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Abstract: We report on an advanced density-functional theory (DFT) approach for investigating
the ground-state and thermodynamical properties of uranium mononitride (UN). The electronic
structure for UN at zero temperature is obtained from DFT that utilizes the generalized gradient
approximation (GGA) for the electron exchange and correlation functional and includes spin-orbit
interaction and an extension with orbital polarization. Thermodynamical properties are computed
within the quasi-harmonic approximation in the Debye–Grüneisen model while anharmonicity is
captured in the self-consistent ab initio lattice dynamics (SCAILD) scheme. Anharmonic phonons
have heretofore never been modeled from first-principles for UN but they turn out to be important.
The computed free energy compares well with that of a CALPHAD (CALculation of PHAse Diagrams)
assessment of available experimental data.

Keywords: density-functional theory; anharmonicity; thermodynamical properties; actinides;
uranium mononitride

1. Introduction

Uranium mononitride (UN) is an actinide compound that forms in the cubic sodium-chloride
structure (B1), similar to other actinide nitrides and carbides. The location of the uranium and nitrogen
atoms are interchangeable in this phase that is a face-centered cubic, with one atom in the origin and
the other in the cube center. The B1 actinide-nitride and actinide-carbon systems are characterized
by high melting temperatures and substantial electrical and thermal conductivities. Sometimes these
compounds are magnetic. In the case of UN, the U-U distance is greater (~3.5 Å) than that of α-uranium
(~2.8 Å) and consequently, a magnetic moment forms on the uranium atom in UN but not in α-uranium.

Uranium mononitride has received a lot of attention from both experimental [1–29] and
computational angles [30–43] due to its potential as a nuclear fuel for fast-breeder reactors [44].
It has superior thermophysical properties, including high melting temperature, uranium loading
(content), thermal conductivity, and resistance to corrosion in air and water. It further exhibits good
thermal and irradiation behavior, and is compatible with numerous candidate space reactor coolants,
e.g., sodium, and other structure materials.

Experimentally, several fundamental properties of UN have been characterized: (i) structural,
(ii) mechanical, (iii) thermodynamical, and (iv) magnetic properties. For the structural properties
(lattice parameter, density, and thermal expansion) a number of studies involving X-ray diffraction
(XRD) have been reported [1,7,11,16,17,21,22,25,26,29]. For the mechanical properties (bulk modulus,
shear modulus, Poisson’s ratio, elastic constants, lattice dynamics), ultrasonic pulse-echo (velocity
and frequency) techniques and inelastic neutron scattering have been extensively used and the
results from these experiments are presented in [2,6,7,14,18,21–23,26,27]. For thermodynamical
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properties (specific heat, enthalpy, entropy, Gibbs free energy, melting point, heat of formation,
and the resulting phase-diagram), most of the relevant experiments have relied on specific-heat
measurements by different calorimeter capabilities [4,5,9,10,13,15,19,20,22], although the laser flash
method is used in [12]. Determinations of the heat of formation for uranium mononitride are reported
in References [10,19,20,24]. Recently, Baranov et al. [29] developed an advanced technique to study
uranium mononitride fuel thermochemical stability based on XRD, scanning electron microscopy
(SEM), and mass-spectrometry. Finally, magnetic properties obtained from neutron scattering have
been reported [3].

Accurate modeling of ground-state and particularly thermodynamical properties of uranium
mononitride can play an important role in interpreting existing materials data and establishing a better
understanding of its thermodynamical stability and fuel performance. Theoretical studies of uranium
mononitrides can be divided into one of three categories; phenomenological models, first-principles
electronic-structure calculations, and thermodynamical modeling. In this report we focus on the two
latter approaches.

We present details of our electronic-structure method in Section 2.1 and its application to investigate
phonons in Section 2.2. In the literature, there are numerous papers focused on ab-initio-theory studies
of uranium mononitride [30,33–43]. The heat capacity of uranium mononitride has been estimated
by molecular-dynamics simulations by Kurosaki et al. [32] utilizing the phonon spectrum data by
Baranov et al. [40]. Freyss and Sato [33] calculated the equilibrium lattice parameter, bulk modulus,
and cohesive energy. Weck et al. [34] performed all-electron spin-polarized relativistic calculations of
the electronic and thermodynamical properties of stoichiometric UN and UN2 compounds. Modak and
Verma [39] studied the electronic properties and phonon-dispersion relations of uranium mononitride
using the pseudopotential density-functional-theory (DFT) method.

We note that uranium mononitride is an antiferromagnetic compound (anti-parallel spins on the
uranium atoms in 001 planes) with substantial magnetic moments on the uranium atoms (~0.75 µB) [3].
The spin-polarized uranium 5f electrons in this compound have been treated in different ways in the past.
Brooks [30] and others [35,36] employed DFT, while stronger 5f-electron correlations were incorporated
by going beyond DFT, applying either electron self-interaction-corrected theory (SIC-DFT) [37] or an
on-site Coulomb repulsion term (effective Hubbard U; DFT+U) [38,42,43]. The principal failure of the
DFT model is that it favors a ferromagnetic state over the observed anti-ferromagnetic one.

However, the magnetic properties of UN are not the primary focus of the present study, but rather
other ground-state properties that are derived from the energetics of the compound. Moreover, we are
specifically interested in the thermodynamical behavior at elevated temperatures near the melting
point (~3000 K). These temperatures are far above the magnetic ordering of uranium mononitride
(Néel temperature is 53 K [3]) and therefore we have chosen, similar to [35,36], to restrict ourselves to a
ferromagnetic configuration for most of our calculations. Another motivation for this simplification
is that total energy and bonding properties of ferromagnetic and anti-ferromagnetic UN are nearly
indistinguishable, as we shall show below.

The basic idea of the thermodynamical modeling is founded on the CALPHAD (CALculation of
PHAse Diagrams) methodology that involves calculating phase equilibria and phase diagrams from
experimental inputs [45–47]. Therefore, we employ this method to extract the relevant thermodynamical
properties derived from experimental characterizations for comparison with our theory. A general
description of the CALPHAD method and its application to the UN system will be presented in
Section 2.3.

Due to its potential as a fuel material, knowledge of the thermal behavior is essential.
Understanding thermodynamical properties from first-principles theory, including enthalpy of
formation, heat capacity, and free energy, is important for reliably determining the phase stability and
phase diagram. For the calculation of these properties we go beyond previous first-principles modeling,
that are limited to a quasi-harmonic treatment of the lattice vibrations, and here include anharmonic
effects via the self-consistent ab initio lattice dynamics (SCAILD) method [48]. This approach is
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computationally efficient, and it accounts for phonon-phonon interactions that may produce strong
anharmonic effects. The phonon-phonon coupling was shown to be important for uranium metal [49]
but have heretofore been ignored in first-principles modeling for UN.

2. Computational Methods

2.1. Electronic Structure Method

The results from the electronic-structure calculations presented here come from applying
density-functional theory that took shape in the important works by Hohenberg, Kohn, and Sham [50,51].
Density-functional theory is in principle correct, but it depends on practical simplifications. The
most important one is the treatment of the electrons exchange and correlation interactions. For these
interactions many different approximations have been proposed. Here we are applying the generalized
gradient approximation (GGA) that is better for the actinides than the previously used local density
approximation [52] and even some more recent formulations [53]. In addition to spin-orbit interaction
we extend DFT to include effects of orbital-orbital interactions as we will discuss below.

In terms of the technical details of the calculations, we are applying two approaches. For all
calculations, except those related to the self-consistent phonon method (see below), we utilize an
all-electron full-potential linear muffin-tin orbital (FPLMTO) method that is well established [54] and
has been described in detail [55]. In this method, no approximations are made for the electron core
states that lie deeper in energy than the valence states, unlike the pseudopotential method. The core
approximation made in the latter technique is computationally efficient but can sometimes cause
inaccuracies that are avoided in all-electron calculations.

The present implementation does not make any assumptions beyond that of the electron exchange
and correlation functional. Basis functions, electron densities, and potentials are calculated without
any geometrical approximation and these are expanded in spherical harmonics (with a cut-off lmax = 8)
inside non-overlapping (muffin-tin) spheres surrounding each atom and in Fourier series in the region
between these muffin-tin spheres. There is a choice how to define the length of the muffin-tin sphere
radius (rMT) and here it is chosen so that rMT/rWS ~ 0.8, where rWS is the Wigner–Seitz (atomic-sphere)
radius. The radial part of the basis functions inside the muffin-tin spheres are calculated from a wave
equation for the l = 0 component of the potential that include all relativistic corrections including
spin-orbit coupling for d and f states but not for the p states, following the arguments in Reference [56].
Likewise, orbital-orbital interaction (orbital polarization, OP) is only considered for d and f states. The
formulation of the orbital polarization is obtained from Eriksson, Brooks, and Johansson [57] and this
interaction has been shown to be important for actinides, particularly plutonium [58].

For the two-atom per cell UN structure we applied 500 k points in the irreducible part of the
Brillouin zone and each energy eigenvalue was broadened with a Fermi–Dirac distribution (T = 300 K).
Uranium mononitride is an anti-ferromagnet but within the GGA a ferromagnetic ordering has lower
energy and we chose to adopt ferromagnetism for most calculations. However, the energetics and
bonding are very similar for both and close to experiment [21], see Table 1, and the actual choice
(ferromagnetic or anti-ferromagnetic) does likely not matter much for the properties we focused on
here. The reported atomic volume, bulk modulus and its pressure derivative in Table 1 are obtained
from a Vinet fit [59] to the calculated DFT pressures.

For the self-consistent phonon method (see below) we applied a 54-atom UN cell in the calculations
of the forces that are required for this approach. As this task is computationally rather challenging,
we utilized a more efficient electronic-structure code with the additional simplifications of ignoring
magnetic ordering and spin-orbit interaction. Hence, we employed the Vienna ab initio simulation
package VASP [60–62]. Here, the projected augmented wave (PAW) potentials have a 450 eV energy
cut off and we applied a k point mesh on a 2 × 2 × 2 Monkhorst-Pack grid.
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Table 1. Uranium mononitride (UN) results from density-functional-theory (DFT) ferromagnetic (FM),
anti-ferromagnetic (AF), non-magnetic (NM) calculations and experimental data [3,20,21]. V, B, and
B’ are the atomic volume, bulk modulus, and the bulk modulus pressure derivative (B’ = dB/dP),
respectively. ∆E is the relative total energy and M the total (spin and orbital) magnetic moment on the
uranium atom. All results are obtained from calculations that include orbital polarization except for
the magnetic moment in parenthesis that refers to a treatment with spin-orbit coupling only. ∆fH is the
formation enthalpy.

Method V
(Å3)

B
(GPa) B’ ∆E

(mRy/at)
∆E

(kJ/mol)
M

(µB)
∆fH

(mRy/at)
∆fH

(kJ/mol)

DFT-FM 14.85 182 5.2 0 0 0.78 (1.56) −226.6 −297.5
DFT-AF 14.85 183 5.0 1.5 1.97 0.78 n/a n/a
DFT-NM 14.75 232 2.0 2.3 3.02 0 n/a n/a

Expt 14.62 191–206 6.3 n/a n/a 0.75 −223.6 −293.6

2.2. Self-Consistent Ab Initio Lattice Dynamics Method (SCAILD)

The approach is described in detail [63] and not repeated here, but the general idea is to account
for thermal vibrations of the atoms and their interactions. This is accomplished by (i) calculating the
forces on atoms, displaced from the ideal positions according to the temperature, and (ii) computing
the phonon density of states (DOS). As the forces, displacements, and the phonon DOS depend on each
other the scheme is set up to self-consistently determine the temperature dependence of the lattice
dynamics. We conducted SCAILD calculations, utilizing a 54-atom cell for UN, for five temperatures,
T = 1000, 1500, 2000, 2500, and 3000 K. In addition, we considered three strategically chosen atomic
volumes for a total of 15 simulations. The lattice free energy is well converged with 105 SCAILD
iterations for each simulation and the result was used to evaluate the total free energy (also adding DFT
electronic contributions) as a function of temperature at ambient pressure. In Figure 1, we illustrate
these lattice vibration energies (here at constant atomic volume, 14.85 Å3) as functions of number of
SCAILD iterations. The method was also used to evaluate, from the phonon DOS, the heat capacity
that can be compared to experimental data.
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2.3. CALPHAD Method

The CALPHAD method was employed in this study to extract the reliable experimental
thermodynamic properties for comparison with our computed results, which validated our theoretical
approach. In general, the major function of the CALPHAD approach is to model the Gibbs energy and
establish a phase diagram [45–47]. CALPHAD is an iterative method that adjusts the parameters that
describes the Gibbs energy functions of various phases in a system in order to construct a phase diagram
that best reproduces the available experimental thermodynamical and phase-diagram data. Once such
functions have been assessed, they are compiled in a database that can be used for computational
thermodynamical predictions of multi-component systems.

In addition to obvious comparison between the existing CALPHAD data and the theoretical
calculations, we emphasize that the coupling of CALPHAD and ab initio calculations enhances the
thermodynamic modeling capability when material systems with many thermodynamic unknowns
are considered. First of all, ab initio calculations (e.g., the heats of formation and transformation) can
directly provide essential inputs to the CALPHAD modeling framework when experimental data
are sparse or missing. Second, it is worth noting that the process of parameter optimization and
error minimization involved in the CALPHAD method is an inverse problem with infinite degrees of
freedom [64]. Thus, many possible combinations of values of user-defined parameters could produce
phase boundaries and diagrams that perfectly coincide. Therefore, the use of ab initio energetics
during the CALPHAD assessment constrains the optimization process and validates the resulting
thermodynamical database, not only from a diagrammatic basis, but also from a reliable energetics
basis. Examples of ab-initio-informed CALPHAD assessments for actinide systems can be found
in [65,66]. Following the present work, ab initio predictions of specific heat and free energy versus
temperature for actinide systems is extremely useful to the CALPHAD community.

The CALPHAD thermodynamical modeling of the U-N binary system was initially performed by
Chevalier et al. [31] from a critical assessment of most of the available experimental information on
this system. The agreement between experimental and calculated phase diagram or thermodynamical
properties was quite satisfactory. However, Besmann et al. [67] mentioned that the calculated
UN decomposition nitrogen pressure versus temperature was significantly lower than almost all
reported measurements. Thus, Besmann [67] adjusted the UN Gibbs free energy by +12 kJ/mol from
that of Chevalier et al. [31] to bring the calculated pressures into relative agreement with reported
measurements. This last CALPHAD assessment of the UN Gibbs free energy is considered in the
present study.

3. Results

Uranium mononitride is a rather stable compound and that is reflected in a strongly negative
formation enthalpy; −293.6 kJ/mol (−223.65 mRy/at) [20]. The formation enthalpy can be modeled
within the DFT approach because the energy of the constituents of UN (uranium and nitrogen) as well
as the compound itself (ignoring the possibility of a non-stochiometric compound) can be calculated.
Uranium metal forms in an orthorhombic structure, α uranium, that was studied within the DFT model
a while ago [68]. The structure is defined by axial b/a and c/a ratios as well as an internal parameter,
y, that were carefully determined [68] and these parameters were used in the present calculation for
α-uranium. Uranium mononitride, on the other hand, forms in the cubic sodium-chloride structure
and has no free parameters due to its symmetry. The calculation of the nitrogen (nitrogen gas, N2) is
less straightforward in the context of conventional density-functional theory. Sedmidubský et al. [69]
addressed the problem associated with N2 gas molecules in their attempts to calculate formation
enthalpies of the actinide mononitrides from DFT. They simulated an N2 dimer by constructing a
large tetragonal unit cell and compared its energy with nitrogen atoms placed in a cubic cell and very
far apart. From this they deduced a dissociation energy of N2 = 462.2 kJ/mol (352.08 mRy/at). In the
present study we added this amount to the energy of a large cell of the simple cubic α-N2 [70] for an
estimate of the nitrogen-atom energy. Combining this result and the calculated energies of α-U and
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UN, we obtained a formation enthalpy of UN; ∆fH = −297.5 kJ/mol (−226.6 mRy/at), in exceptional
agreement with the experimental value of −293.6 kJ/mol (−223.6 mRy/at) [20].

In Table 1 we collect formation enthalpy and some other calculated ground-state properties for
UN. Overall, our results are in excellent agreement with experiment and depend only very weakly on
the magnetic configuration. Even the non-magnetic treatment appears reasonable, suggesting that
ignoring magnetism, as is done here for the phonon calculations, is sensible. The calculated magnetic
moment agrees with neutron diffraction [3] only when orbital polarization is considered. Without
orbital-orbital coupling the orbital moment is severely underestimated and the total moment too large
(the spin and orbital moments couple anti-parallel).

In addition to thermodynamical stability, mechanical stability is important for a relevant material.
The elastic constants provide information on mechanical properties and they have been measured [18]
and computed [39,71] for UN and we compare our results to those in Table 2. In general, DFT elastic
constants have larger errors than either the atomic volume or the bulk modulus and with that in
mind, the calculated zero-temperature elastic constants compare very favorably with the measured
room-temperature data.

Table 2. Calculated, present, and published [39,71], and experimental [18] elastic constants for UN.

Method C11 (GPa) C12 (GPa) C44 (GPa)

DFT-FM (present) 390 77.9 79.6
DFT-GGA [39] 428 136.6 29.7
DFT-GGA [71] 404.6 124.2 45.0

Expt 391 90 80

Reviewing the performance of the DFT (GGA+OP) model for UN in Tables 1 and 2, we realize that
there is no compelling argument for going beyond this level of theory. In a recent DFT+U study [38]
the atomic volume and bulk modulus were calculated as functions of the Hubbard U parameter for the
purpose of finding the U value that best reproduces the data (U = 2 eV). However, for the optimized
value of U, the agreement with experiment was still worse than our GGA+OP approach presented in
Table 1. The reason the DFT+U result was less accurate is likely that the electronic structure was not
obtained from an all-electron treatment and that neither spin-orbit coupling, nor orbital polarization
was accounted for [38].

As discussed above, being a potential fuel, the thermodynamical properties of uranium
mononitride at rather high temperatures are of interest. At lower to moderate temperatures one expects
a quasi-harmonic approximation of the lattice vibrations to be sufficient [38] while at temperatures
well above 1000 K anharmonic effects become increasingly relevant. With the self-consistent phonon
approach, it is possible to address strong phonon-phonon coupling that leads to anharmonic lattice
vibrations that go beyond the quasi-harmonic behavior.

In Figure 2 we show the free energy for UN obtained from SCAILD. Results from only the
lattice-vibration contribution, at a fixed 14.85 Å3 atomic volume, are displayed with open squares.
When adding the electron contribution, including the electronic entropy, the free energy drops
somewhat (solid circles). Finally, evaluating the free-energy contributions at zero pressure (minimizing
the free energy with respect to volume), results in the solid squares in Figure 2. For comparison we
also show (solid line) the results from a CALPHAD assessment of available experimental data. Clearly,
the first-principles treatment is consistent with the CALPHAD result, suggesting a rather accurate
theoretical model.
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energies at constant atomic volume (14.85 Å3). The DFT electron free energy that includes electronic
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In addition to the free energy, it is interesting to directly contrast our calculated heat capacity
with experimental data. In Figure 3 we show two sets of calculations, one assuming quasi-harmonic
lattice vibrations, acquired from the GIBBS2 package [72–75], and the other, allowing for anharmonic
phonons, determined by the SCAILD method. For both these sets we add the electronic contribution
obtained from the electronic structure. The Cv data from SCAILD were converted to Cp by applying
the difference in these quantities computed by GIBBS2. There are also numerous sets of experimental
data [4,7,8,12,13,15,19] included in the figure. The anharmonic phonon model compares very well with
available experimental data except those from [7] that appears to deviate from all other experimental
data above 1700 K. The quasi-harmonic model does reasonably well at lower temperatures up to 1000 K
but beyond that it is insufficient for reproducing the trend of the experimental data.
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The Debye temperature is another quantity for which the models can be tested against experiments.
The phonon spectrum of UN is known from neutron scattering [76] and from this spectrum a Debye
temperature ΘD = 181 K can be deduced [40]. Our anharmonic treatment of UN predicts ΘD = 190 K
with only a very weak temperature dependence, while our quasi-harmonic treatment (GIBBS2) results
in a substantially larger ΘD = 269 K in worse agreement with neutron scattering. The failure of the
quasi-harmonic model to accurately predict the Debye temperature for UN underscores the importance
of anharmonic effects in this compound.

4. Summary and Conclusions

We applied a DFT-GGA model, including orbital polarization, for uranium mononitride and
found that for thermodynamical and mechanical properties, the approach is appropriate. The
formation enthalpy as well as equilibrium volume, bulk modulus, and elastic constants all agree very
favorably with experimental data. The electronic-structure model does not reproduce the observed
anti-ferromagnetic ground state but rather a ferromagnetic state. However, we show that the energetics
depends very weakly on the actual magnetic configuration and for most calculations we thus assume
ferromagnetic order. We extend DFT to include orbital polarization, and this interaction is particularly
important for the magnetic properties.

For the high-temperature calculations, we simplified the treatment of the electronic structure
and overlooked magnetic effects and spin-orbit coupling. We are, to some extent, justified in this
simplification because magnetic order is absent above the ordering temperature and due to the
thermal broadening, we expect the effect of spin-orbit interaction to greatly diminish. These electron
correlations can in principle be addressed in the modeling of the phonons, but this is currently beyond
our computational capabilities.

Our phonon calculations above 1000 K show that accurate behavior of the free energy as well as
heat capacity is only achieved when anharmonic lattice dynamics is considered. Specifically, for the
free energy, our present ab initio model is consistent with the CALPHAD assessment of the known
experimental data. In addition, the agreement between the anharmonic model and the corresponding
measured data is excellent for the heat capacity and Debye temperature, demonstrating the importance
of the anharmonic phonons.
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