

18 were approximately 10 m apart with M1
18 facing south and M2

18 facing
southwest. South-facing M3

18 was approximately 30 m north of M1
18 and M2

18. M4
18 was approximately

20 m west of M3
18 and faced south-west. M1

18 and M2
18 were completely under trees with only occasional

Appl. Sci. 2019, 9, 3743 10 of 27

sun rays penetrating the foliage. M3
18 was under the sun from 9:00 to approximately 13:00. M4

18 received
direct sunlight from approximately 15:00 to 16:30.

A total of 5509 1-super videos and 5460 2-super videos were captured. All videos had a resolution
of 1920 × 1080 pixels. The 1-super videos were captured from 5 May 2018 to the first week of June 2018,
when the second supers were mounted on all four beehives and the BeePi monitors started capturing
videos from the second deep supers. The 2-super videos were captured from the first week of June
2018 to the end of the first week of July 2018, when the third supers were mounted on all four beehives.

We randomly selected 50 1-super videos and another 50 2-super videos. The ground truth was
obtained by using the MOG2 algorithm to automatically extract 58,201 150 × 150 detected motion
regions from the 1-super videos and 54,678 90 × 90 detected motion regions from the 2-super videos.
We manually labeled each region as BEE (if it contained at least one bee) or NO-BEE (if it contained
no bees or only a small part of a bee). Figures 7 and 8 show samples of 1-super and 2-super images,
respectively. We refer to the 1-super image dataset as BEE2_1S and to the 2-super image dataset as
BEE2_2S. Table 1 gives the exact numbers of labeled images in BEE2_1S and BEE2_2S used for training,
testing, and validation. In both BEE2_1S and BEE2_2S, the images used for training and testing came
from M1

18 and M2
18, while the validation images came from M3

18 and M4
18.

We executed the MANOVA [54] analyses of BEE2_1S and BEE2_2S to determine whether its
training (class 0), testing (class 1), and validation (class 2) images are statistically significantly
different. We used the following image features as independent variables: contrast [55],
energy [56], and homogeneity [57]. The dependent variables were class 0, class 1, and class 2.
For BEE2_1S, the MANOVA analysis gave the Pillai coefficient of 0.28849, the F value of 168.33,
and Pr(> F) < 2.2 × 10−16. For BEE2_2S, the MANOVA analysis gave the Pillai coefficient of 0.067891,
the F value of 35.091, and Pr(> F) < 2.2 × 10−16. Thus, since the p-value is <0.05 for both datasets,
in both BEE2_1S and BEE2_2S, the training, testing, and validation images are significantly different
from each other in terms of contrast, energy, and homogeneity.

Figure 7. A sample of 1-super images from BEE2 (BEE2_1S). The first four rows include images
classified as BEE. The last three rows consist of images classified as NO-BEE.

Appl. Sci. 2019, 9, 3743 11 of 27

Figure 8. A sample of 2-super images from BEE2 (BEE2_2S). The first four rows include images
classified as BEE. The last three rows consist of images classified as NO-BEE.

Table 1. Numbers of images in BEE2_1S and BEE2_2S (collectively referred to as BEE2) used for
training, testing, and validation.

Train/Test (BEE) Train/Test (NO-BEE) Validate (BEE) Validate (NO-BEE) Total

BEE2_1S 11,094 36,143 8298 2666 58,201
BEE2_2S 17,176 21,310 6823 9369 54,678

Total 28,270 57,453 15,121 12,035 112,879

2.3. Greedy Auto-Design of Convolutional Networks

A recent trend in the DL literature is the automation of designing DL architectures (e.g., [28,58]).
The proponents of this approach argue that since successful DL models require considerable
architecture engineering, it is worth it to automate DL model design for specific datasets.
A disadvantage of this approach for low budget research projects or citizen scientist initiatives
is the requirement of continuous access to considerable computational resources. For example,
Baker et al. [58] used a Q-learning training procedure to develop constrained ConvNet architectures for
a variety of image datasets on four GPUs for 8–10 days. Zoph et al. [28] used their Neural Architecture
Search (NAS) framework to learn transferable DL architectures for CIFAR-10 and ImageNet on
500 GPUs over four days resulting in 2000 GPU-hours.

Since our research group had access to only one GPU for this investigation, we designed a
multi-generational greedy grid search (GS) algorithm to automatically look for best-performing
ConvNets by restricting the number of the DL architectural parameters and their value ranges
and taking the hyperparameter values from the top N ConvNets, for different values of N given
below, from the previous generation, where the generation number is the number of hidden layers
(i.e., the number of convolutional and maxpooling layer pairs). Instead of exhaustively searching
through each possible parameter value, as is done in standard grid search, our algorithm searches the
space of ConvNet architectures constrained by the number of convolutional and maxpooling layer
pairs (i.e., hidden layers), filter sizes, and the number of nodes in each hidden layer. An addition
of a convolutional layer is always followed by an addition of a maxpooling layer with a kernel size
of 2. All hidden layers use the ReLU activation function and the Adam optimizer [59]. The learning
rate is set to 0.001; the loss function is the categorical cross-entropy that measures the probability

Appl. Sci. 2019, 9, 3743 12 of 27

error in classification tasks with mutually exclusive classes. Henceforth we refer to each ConvNet
auto-designed through our greedy GS algorithm as ConvNetGS-x, where x denotes the number of
hidden layers.

In searching the ConvNet architectures with one hidden layer, the number of nodes in the
convolutional layer of the hidden layer varied from 1 to 32 and the filter size from 1 to 16. Algorithm 2
gives the pseudocode of our procedure for auto-designing ConvNets with a single hidden layer that
consists of one convolutional layer followed by one maxpooling layer. On Line 3, an input layer of
a specific size is created. On Lines 4–6, convolutional, maxpooling, and output layers are created.
On Line 7, a ConvNet is created that consists of the input layer, the hidden layer (i.e., the convolutional
layer followed by the maxpooling layer), and the output layer. The activation function in all layers of the
newly created ConvNet is set to ReLU. The learning rate of the ConvNet is set to 0.001. The ConvNet’s
optimizer function is set to adam. Each created ConvNet is then persisted on the disk. After the
ConvNets are created and persisted on the disk, each of them is inflated from the disk, trained,
evaluated, and persisted along with its validation performance, which is shown on Lines 13–15
in Algorithm 2.

Algorithm 2 TrainGen1ConvNets (TrainSet TRS, TestSet TTS, ValidSet VST, and int NE).

1: For number of nodes 1 ≤ N ≤ 32 Do
2: For filter size 1 ≤ S ≤ 16 Do
3: IL = create input layer of size I × I, where I = 32 or I = 64;
4: CL = create convolutional layer with N nodes and filter size S;
5: ML = create maxpooling layer with kernel size 2;
6: OL = create an output layer with two nodes: BEE and NO-BEE;
7: NN1 = create a ConvNet that consists of IL, CL, ML, OL;
8: Set NN1’s activation function to ReLU;
9: Set NN1’s learning rate to 0.001;

10: Set NN1’s optimizer function to adam;
11: Persist NN1 on disk;
12: End For
13: Train and test each persisted NN1 on TRS and TTS for number of epochs given by NE;
14: Validate each NN1 on VST;
15: Perist NN1 and its validation results;
16: End For

In the ConvNet architectures with two hidden layers, for the first hidden layer, the numbers of
hidden nodes and filter sizes were taken from the Top 15 best performing one-hidden-layer models.
In the second hidden layer, the number of hidden nodes in the convolutional layer ranged from 34 to 65
and the filter size from 7 to 12. Algorithm 3 shows the pseudocode of our procedure for auto-designing
ConvNets with two hidden layers. On Line 1, 15 top performing one-layer ConvNets are taken for a
given validation dataset. In the outer for loop that starts on line 2, an input layer is created of a given
size and the hidden layer’s architecture is taken from one of the top performing one-layer ConvNets.
In the two nested for loops on Lines 5–14, two-layer ConvNets are created one by one. The architecture
of the first hidden layer comes from a top performing single layer ConvNet. The parameters for the
second hidden layer are defined by the specified ranges for the number of nodes and for the filter size.
Each created ConvNet is persisted for later training, testing, and validation. On Lines 18–20, each
newly created two-layer ConvNet is trained, tested, validated, and persisted with its trained weights
and validation results.

Appl. Sci. 2019, 9, 3743 13 of 27

Algorithm 3 TrainGen2ConvNets (TrainSet TRS, TestSet TTS, ValidSet VST, and int NE).

1: NN1List = Take Top 15 best performing NN’s with 1 hidden layer;
2: For each NN1 in NN1List Do
3: IL = create an input layer of size I × I, where I = 32 or I = 64;
4: HL = take NN1’s hidden layer;
5: For number of nodes 34 ≤ N ≤ 65 Do
6: For filter size 7 ≤ S ≤ 12 Do
7: CL2 = create convolution layer with N nodes and filter size S;
8: ML2 = create a maxpooling layer with a kernel size 2;
9: OL2 = create an output layer with 2 nodes: BEE and NO-BEE;

10: NN2 = create a ConvNet that consists of IL, HL, CL2, ML2, OL2;
11: Set NN2’s activation function to ReLU;
12: Set NN2’s learning rate to 0.001;
13: Set NN2’s optimizer function to adam;
14: Persist NN2;
15: End For
16: End For
17: End For
18: Train and test each persisted NN2 on TRS and TST for number of epochs given by NE;
19: Validate NN2 on VST;
20: Perist NN2 and its validation results;

The algorithms for auto-designing deeper ConvNets are similar to Algorithms 1 and 2, and are not
shown due to space considerations. In each deeper ConvNet with L hidden layers, the architectures
of the previous L − 1 layers are taken from the top N performing ConvNets with L − 1 hidden
layers. Thus, in the ConvNet architectures with three hidden layers, for the first and second hidden
layers, the numbers of hidden nodes and filter sizes were taken from the Top 15 best performing
two-hidden-layer models. For the third layer, the number of nodes in the convolutional layer ranged
from 65 to 130 and the filter size from 7 to 12. In the ConvNet architectures with four hidden layers,
for the first, second and third hidden layers, the numbers of hidden nodes and filter sizes were taken
from the Top 10 best performing three-hidden-layer models. The number of hidden nodes in the fourth
layer ranged from 120 to 300 and the filter size from 7 to 12. In the ConvNet architectures with five
hidden layers, for the first, second, third and fourth hidden layers, the numbers of hidden nodes and
filter sizes were taken from the Top 10 best performing four-hidden-layer models. The number of
hidden nodes in the fifth layer ranged from 240 to 650 and the filter size from 7 to 12. In the ConvNet
architectures with six hidden layers, for the first, second, third, fourth, and fifth hidden layers,
the numbers of hidden nodes and filter sizes ranged from the Top 5 best performing five-hidden-layer
models. The number of hidden nodes in the sixth layer ranged from 600 to 1240 and the filter size from
7 to 12.

3. Experiments and Results

3.1. Experiments with BEE1

In the first set of our experiments, we focused on our auto-designed ConvNets. The actual
training, testing, and validation procedures were implemented in Python 3.4 with tflearn [60] and
executed on an Ubuntu 16.04.S LTS computer with an AMD Ryzen 7 1700X Eight-Core Processor with
16 GiB of DDR4 RAM and a GeForce GTX 1080 Ti GPU with 11 GB of onboard memory. Each model
was trained for 50 epochs with a batch size of 50. Each image was normalized to have the pixel values
on each channel to be in the range [0, 1].

Table 2 gives a performance summary of the best auto-designed ConvNets with the number of
hidden layers in the range [1, 5] on the validation dataset of BEE1. The best one-hidden-layer model
had a filter size of 9, 29 hidden nodes, and a validation accuracy of 48.52%. The best performing
two-hidden-layer model had 31 nodes with a filter size of 12 in the first hidden layer and 40 notes with
a filter size of 10 in the second hidden layer. This model had a validation accuracy of 98.66%. The best
performing three-hidden-layer model had 27 hidden nodes in Layer 1 with a filter size of 9, 42 hidden

Appl. Sci. 2019, 9, 3743 14 of 27

nodes in Layer 2 with a filter size of 11, 105 hidden nodes with a filter size of 11 in Layer 3, and a
validation accuracy of 99.09%. The best performing four-hidden-layer model had 27 hidden nodes
with a filter size of 9 in layer 1, 38 hidden nodes with a filter size of 9 in Layer 2, 85 hidden nodes
with a filter size of 9 in Layer 3, 220 hidden nodes with a filter size of 10 in Layer 4, and a validation
accuracy of 98.63%. The best performing five-hidden-layer model had 27 hidden nodes with a filter
size of 9 in layer 1, 38 nodes with a filter size of 9 in Layer 2, 85 nodes with a filter size of 9 in Layer 3,
260 nodes with a filter size of 8 in Layer 4, 240 nodes with a filter size of 9 in Layer 5, a testing loss of
0.03, and a validation accuracy of 99.03%.

Table 2. Performance of best auto-designed ConvNet models on BEE1. Each network was trained
for 50 epochs. The number following the model type (ConvNetGS—GS stands for greedy search)
shows the number of hidden layers in each ConvNet. A hidden layer consists of a convolutional
layer followed by a maxpooling layer. The validation accuracies are sorted from highest to lowest.
The architecture of ConvNetGS-3 is given in Figure A1 in Appendix A.

Model BEE Acc. NO-BEE Acc. Valid Accuracy

ConvNetGS-3 98.48% 99.66% 99.09%
ConvNetGS-5 98.37% 99.66% 99.03%
ConvNetGS-2 98.25% 99.06% 98.66%
ConvNetGS-4 97.72% 99.50% 98.63%
ConvNetGS-1 98.71% 0.88% 48.52%

In the ConvNet architectures with six hidden layers (not shown in Table 2), for the first, second,
third, fourth, and fifth hidden layers, the numbers of hidden nodes and filter sizes ranged from the
Top 5 best performing five-hidden-layer ConvNets. The number of hidden nodes in Layer 6 ranged
from 600 to 1240 and the filter size from 7 to 12. The best performing six-hidden-layer model had 27
hidden nodes with a filter size of 9 in layer 1, 38 nodes with a filter size of 9 in Layer 2, 85 nodes with a
filter size of 9 in Layer 3, 260 nodes with a filter size of 8 in Layer 4, 240 nodes with a filter size of 9 in
Layer 5, 1160 nodes with a filter size of 9 in Layer 5, and a validation accuracy of 99.03%, which was
not better than the performance results of ConvNetGS-5 from the previous generation. Adding more
hidden layers (seven and eight) did not improve the validation performance of the auto-designed
ConvNets in that the average validation accuracy varied from 98.90% to 99.09%.

We next compared the performance of our auto-designed ConvNets with hand-designed
ConvNets on the same dataset. Toward that end, we organized a deep learning competition on
BEE1. The competition was organized as a longitudinal class project in a graduate Computer Science
course taught by the first author at Utah State University in Fall 2018. There were 52 graduate
and upper-level undergraduate students enrolled in this course. The students received detailed
instruction on the best ConvNet design practices [12,29,61,62] and the ConvNet design and training
tools (e.g., tflearn [60] and TensorFlow [63]) and were asked to design, train, and test ConvNets on
the training and testing images of BEE1. Each ConvNet was evaluated on the validation dataset of
BEE1, which was withheld from the students during the design, training, and testing phases. Only the
networks with a validation accuracy of 97% or above were chosen, which gave us nine ConvNets.

The architecture of the best performing hand-designed ConvNet (ConvNet 1) with a validation
accuracy of 99.45% is given in Figure 9. In addition to the input and output layers, this ConvNet has
six hidden layers. Specifically, it consists of three convolutional layers, each of which is followed by a
maxpooling layer. Each convolutional layer doubles the number of filters in the convolutional layer:
the first convolutional layer has 64 3 × 3 filters, the second one 128 3 × 3 filters, and the third one
256 3 × 3 filters. All convolutional layers have the ReLU activation function and a weight decay of
0.001. The convolutional and maxpooling layers are followed by four FC layers of 512 units, 256 units,
128 units, and 64 units. Each of these layers has the ReLU activation function and a dropout of 0.5.
The last FC layer has the softmax activation function, the adam optimizer, a learning rate of 0.0001,
and the categorical cross entropy as its loss function.

Appl. Sci. 2019, 9, 3743 15 of 27

To obtain the standard machine learning (ML) benchmarks, we trained and validated RFs and
SVMs on BEE1. Each image was normalized and flattened so that the inputs to the SVMs and RFs
were the same as the inputs to the ConvNets. We varied the number of trees in RFs from 20 to 100
in increments of 20. All RFs were trained with the gini entropy function. The minimum number of
samples required to split and the minimum number of samples required to be at a leaf node were both
set to 2. The best performing RF on the validation dataset of BEE1 (see Table 3) was the RF with 40 trees
whose accuracy was 93.67%. All SVMs used the linear kernel with the max-iter parameter varying
from 10 to 1000, an L2 penalty, a squared hinge loss function, and a tolerance of 0.0001. The best
accuracy of 63.66% on the validation dataset was achieved by the linear SVM with a max-iter of 1000.
For more thorough comparison, we also trained, tested, and validated ResNet32 [64] and VGG16 [14],
two popular ConvNet architectures frequently referenced in the DL literature on image classification.
We did not use any pre-trained weights in ResNet32 or VGG16. Both ConvNets were trained from
scratch with no internal layer optimization.

Figure 9. The architecture of the best performing hand-designed ConvNet (ConvNet 1 in Table 3)
on BEE1.

Table 3. Performance of top hand-designed ConvNet, ResNet32, and VGG16 models (trained for
100 epochs), RFs, and SVMs on BEE1. The number following the RF abbreviation denotes the number
of trees. The two top performing auto-designed ConvNets on BEE1 (ConvNetGS-3 and ConvNetGS-5)
are included for comparison. The validation accuracies are sorted from highest to lowest.

Model BEE Acc. NO-BEE Acc. Valid Accuracy

ConvNet 1 99.06% 99.89% 99.48%
ResNet32 99.12% 99.83% 99.48%
ConvNetGS-3 98.48% 99.66% 99.09%
ConvNet 2 99.07% 99.12% 99.09%
ConvNetGS-5 98.37% 99.66% 99.03%
ConvNet 3 99.07% 98.95% 99.01%
VGG16 97.90% 99.83% 98.87%
ConvNet 4 98.95% 98.78% 98.87%
ConvNet 5 98.37% 99.17% 98.77%
ConvNet 6 98.60% 98.84% 98.72%
ConvNet 7 97.96% 98.28% 98.13%
ConvNet 8 98.43% 96.19% 97.31%
ConvNet 9 97.67% 96.85% 97.26%
RF (40) 90.55% 96.80% 93.67%
RF (80) 90.88% 96.10% 93.49%
RF (100) 90.33% 96.16% 93.24%
RF (20) 89.89% 96.16% 93.02%
RF (60) 89.89% 95.98% 92.94%
SVM 58.29% 69.03% 63.66%

Table 3 summarizes the performance results of the ConvNets, RFs, and SVMs and compares them
with the results of the two top performing auto-designed ConvNets (ConvNetGS-3 and ConvNetGS-5)
on BEE1. The results in Tables 2 and 3 show that, on BEE1, ResNet32 and ConvNet 1 tied for first place

Appl. Sci. 2019, 9, 3743 16 of 27

with a validation accuracy of 99.48%. The best auto-designed ConvNet (ConvNetGS-3) came a close
second with a validation accuracy of 99.09%. Thus, the top two ConvNets performed only slightly
better than the top performing auto-designed ConvNet. ConvNetGS-3 tied for the second place with
ConvNet 2 and outperformed all other ConvNets, VGG16, RFs, and SVMs. The RFs performed much
better than the linear kernel SVMs but were ≈6% below the best hand- and auto-designed ConvNets.

3.2. Experiments with BEE2

To transfer the representations learned on BEE1 over to BEE2, we started our experiments on BEE2
with the ConvNets automatically designed with greedy grid search on BEE1. Specifically, we took
the five ConvNetGS models (see Table 2) and trained and validated them on BEE2_1S and BEE2_2S
(see Table 1). Each ConvNetGS was trained for 50 epochs. Tables 4 and 5 summarize the performance
results of these auto-designed ConvNets on both validation datasets.

Table 4. Performance of five auto-designed ConvNets on BEE2_1S validation dataset. Each ConvNet
was trained for 50 epochs. The number in the first column following the abbreviation ConvNetGS
specifies the number of hidden layers; validation accuracies are sorted from highest to lowest.
The architecture of ConvNetGS-4 is given in Figure A2 in Appendix A.

Model BEE Acc. NO-BEE Acc. Overall Acc.

ConvNetGS-4 84.86% 91.03% 86.36%
ConvNetGS-3 82.18% 90.73% 84.26%
ConvNetGS-1 82.09% 80.23% 81.63%
ConvNetGS-5 76.37% 95.76% 81.09%
ConvNetGS-2 76.21% 95.04% 80.79%

Table 5. Performance of five auto-designed ConvNets on BEE2_2S validation dataset. Each ConvNet
was trained for 50 epochs. The number in the first column following the abbreviation ConvNetGS
specifies the number of hidden layers. The validation accuracies are sorted from highest to lowest.
The architecture of ConvNetGS-5 is given in Figure A3 in Appendix A.

Model BEE Acc. NO-BEE Acc. Overall Acc.

ConvNetGS-5 74.52% 77.42% 76.20%
ConvNetGS-4 64.82% 83.39% 75.56%
ConvNetGS-3 64.94% 79.93% 73.61%
ConvNetGS-2 65.70% 76.77% 72.10%
ConvNetGS-1 66.04% 68.36% 67.38%

We took the Top 9 performing hand-designed ConvNets from BEE1 (see Table 3) and trained and
validated them on both BEE2_1S and BEE2_2S. We also trained, tested, and validated ResNet32 [64]
and VGG16 [14] on these datasets. To obtain the standard ML benchmarks, we again trained, tested,
and validated on BEE2_1S and BEE2_2S the same linear SVMs and RFs that we trained, tested,
and validated on BEE1. Each image was normalized and flattened so that the inputs to the SVMs and
RFs were the same as the inputs to the ConvNets.

Tables 6 and 7 give the performance results of the hand-designed ConvNets, ResNet32, VGG16,
the two top ConvNetGS models, and the ML models on BEE2_1S and BEE2_2S, respectively.
In both tables, the parenthesized numbers following the RF abbreviation specify numbers of trees.
The architecture of the best performing hand-designed ConvNet for BEE2_1S (ConvNet 1) is the same
as the architecture of the best performing ConvNet for BEE1 (see Figure 9), except the input layer is
64 × 64, as shown in Figure 10. The architecture of the best performing hand-designed ConvNet on
BEE2_2S (ConvNet 3) is shown in Figure 11. On BEE2_1S, ConvNetGS-4 was the best-performing
auto-designed model; on BEE2_2S, it was outperformed by ConvNetGS-5.

Appl. Sci. 2019, 9, 3743 17 of 27

Table 6. Model performance on BEE2_1S validation dataset; all hand-designed ConvNets, ResNet32,
and VGG16 were trained for 100 epochs each. The two top performing auto-designed ConvNets
(ConvNetGS-4 and ConvNetGS-3) are included for comparison. The overall accuracy is sorted from
highest to lowest.

Model BEE Acc. NO-BEE Acc. Overall Acc.

ConvNet 1 94.34% 93.24% 94.08%
ConvNet 3 88.44% 88.44% 88.84%
VGG16 78.09% 95.12% 86.60%
ConvNetGS-4 84.86% 91.03% 86.36%
ConvNetGS-3 82.18% 90.73% 84.26%
ConvNet 7 81.64% 88.85% 83.39%
ConvNet 6 72.02% 86.45% 75.53%
ConvNet 2 67.99% 93.66% 74.82%
RF (100) 50.27% 98.31% 74.29%
RF (60) 50.07% 98.34% 74.21%
RF (80) 49.90% 97.86% 73.88%
RF (40) 49.53% 97.82% 73.67%
ConvNet 4 66.48% 95.87% 73.44%
RF (20) 46.62% 97.26% 71.94%
SVM 87.66% 51.06% 69.36%
ResNet-32 38.11% 99.70% 68.90%
ConvNet 9 60.49% 89.42% 67.53%
ConvNet 5 0% 100% 24.31%
ConvNet 8 0% 100% 24.31%

Table 7. Model performance on BEE2_2S validation dataset; all ConvNets, ResNet32, and VGG16 were
trained for 100 epochs each. The two top performing auto-designed ConvNets (ConvNetGS-5 and
ConvNetGS-4) are included for comparison. The overall accuracy is sorted from highest to lowest.

Model BEE Acc. NO-BEE Acc. Overall Acc.

ConvNet 3 75.59% 81.31% 78.90%
ConvNet 1 69.98% 94.84% 78.17%
ConvNet 4 65.73% 84.36% 76.51%
ConvNetGS-5 74.52% 77.42% 76.20%
ConvNet 2 64.34% 90.51% 75.92%
ConvNetGS-4 64.82% 83.39% 75.56%
ConvNet 5 57.37% 90.06% 73.77%
ResNet32 64.10% 83.37% 73.73%
ConvNet 9 52.04% 87.49% 72.55%
VGG16 60.78% 82.54% 71.66%
ConvNet 6 51.77% 86.04% 68.90%
SVM 87.10% 41.95% 64.53%
RF (60) 39.05% 88.99% 64.02%
RF (80) 37.84% 88.34% 63.09%
RF (100) 37.71% 88.43% 63.07%
RF (40) 37.34% 87.83% 62.58%
RF (20) 35.36% 89.89% 62.62%
ConvNet 7 0% 100% 57.86%
ConvNet 8 0% 100% 57.86%

Appl. Sci. 2019, 9, 3743 18 of 27

Figure 10. The architecture of ConvNet 1, the best performing hand-designed ConvNet on BEE2_1S
(see Table 6).

Figure 11. The architecture of ConvNet 3, the best performing hand-designed ConvNet on BEE2_2S
(see Table 7).

As shown in Table 6, on BEE2_1S, the two hand-designed ConvNets (ConvNets 1, 3) outperformed
all other models, including ResNet32 and VGG16. The two top performing auto-designed ConvNets
(ConvNetGS-4 and ConvNetGS-3) ranked fourth and fifth, respectively. The performance of the
auto-designed ConvNets was better than the performance of the other seven hand-designed ConvNets,
ResNet32, the RFs and the SVMs. The performance of the random forests improved on BEE2_1S.
In particular, the RF with 100 trees outperformed four hand-designed ConvNets, ResNet32, and the
best linear kernel SVM by significant margins.

As shown in Table 7, on BEE2_2S, hand-designed ConvNets 3, 1, and 4 performed better than the
two auto-designed ConvNets and took the Top 3 slots. The top performing auto-designed ConvNets,
ConvNetGS-5 and ConvNetGS-4, ranked fourth and seventh, respectively. It is interesting to note that
the auto-designed ConvNets outperformed both ResNet32 and VGG16. The best linear SVM model
slightly outperformed the best RF with 60 trees and ranked much higher than on BEE1 or BEE2_1S.

4. Preliminary Evaluation on Omnidirectional Bee Traffic Videos

We made a preliminary, proof-of-concept evaluation of the system’s performance on four
omnidirectional bee traffic videos with different levels of bee traffic. We took random samples of
30-s timestamped videos from the validation beehives (i.e., the hives from which we acquired the
validation images for BEE2_1S and BEE2_2S) to ensure that there was no overlap with the videos
from which the training and testing images were obtained. In particular, we took a random sample of
30 videos from the early morning period (06:00–08:00), a random sample of 30 videos from the early
afternoon period (13:00–15:00), a random sample of 30 videos from the late afternoon (16:00–18:00),
and a random sample of 30 videos from the evening videos (19:00–21:00). All videos were captured in
June and July, 2018. We chose these time periods to ensure that we have videos with different levels of
omnidirectional bee traffic. According to our beekeeping experience in Logan and North Logan, Utah,
in June and July, there is no or low bee traffic early in the morning or late in the evening and higher
bee traffic in the afternoon when foragers leave for and return with nectar, pollen, and water.

We then randomly chose one video from each sample of 30 videos to obtain one video for each
time period. The Supplementary Materials include the four videos and their textual descriptions.

Appl. Sci. 2019, 9, 3743 19 of 27

We then counted full bee motions, frame by frame, in each video. The number of bee motions in the
first frame of each video (Frame 1) was taken to be 0. In each subsequent frame, we counted the
number of full bees that made any motion when compared to their positions in the previous frame.
A full bee was considered to have made a motion if it was not in a previous frame but appeared in
the following frame (e.g., when it flew into the camera’s field of view). The Supplementary Materials
include four CSV files with frame-by-frame full bee motion counts. The four videos were arbitrarily
classified on the basis of the human bee motion counts as no traffic (NT) (NT_Vid.mp4), low traffic
(LT) (LT_Vid.mp4), medium traffic (MT) (MT_Vid.mp4), and high traffic (HT) (HT_Vid.mp4). It took
us approximately 2 h to count bee motions in NT_Vid.mp4, 4 h in LT_Vid.mp4, 5.5 h in MT_Vid.mp4,
and 6.5 h in HT_Vid.mp4, for a total of 18 h for all four videos.

We ran our system on each of the four videos. In each video, motion detection was done
with MOG2 [40] while motion region classification was done with VGG16, ResNet32, ConvNetGS3,
and ConvNetGS4. The Supplementary Materials include the performance videos for each configuration
of the system (i.e., MOG2/VGG16, MOG2/ResNet32, MOG2/ConvNetGS3, MOG2/ConvNetGS4).
Each video shows the real-time performance of the system on a specific video so that the green
rectangle regions show detected motion regions classified as BEE and the blue rectangle regions show
detected motion regions classified as NO-BEE. Given a video, the system returns the total number of
bee motions detected in it (see Algorithm 1 in Section 2.2.1).

Table 8 gives the bee motion counts returned by each configuration of the system and the human
bee motion counts. For NT_Vid.mp4, where there is only one bee flying into a hive, the human bee
count is 73 full bee motions, which is closely approximated by the MOG2/ResNet32 configuration.
The other configurations roughly double the human bee motion count. When a bee is flying, the motion
detection algorithm (e.g., MOG2) sometimes detects motion centered on several bee body parts
(e.g., a thorax or a wing). In this case, the motion regions necessarily intersect on the same bee, in which
case the motion region classifier (e.g., VGG16) is likely to classify some of the intersecting motion
regions as BEE, which increases the bee motion counts. This overlapping classification can be observed
in all the performance videos given in the Supplementary Materials.

Table 8. Performance of the system on the four evaluation videos NT_Vid.mp4, LT_Vid.mp4,
MT_Vid.mp4, and HT_Vid.mp4: the columns VGG16, ResNet32, ConvNetGS3, and ConvNetGS4
give the bee motion counts returned by the configurations MOG2/VGG16, MOG2/ResNet32,
MOG2/ConvNetGS3, and MOG2/ConvNetGS4, respectively; the last column gives the human bee
motion counts for each video.

Video Num. Frames VGG16 ResNet32 ConvNetGS3 ConvNetGS4 Human Count

NT_Vid.mp4 742 151 75 182 127 73
LT_Vid.mp4 744 47 25 57 43 353
MT_Vid.mp4 743 1245 145 597 316 2924
HT_Vid.mp4 744 16,647 13,362 16,569 15,109 5738

The second most common cause of bee motion count overestimation was false positives, especially
shadows. In many movies captured by BeePi monitors on sunny days, shadows either closely follow
moving bees or reflect bees that are not even in the camera’s field of view. Figure 12 gives several
motion regions that were classified as BEE by all convolutional neural networks. In attempting to
explain this behavior, we concluded that the training datasets had insufficient numbers of bee shadow
images in the NO-BEE category. This is the most likely explanation why the networks had a tendency
to classify many bee shadows as BEE.

Appl. Sci. 2019, 9, 3743 20 of 27

Figure 12. Examples of shadow motion regions that were misclassified as BEE by all convolutional
networks.

As shown in Table 8, in the case of the low traffic video, LT_mid.mp4, all four configurations
underestimated the numbers of full bee motions. All four bee motion counts are less than 100,
whereas the human bee motion count equals 353. A visual analysis of the four performance videos
for this video included in the Supplementary Materials reveals that not all bee motion regions are
detected. For example, if a bee is flying quickly, only a couple of bee motions may be detected and
classified as a bee. In the case of the medium traffic video, MT_vid.mp4, all four configurations also
underestimated the numbers of full bee motions. The MOG2/VGG16 configuration came closest to the
human bee motion count while the other three configurations significantly underestimated it. The four
performance videos for MT_vid.mp4 (see the Supplementary Materials) indicate that not all bee motion
regions were detected in the medium traffic video. Hence, the underestimation of the human count
by all four system configurations. For the high traffic video, HT_mid.mp4, all four configurations
overestimated the human count of full bee motions. The performance videos for HT_mid.mp4 in the
Supplementary Materials show that all ConvNets misclassified many motion regions with grass blade
or leaf motions as BEE.

In a preliminary test of whether the system can distinguish among different levels of
omnidirectional bee traffic, we randomly selected another four videos from the same four time periods:
early morning, early afternoon, late afternoon, and late evening. These four videos (NT_Vid02.mp4,
LT_Vid02.mp4, MT_Vid02.mp4, HT_Vid02.mp4) are also included in the Supplementary Materials.
We did not obtain human bee motion counts for these videos. Rather, we watched each video and
qualitatively classified it as no traffic (NT), low traffic (LT), medium traffic (MT), or high traffic (HT).
Table 9 gives the bee motion counts of the four configuration for each video. The results indicate that
the MOG2/VGG16 configuration distinguishes among NT, LT, MT, and HT in terms of bee motion
counts. The other three configurations are not as consistent. In LT_Vid02.mp4 and MT_Vid02.mp4,
the three ConvNets classify as BEE regions with grass blade or leaf motions or regions with leaf
motions that contain dead bees.

Table 9. Performance of the system on NT_Vid02.mp4, LT_Vid02.mp4, MT_Vid02.mp4, and
HT_Vid02.mp4: the columns VGG16, ResNet32, ConvNetGS3, and ConvNetGS4 give the bee motion
counts returned by the configurations MOG2/VGG16, MOG2/ResNet32, MOG2/ConvNetGS3, and
MOG2/ConvNetGS4, respectively.

Video Num. Frames VGG16 ResNet32 ConvNetGS3 ConvNetGS4

NT_Vid02.mp4 743 140 188 175 173
LT_Vid02.mp4 744 530 1101 1439 10,000
MT_Vid02.mp4 743 1095 343 1179 871
HT_Vid02.mp4 744 13,002 9716 9960 9885

5. Discussion

Our experiments indicate that the proposed two-tier method of coupling motion detection with
image classification to count bee motions in close proximity to the landing pad of a given hive has the
potential to improve estimates of omnidirectional bee traffic levels in EBM. In the proposed method,
motion detection acts as a class-agnostic object location method to suggest regions with possible objects,

Appl. Sci. 2019, 9, 3743 21 of 27

each of which is subsequently classified with a trained classier such as a ConvNet or an SVM or an
ensemble of classifiers such as an RF.

In our experiments, the hand-designed ConvNets performed slightly better than or on par with
the auto-designed ConvNets on two of the three image datasets (BEE1 and BEE2_1S). When the
hand-designed ConvNets outperformed the auto-designed ConvNets, the performance margins were
not wide. Specifically, on BEE1 (see Tables 2 and 3), the best hand-designed ConvNet (ConvNet 1) and
ResNet32 achieved a validation accuracy of 99.48% while the performance of the best auto-designed
ConvNet (ConvNetGS-3) was 99.09%. Thus, the best auto-designed ConvNet performed almost exactly
on par with the best hand-designed ConvNet and ResNet32 and outperformed the remaining seven
hand-designed ConvNets, VGG16, and all RFs and SVMs. The performance margin between the
best hand-designed ConvNet (ConvNet 1) and the best auto-designed ConvNet (ConvNetGS-3) was
only 0.39%.

On BEE2_1S (see Tables 4 and 6), the top two hand-designed ConvNets (ConvNets 1 and 3)
outperformed all other models with the respective validation accuracies of 94.08% and 88.84%.
The two best performing auto-designed ConvNets (ConvNetGS-4 and ConvNetGS-3) ranked fourth
and fifth with the respective validation accuracies of 86.36% and 84.26%. Thus, the auto-designed
ConvNets outperformed the remaining seven hand-designed ConvNets, ResNet32, and all RFs and
SVMs. The performance margin between the best hand-designed ConvNet (ConvNet 1) and the best
auto-designed ConvNet (ConvNetGS-4) was 7.7%.

On BEE2_2S (see Tables 5 and 7), the top three places were taken by hand-designed ConvNets
(ConvNets 3, 1, and 4). These ConvNets outperformed the other models with the respective validation
accuracies of 78.90%, 78.17%, and 76.51%. The top auto-designed model (ConvNetGS-5) ranked fourth
with a validation accuracy of 76.20% and outperformed both ResNet32 and VGG16. The performance
margin between the best performing hand-designed ConvNet and the best performing auto-designed
ConvNet narrowed to 2.7%.

A solid performance of the RFs on BEE1 and BEE2_1S is noteworthy. Typically, RFs do well
on datasets of items structured as sets of features [37]. However, in our experiments, we trained
and validated the RFs on raw images without extracting any features. Each pixel position and
its corresponding value can, of course, be construed as a feature-value pair, but this does not
require any computationally intensive feature extraction typically done for classifiers that use
feature-value pairs. While the RFs did not outperform any hand- or auto-designed ConvNets on
BEE1, the validation accuracy of all RFs was above 90%. On BEE2_1S, the top performing RF with
100 decision trees performed better than four hand-designed ConvNets, ResNet32, and the best
linear SVM. Our experiments suggest that a more principled automation of RF designs for specific
image datasets may yield classifiers whose performance approaches the performance of hand- or
auto-designed ConvNets. An advantage of RFs for EBM projects or for other low budget research
projects and citizen science initiatives is that their training and validation is much faster than the
training and validation of ConvNets or SVMs and does not require continuous access to large GPU
farms. For example, it took us a total of 917.52 GPU hours (38.23 days) to finish training, testing,
and validating all ConvNets with greedy GS and another 360.25 GPU hours (15 days) to train, test,
and validate all hand-designed ConvNets, ResNet32, and VGG16. By way of comparison, training,
testing, and validating all RFs on the same GPU computer took only ≈15 h.

Another observation we made is that our hand- and auto-designed ConvNets appear to have
performed mostly on par with ResNet32 or VGG16, which suggests that all training and validation of
DL models is local. ConvNet architectures that do well on large generic datasets are not guaranteed to
do well on more specialized datasets. The overall performance of all classifiers on BEE1 was better
than their overall performance on BEE2. A visual comparison of BEE1 and BEE2 datasets shows
that BEE1 appears to be more homogenous in that the images in the training, testing, and validation
datasets, while statistically significantly different in terms of contrast, energy, and homogeneity, appear
to be more qualitatively similar to each other than the images in the training, testing, and validation

Appl. Sci. 2019, 9, 3743 22 of 27

datasets of BEE2. Another qualitative difference between BEE1 and BEE2 is that the validation dataset
of BEE2 contains many more images of bee shadows than the validation dataset of BEE1. The image
size of BEE1 (32 × 32) is smaller than the image size of BEE2 (64 × 64), which indicates that ConvNets,
random forests, and SVMs may generalize better on smaller images than on larger ones.

Our evaluation of the proposed method on bee traffic videos is only preliminary. Hence,
our observations should be interpreted with caution. Nonetheless, they provide valuable insights into
how bee motion counts can be used in estimating omnidirectional bee traffic levels. These insights
will inform our future work on video analysis of bee traffic. In some cases, the proposed
method overestimated the human bee motion counts. Our analysis of the performance videos
(see the Supplementary Materials) showed that a major cause of overestimation was overlapping
motion regions. When several motion points were detected around a single bee, the motion regions
cropped around them included the same bee whose motion was counted several times. This limitation
can be met by obtaining estimates of overlap and counting motion regions with significant overlap
as one motion region. Another cause of overestimation was false positives when the second tier of
the proposed bee motion counting method misclassified motion regions containing bee shadows,
grass blades or leaves as bees. One way to address false positives is to make training and testing
datasets more representative by adding to them more samples of bee shadows, grass blades, and leaves.

In some cases, the proposed method underestimated the human bee motion counts.
This underestimation appears to have been caused by false negatives, when second tier classifiers
failed to recognize bees, as well as motion detection failures when the first tier motion detectors failed
to detect motion altogether. The latter was observed with fast flying bees. We plan to experiment with
higher video resolutions to estimate whether they can help us capture fast motions more accurately.

When we ran our system on the four videos with different levels of bee traffic, for which we did
not obtain human counts, we discovered that some motion detection and classification configurations
(e.g., MOG2/VGG16) could distinguish no traffic, low traffic, medium traffic and high traffic in terms
of bee motion counts. This observation, while obviously preliminary, raises an important question
of how accurately bee motion counts obtained by the proposed method should approximate the
human bee motion counts. In some sense, the closeness of approximation may be irrelevant so long
as automatically obtained bee motion counts enable the system to distinguish different bee traffic
levels in order to track omnidirectional bee traffic over time. More experiments are obviously needed
to validate this conjecture. The necessity to conduct more experiments leads to another important
question of what ground truth videos are needed and how they should be obtained. The fact that
it took us ≈18 h to obtain human bee motion counts on four videos of live bee traffic indicates that
obtaining the ground truth in this manner is very labor intensive. A less expensive approach may
be to obtain qualitative human classifications of bee traffic videos as no traffic, low traffic, medium
traffic, and high traffic and then to seek ranges of automatic bee motion counts that enable the system
to reliably distinguish different bee traffic levels.

Our current beekeeper logs capture such variables as drawn comb, liquid honey, eggs, pollen,
larvae, capped brood, capped honey, drone brood, and comb. In the future, we plan to add bee traffic
estimates to our logs. While accurate visual evaluations of bee traffic levels when bee traffic is very
high are difficult and time-consuming, they may provide solid ground truth for videos with low or
medium bee traffic levels.

To approximate human beekeepers’ assessments of bee colony health, future EBM monitors will
need robust models capable of correlating digital interpretations of captured sensor data with human
beekeeper observations. When such correlations become reasonably accurate, EBM monitors will be
able to make more accurate assessments of bee colony health or of environmental states. An important
knowledge engineering task ahead is the formalization of human beekeeper observations so that they
can be correlated in a meaningful way with digital observations. It remains to be seen whether such
formalizations can be generated by computer vision from field pictures of hive frames.

Appl. Sci. 2019, 9, 3743 23 of 27

6. Conclusions

In this investigation, we proposed, implemented, and partially evaluated a two-tier method for
counting bee motions in video analysis of omnidirectional bee traffic. Our method couples motion
detection with image classification so that motion detection acts as a class-agnostic object location
method that generates a set of regions with possible objects and each such region is classified by a
class-specific classifier or an ensemble of classifiers such as a random forest. The method has been,
and is being field tested in multiple BeePi monitors, our multi-sensor EBM systems. Our evaluation of
several DL and ML models on three large image datasets obtained from the data captured by different
BeePi monitors indicates that image classification can be added to a repertoire of EBM algorithms.
In our future work, we plan to work on correlating omnidirectional bee motion counts with ambient
temperature readings and formalized human beekeeper observations. To ensure the replicability of
the reported findings and to provide a performance benchmark for interested research communities
and citizen science initiatives, we have made public our curated image datasets, BEE1 (54,382 images)
and BEE2 (112,879 images), used in this investigation. The Supplementary Materials include four bee
traffic videos with corresponding human motion counts, sixteen performance videos that illustrate
how different system configurations process bee traffic videos, and four bee traffic videos with no
human motion counts which we used to estimate if the proposed system can distinguish among
different bee traffic levels.

Supplementary Materials: The following materials are available at http://www.mdpi.com/2076-3417/9/18/
3743/s1.

Author Contributions: Conceptualization, Supervision, Project Administration, Resources: V.K.; Software: V.K.
and S.M.; Data Curation: S.M. and V.K.; Writing—Original Draft Preparation: V.K. and S.M.; Writing—Review
and Editing: V.K. and S.M.; Investigation, Analysis: V.K. and S.M.; and Validation: S.M. and V.K.

Funding: This research received no external funding. The hardware components, bee packages, and beekeeping
equipment used in this study have been funded, in part, by the Kickstarter fundraiser [42].

Acknowledgments: We are grateful to Prateek Vats for helping us with data curation, validation, and software
testing. We would like to thank Astha Tiwari and Logan Pederson for helping us with labeling and curating
BEE1 and Jacquelyn Mukherjee for helping us with beehive inspections and beekeeper log entries. Richard
Waggstaff, Craig Huntzinger, and Richard Mueller allowed us to use their private property in northern Utah for
our longitudinal EBM experiments and field tests. We are grateful to all students who participated in the deep
learning competition organized by the first author in October–December 2018. Finally, we would like to express
our deep gratitude to the donors who generously contributed to our Kickstarter fundraiser [42].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

EBM Electronic Beehive Monitoring
DL Deep Learning
ML Machine Learning
ConvNet Convolutional Neural Network
ReLU Rectified Linear Unit
FC Fully Connected
R-CNN Regions with ConvNets
GS Grid Search
CV Computer Vision
SVM Support Vector Machine
KNN K-Nearest Neighbor
RF Random Forest
NT No Traffic
LT Low Traffic
MT Medium Traffic
HT High Traffic

http://www.mdpi.com/2076-3417/9/18/3743/s1
http://www.mdpi.com/2076-3417/9/18/3743/s1

Appl. Sci. 2019, 9, 3743 24 of 27

Appendix A. ConvNet Architectures

Figure A1. The architecture of ConvNetGS-3, the best performing auto-designed ConvNet on BEE1.

Figure A2. The architecture of ConvNetGS-4, the best performing auto-designed ConvNet on BEE2_1S.

Figure A3. The architecture of ConvNetGS-5, the best performing auto-designed ConvNet on BEE2_2S.

References

1. Garibalidi, L. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 2013,
339, 1608–1611. [CrossRef] [PubMed]

2. Crailsheim, K.; Schneider, L.; Hrassnigg, N.; Bühlmann, G.; Brosch, U.; Gmeinbauer, R.; Schöffmann, B. Pollen
consumption and utilization in worker honeybees (appis mellifera carnica): Dependencies on individual age
and function. J. Insect Physiol. 1992, 38, 409–419. [CrossRef]

3. Schultz, D.; Huang, Z.; Robinson, G. Effects of colony food shortage on behavioral development in honey
bees. Ecol. Sociobiol. 1998, 42, 295–303. [CrossRef]

4. Meikle, W.G.; Holst, N. Application of continuous monitoring of honeybee colonies. Apidologie 2015,
46, 10–22. [CrossRef]

5. Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward audio beehive monitoring: Deep learning vs. standard
machine learning in classifying beehive audio samples. Appl. Sci. 2018, 8, 1573. [CrossRef]

6. Bromenschenk, J.; Henderson, C.; Seccomb, R.; Rice, S.; Etter, R. Honey Bee Acoustic Recording and Analysis
System for Monitoring Hive Health. U.S. Patent US7549907B2, 23 June 2009.

7. Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Monitoring of swarming sounds in bee hives for early
detection of the swarming period. Comput. Electron. Agric. 2008, 64, 72–77. [CrossRef]

8. Ramsey, M.; Bencsik, M.; Newton, M.I. Long-term trends in the honeybee ‘whooping signal’ revealed by
automated detection. PLoS ONE 2017, 12, e0171162. [CrossRef]

9. Mezquida, D.A.; Martínez, J.L. Platform for bee-hives monitoring based on sound analysis: A perpetual
warehouse for swarm’s daily activity. Span. J. Agric. Res. 2009, 7, 824–828. [CrossRef]

10. Rodriguez, I.F.; Megret, R.; Egnor, R.; Branson, K.; Agosto, J.; Giray, T.; Acuna, E. Multiple animals tracking
in video using part affinity fields. Workshop on visual observation and analysis of vertebrate and insect
behavior. In Proceedings of the 24th International Conference on Pattern Recognition (ICPR), Beijing,
China, 20–24 August 2018. Available online: http://homepages.inf.ed.ac.uk/rbf/vaib18.html (accessed on
15 July 2019).

http://dx.doi.org/10.1126/science.1230200
http://www.ncbi.nlm.nih.gov/pubmed/23449997
http://dx.doi.org/10.1016/0022-1910(92)90117-V
http://dx.doi.org/10.1007/s002650050442
http://dx.doi.org/10.1007/s13592-014-0298-x
http://dx.doi.org/10.3390/app8091573
http://dx.doi.org/10.1016/j.compag.2008.05.010
http://dx.doi.org/10.1371/journal.pone.0181736
http://dx.doi.org/10.5424/sjar/2009074-1109
http://homepages.inf.ed.ac.uk/rbf/vaib18.html

Appl. Sci. 2019, 9, 3743 25 of 27

11. Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G. Pollen bearing honey bee detection in hive entrance video
recorded by remote embedded system for pollination monitoring. ISPRS Ann. Photogramm. Remote Sens.
Spat. Inf. Sci. 2016, 3, 51–57. [CrossRef]

12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on Neural Information Processing Systems—NIPS’12,
Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1,
pp. 1097–1105.

13. Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [CrossRef]

14. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

15. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; rahman Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.;
Sainath, T.; et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag.
2012, 29, 82–97. [CrossRef]

16. Sainath, T.; Rahman, M.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR.
IEEE Int. Conf. Acoust. Speech Signal Process. 2013, 8614–8618. [CrossRef]

17. Sainath, T.N.; Weiss, R.J.; Senior, A.W.; Wilson, K.W.; Vinyals, O. Learning the speech front-end with raw
waveform CLDNNs. In Proceedings of the INTERSPEECH 2015, Dresden, Germany, 6–10 September 2015;
pp. 1–5.

18. Roberts, A.; Resnick, C.; Ardila, D.; Eck, D. Audio deepdream: Optimizing raw audio with convolutional
networks. In Proceedings of the International Society for Music Information Retrieval Conference, New York,
NY, USA, 7–11 August 2016.

19. van den Oord, A.; Dieleman, S.; Schrauwen, B. Deep content-based music recommendation. In Proceedings
of the 26th International Conference on Neural Information Processing Systems—NIPS’13, Lake Tahoe, NV,
USA, 5–10 December 2013; Curran Associates Inc.: Red Hook, NY, USA, 2013; Volume 2, pp. 2643–2651.

20. Piczak, K. Environmental sound classification with convolutional neural networks. In Proceedings of the
2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA,
USA, 17–20 September 2015; pp. 1–6. [CrossRef]

21. Leung, M.; Xiong, H.; Lee, L.; Frey, B. Deep learning of the tissue-regulated splicing code. Bioinformatics
2014, 30, 121–129. [CrossRef] [PubMed]

22. Xiong, H.Y.; Alipanahi, B.; Lee, L.J.; Bretschneider, H.; Merico, D.; Yuen, R.K.C.; Hua, Y.; Gueroussov, S.;
Najafabadi, H.S.; Hughes, T.R.; et al. The human splicing code reveals new insights into the genetic
determinants of disease. Science 2015, 347, 1254806. [CrossRef] [PubMed]

23. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

24. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 1998.
25. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th International Conference on International Conference on Machine Learning—ICML’10, Haifa, Israel,
21–24 June 2010; Omnipress: Madison, WI, USA, 2010; pp. 807–814.

26. Zeiler, M.D.; Ranzato, M.; Monga, R.; Mao, M.Z.; Yang, K.; Le, Q.V.; Nguyen, P.; Senior, A.W.; Vanhoucke, V.;
Dean, J.; et al. On rectified linear units for speech processing. IEEE Int. Conf. Acoust. Speech Signal Process.
2013, 3517–3521. [CrossRef]

27. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

28. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q. Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE Conference of Computer Vision and Pattern Recognition, Lake City, UT, USA,
18–22 June 2018; pp. 8697–8710.

29. LeCun, Y.; BBengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444.:10.1038/nature14539.
[CrossRef]

30. Szegedy, C.; Liu, W.; Jia, Y.; Semanet, P.; Reed, S.; Anguelov, D.; Dumitry, E.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition—CVPR’15, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

http://dx.doi.org/10.5194/isprsannals-III-7-51-2016
http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/ICASSP.2013.6639347
http://dx.doi.org/10.1109/MLSP.2015.7324337
http://dx.doi.org/10.1093/bioinformatics/btu277
http://www.ncbi.nlm.nih.gov/pubmed/24931975
http://dx.doi.org/10.1126/science.1254806
http://www.ncbi.nlm.nih.gov/pubmed/25525159
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/ICASSP.2013.6638312
http://dx.doi.org/10.1038/nature14539

Appl. Sci. 2019, 9, 3743 26 of 27

31. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition—CVPR’14, Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

32. Peng, X.; Schmid, C. Multi-region two-stream R-CNN for action detection. In Computer Vision—ECCV 2016;
Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp. 744–759.

33. Uijlings, J.; van de Sande, K.; Gevers, T.; Smeulders, A. Selective search for object recognition. Int. J.
Comput. Vis. 2013, 104, 154–171. [CrossRef]

34. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
35. Szegedy, C.; Reed, S.; Erhan, D.; Anguelov, D.; Ioffe, S. Scalable, high-quality object detection. arXiv 2015,

arXiv:1412.1441.
36. Wong, A.; Javad Shafiee, M.; Li, F.; Chwyl, B. Tiny SSD: A tiny single-shot detection deep convolutional

neural network for real-time embedded object detection. arXiv 2018, arXiv:1802.06488.
37. Breiman, L. Random Forests. Mach. Learn. 2018, 45, 5–32. [CrossRef]
38. Zivkovic, Z. Improved adaptive gaussian mixture model for background subtraction. In Proceedings of the

17th International Conference on Pattern Recognition (ICPR), Cambridge, UK, 26 August 2004; Volume 2,
pp. 28–31.

39. KaewTraKulPong, P.; Bowden, R. An Improved adaptive background mixture model for real-time tracking
with shadow detection. In Proceedings of the Second European Workshop on Advanced Video Based
Surveillance Systems (AVBS01), London, UK, 3–6 September 2001; pp. 28–31. [CrossRef]

40. Zivkovic, Z.; van der Heijden, F. Efficient adaptive density estimation per imge pixel for the task of
background subtraction. Pattern Recognit. Lett. 2006, 27, 773–780. [CrossRef]

41. McAfee, A. Honey, let me tell you about this city. Am. Bee J. 2019, 159, 521–524.
42. Kulyukin, V. BeePi: A Multisensor Electronic Beehive Monitor. Available online: https://www.kickstarter.

com/projects/970162847/beepi-a-multisensor-electronic-beehive-monitor (accessed on 29 May 2019).
43. Kulyukin, V. BeePi: Honeybees Meet AI: Stage 2. Available online: https://www.kickstarter.com/projects/

beepihoneybeesmeetai/beepi-honeybees-meet-ai-stage-2 (accessed on 27 July 2019).
44. Langstrogth Beehive. Available online: https://en.wikipedia.org/wiki/Langstroth_hive (accessed on

15 July 2019).
45. Dadant Beehive. Available online: https://en.wikipedia.org/wiki/Charles_Dadant (accessed on 15 July 2019).
46. Tiwari, A.; Kulyukin, V. BEE1: A Dataset of 54,383 Labeled Images of Bees Obtained from

BeePi, a Multi-Sensor Electronic Beehive Monitor. Available online: https://usu.box.com/s/
0a5yurmn7ija15cp236awa1re65mbcnr (accessed on 25 April 2019).

47. Vats, P.; Kulyukin, V. BEE2_1S: A Dataset of 54,201 Labeled Images of Bees Obtained from BeePi,
a Multi-Sensor Electronic Beehive Monitor, Mounted on Top of the First Super of a Langstroth Beehive.
Available online: https://usu.box.com/s/p7y8v95ot9u9jvjbbayci61no3lzbgx3 (accessed on 25 April 2019).

48. Vats, P.; Kulyukin, V. BEE2_2S: A Dataset of 54,678 Labeled Images of Bees Obtained from BeePi,
a Multi-Sensor Electronic Beehive Monitor, Mounted on Top of The Second Super of a Langstroth Beehive.
Available online: https://usu.box.com/s/3ccizd5b1qzcqcs4t0ivawmrxbgva7ym (accessed on 25 April 2019).

49. Kulyukin, V.; Putnam, M.; Reka, S. Digitizing buzzing signals into A440 piano note sequences and
estimating forage traffic levels from images in solar-powered, electronic beehive monitoring. Lecture notes
in engineering and computer science. In Proceedings of the International Multiconference of Engineers and
Computer Scientists, Hong Kong, China, 16–18 March 2016; Volume 1, pp. 82–87.

50. Kulyukin, V.; Mukherjee, S. Computer vision in electronic beehive monitoring: In situ vision-based bee
counting on langstroth hive landing pads. Graph. Vis. Image Process. 2017, 17, 25–37.

51. Kulyukin, V.; Tiwari, A. A Convolutional neural network for recognizing bees in video analysis of forager
traffic. In Proceedings of the American Bee Research Conference (ABRC), Reno, NV, USA, 11–12 January 2018.

52. Kulyukin, V.; Putnam, M.; Reka, S.; Mukherjee, S. BeePi Data Collection Software. Available online:
https://github.com/VKEDCO/PYPL/tree/master/beepi/py/src/29Jan2016 (accessed on 21 May 2018).

http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/978-1-4615-0913-4_11
http://dx.doi.org/10.1016/j.patrec.2005.11.005
https://www.kickstarter.com/projects/970162847/beepi-a-multisensor-electronic-beehive-monitor
https://www.kickstarter.com/projects/970162847/beepi-a-multisensor-electronic-beehive-monitor
https://www.kickstarter.com/projects/beepihoneybeesmeetai/beepi-honeybees-meet-ai-stage-2
https://www.kickstarter.com/projects/beepihoneybeesmeetai/beepi-honeybees-meet-ai-stage-2
https://en.wikipedia.org/wiki/Langstroth_hive
https://en.wikipedia.org/wiki/Charles_Dadant
https://usu.box.com/s/0a5yurmn7ija15cp236awa1re65mbcnr
https://usu.box.com/s/0a5yurmn7ija15cp236awa1re65mbcnr
https://usu.box.com/s/p7y8v95ot9u9jvjbbayci61no3lzbgx3
https://usu.box.com/s/3ccizd5b1qzcqcs4t0ivawmrxbgva7ym
https://github.com/VKEDCO/PYPL/tree/master/beepi/py/src/29Jan2016

Appl. Sci. 2019, 9, 3743 27 of 27

53. Kulyukin, V. Honey bee recognition in video bee traffic monitoring: Convolutional neural networks vs.
random forests. In Proceedings of the Entomological Society of America (ESA), Entomological Society of
Canada (ESC), and Entomological Society of British Columbia (ESBC) Joint Annual Meeting, ESA, ESC,
ESBC, Vancouver, BC, Canada, 11–14 November 2018.

54. Huberty, C.; Olejnik, S. Applied Manova and Discriminant Analysis; John Wiley & Sons: Hoboken, NJ,
USA, 2006.

55. Peli, E. Contrast in complex images. J. Opt. Soc. Am. 1990, 7, 2032–2040.:10.1364/JOSAA.7.002032. [CrossRef]
56. Stoica, P.; Moses, R. Spectral Analysis of Signals; Prentice Hall: Upper Saddle River, NJ, USA, 2005.
57. Pap, S.; Pap, N. Segmentation using contrast and homogeneity measures. Pattern Recognit. Lett. 1987,

5, 293–304.
58. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement

learning. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon,
France, 24–26 April 2017.

59. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
60. Tflearn. Available online: https://github.com/tflearn/tflearn (accessed on 29 May 2018).
61. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. AISTATS

JMLR.org 2010, 9, 249–256.
62. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. ICML JMLR.org 2015, 37, 448–456.
63. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 25 April 2019).
64. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1364/JOSAA.7.002032
https://github.com/tflearn/tflearn
https://www.tensorflow.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Hardware
	Bee Motion Counting and Image Data
	Bee Motion Counting
	BEE1 Dataset
	BEE2 Dataset

	Greedy Auto-Design of Convolutional Networks

	Experiments and Results
	Experiments with BEE1
	Experiments with BEE2

	Preliminary Evaluation on Omnidirectional Bee Traffic Videos
	Discussion
	Conclusions
	ConvNet Architectures
	References

