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Abstract: Axicon is an optical element that can be used to produce high-quality Bessel beams
efficiently. In general, the smaller the base angle of the axicon is, the longer the diffraction-free
distance of the generated Bessel beam will be. Therefore, axicon with an extremely small base angle
is important for the generation of Bessel beam. However, the measurement of an extremely small
base angle is a challenge. Here, we applied the phase-shifting digital holography in the measurement
of axicon angle. The errors of the three measured axicons with base angles of 0.5◦, 1◦, and 1◦ were
1.94%, 4.43%, and 1.63%, respectively.
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1. Introduction

As proposed by Durnin [1], Bessel beams have been receiving much attention because of their
interesting properties. For example, Bessel beams have long diffraction-free distance and can reconstruct
in the presence of an obstacle (self-reconstructing) [2–5]. Such properties make Bessel beams attractive
for a broad range of applications, such as optical tweezers and particle trapping [6–9]. Bessel beams
are also particularly involved in the applications in strong-field science, laser machining, biomedical
imaging, and confocal microscopy [10–16]. Given the specific properties and important applications,
the generation of Bessel beams is of considerable importance.

Several techniques such as diffractive optical element, spatial light modulator (SLM), and axicon,
have been used to generate Bessel beams [17–21]. Among the techniques, the most common method to
generate a Bessel beam is by using an axicon because of the low energy loss and high beam quality.
The diffraction-free distance of a Bessel beam can be adjusted by changing the base angle of the axicon.
In general, the smaller the base angle of the axicon is, the longer the diffraction-free distance of the
generated Bessel beam will be [22]. Therefore, the production of axicons with a small base angle is
important. However, as the base angle of an axicon decreases, its measurement becomes increasingly
challenging. Thus, a method that can accurately measure the base angle of an axicon is necessary.

Some methods have been proposed to measure the base angle of an axicon. The coordinate
measuring machine (CMM) method uses a contact probe to detect the base angle of an axicon. However,
similar to other contact measurement methods, CMM may cause surface damage to the axicon,
and the process is time-consuming. Computer-generated holograms (CGHs) were applied for the
measurement of the axicon [23]. However, CGHs need to be precisely designed. A method based
on the chromatic dispersion optical path was also proposed [24]. Although this method is easy to
regulate, its angle deviation is relatively high. Wei et al. measured an axicon with a base angle of 20◦

by using an auto-collimation optical path [25]. Here, we applied the phase-shifting digital holography
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technique [26,27] to measure the base angle of axicons. Results show that this method can precisely
detect the extremely small base angle of an axicon.

2. Theoretical Analysis

The electric field of the light after passing through an axicon can be expressed as follows:

Eobject = Ao exp[−i(ϕi + ϕA)], (1)

where Ao stands for amplitude, ϕi is the phase distribution of the background, and ϕA is the phase
imposed by an axicon.

The electric field of the reference light is expressed as follows:

Ere f erence = AR exp(−iϕR), (2)

where AR stands for amplitude, and ϕR is the phase distribution of the reference light.
To obtain the phase change ϕA caused by the axicon, we adopt the four-step phase-shifting

technique [27]. Phases 0, π/2, π, and 3π/2 are respectively imposed onto the reference beam. Then,
the light intensity of the interference hologram, collected by charge coupled device (CCD), can be
expressed by the following equation:

I1n = AR
2 + Ao

2 + 2ARAo cos[ϕR + (n− 1)
π
2
− (ϕi + ϕA)] (n = 1, 2, 3, 4) (3)

We obtain the following equations by removing the axicon and respectively imposing phases 0,
π/2, π, and 3π/2 to the reference beam again, as follows:

I2n = AR
2 + Ao

2 + 2ARAo cos[ϕR + (n− 1)
π
2
−ϕi] (n = 1, 2, 3, 4). (4)

According to Equation (3), four different holograms recording the interference of Bessel beam
and reference light with phase shift of 0, π/2, π, and 3π/2 are obtained. These holograms contain
the information of the axicon. In Equation (4), we have another four different holograms without
the axicon. Compared with the expression of Equation (3), these four holograms do not contain
the information of an axicon. Based on these interference holograms, we can deduce the phase of
the axicon by the mathematical transformation, and the details are shown in the following section.
As representative examples, three different methods using four, five, or eight phase-shifted holograms
were introduced. Four holograms in Equation (3) are enough to derive the object phase with the known
reference phase [27]. The most common reference is a plane wave with uniform amplitude and phase,
which needs precise control of the reference light.

The phase can be solved using four phase-shifting holograms with the presence of an axicon, that
is, I11, I12, I13, and I14 in Equation (3). The phase term can be expressed as follows:

tan(ϕR −ϕi −ϕA) =
I14 − I12

I11 − I13
. (5)

Assuming the intensity of background light and reference light remains constant, that is,ϕR −ϕi = 0,
we obtain the following equation:

ϕA = −arctan(
I14 − I12

I11 − I13
). (6)
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We also solve the phase by using five phase-shifting holograms, that is, I11, I12, I13, and I14 in
Equation (3) and I21 in Equation (4). Another four holograms are obtained by subtracting I21 from I11,
I12, I13, and I14, respectively, as follows:

In = I1n − I21 (n = 1, 2, 3, 4). (7)

Equation (7) can be further expressed as follows:

In = 2ARAo{ cos[ϕR + (n− 1)
π
2
− (ϕi + ϕA)] − cos[ϕR −ϕi)]}. (8)

We obtain the following equation by applying trigonometric transformation and filtering
high-frequency terms:

I′n = −2ARAosin[ −
ϕA

2
+
π
4
(n− 1)]. (9)

By applying the phase-shifting, we have:

tan(ϕA) = −
I′4

2
− I′2

2

I′1
2 − I′3

2 . (10)

Then, we obtain the expression of axicon phase by the following equation:

ϕA = −arctan(
I′4

2
− I′2

2

I′1
2 − I′3

2 ). (11)

We can also obtain the phase by using eight phase-shifting holograms, that is, I11, I12, I13, and I14

in Equation (3) and I21, I22, I23, and I24 in Equation (4). According to these equations, we can derive the
following equations:

tan(ϕR −ϕi −ϕA) =
I14 − I12

I11 − I13
, (12)

tan(ϕR −ϕi) =
I24 − I22

I21 − I23
. (13)

Equations (12) and (13) can be further written as follows:

tanϕA =
(I11 − I13)(I24 − I22) − (I14 − I12)(I21 − I23)

(I11 − I13)(I21 − I23) + (I14 − I12)(I24 − I22)
(14)

We can obtain phase ϕA by using inverse trigonometric function.
The phase introduced by axicon can be expressed as follows:

ϕA = k× (n− 1) × γ× r (15)

where k is the wave vector, n is the refractive index of axicon, γ is the base angle, and r is the radial length
along the axicon. Therefore, the base angle of the axicon can be calculated using the phase distribution.

3. Experimental Result

The experimental setup is shown in Figure 1. A laser beam is split into two beams after transmitting
through the beam expander consisting of two lenses. One of the beams is reflected onto the SLM by
BS2. Given that SLM can only modulate light with polarization along the horizontal axis, a polarizer is
inserted in front of the SLM. Another beam directly passes through the axicon, which is placed close
to BS3 to reduce the distance that the object light travels before it interferes with the reference beam.
Then, two beams are combined and interfered by BS3, whose results are recorded by a CCD. In the
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experiment, the phase shift is introduced by the SLM. According to the interference holograms with
different phase shifts, the base angle of the axicon can be measured.Appl. Sci. 2019, 9, x 4 of 8 
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Using three phase extracting methods, we measure the angle of an axicon experimentally. The 
phase distribution solved by four interference holograms is a pattern with poor symmetry (Figure 
3a) because the method assumes the background phase as 0, indicating the background phase is 
assumed to be constant. However, in the experiment, the background phase may change, which 
results in errors in the solved phase. A phase distribution with significant noise is solved using five 
interference holograms (Figure 3b). To solve the phase, we introduce a filter to eliminate the 
high-frequency noise in this method. Meanwhile, the introduction of the filter will result in an error 
at the position where the phase changes significantly. A better result is obtained by using eight 

Figure 1. Experiment setup of phase-shifting digital holography for measuring the base angle of axicon.
SLM: Spatial light modulator; CCD: Charge coupled device.

Based on the experimental setup, we can record the interference patterns, as shown in Figure 2.
The upper four figures are recorded with the presence of the axicon. Figure 2a–d shows the interference
results with the phase shifts of 0, π/2, π, and 3π/2, which correspond to I11, I12, I13, and I14 in Equation (3).
Considering the line-focusing feature of the axicon, a focal spot surrounded by rings is generated.
Removing the axicon from the experimental setup, the interference patterns of the reference light and
the object light without axicon can be recorded, as presented in the lower part of Figure 2. These two
beams can be approximately regarded as plane waves, thereby resulting in a series of oblique parallel
lines. When introduced with different phase shifts, the fringes translate accordingly. With a phase shift
of π, the fringes move roughly half the fringe’s width, which is consistent with the theoretical results.
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Figure 2. (a–d) Interference patterns of the light passing through the axicon interfering with the
reference light with different phase shift. (e–h) Interference fringes of the plane wave interfering with
the reference light with different phase shift. (a,e) Phase shifts of 0; (b,f) phase shifts of π/2; (c,g) phase
shifts of π; (d,h) phase shifts of 3π/2.

Using three phase extracting methods, we measure the angle of an axicon experimentally. The phase
distribution solved by four interference holograms is a pattern with poor symmetry (Figure 3a) because
the method assumes the background phase as 0, indicating the background phase is assumed to be
constant. However, in the experiment, the background phase may change, which results in errors in the
solved phase. A phase distribution with significant noise is solved using five interference holograms
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(Figure 3b). To solve the phase, we introduce a filter to eliminate the high-frequency noise in this
method. Meanwhile, the introduction of the filter will result in an error at the position where the phase
changes significantly. A better result is obtained by using eight interference holograms, as shown
in Figure 3c. The phase distribution has a good circular symmetry, which agrees with the feature of
the axicon.
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(b) five phase-shifted holograms; (c) eight phase-shifted holograms.

Using eight interference holograms, we measure the phase distribution of three axicons, that is, one
with a base angle of 0.5◦ and the other two are 1◦. Then we compare the experimental results with the
theoretical data. Axicon has a tapered structure, whose thickness varies with radial distance. Therefore,
the beam phase also presents periodic circular symmetric distribution as radial distance changes.

Figure 4a,c show the theoretical simulations of axicons with the base angles of 0.5◦ and 1◦. Phase
changes periodically with increasing radial distance. In the figure, the selected radial range is 0.63 mm.
Within this range, the phase of the axicon with a base angle of 1◦ changes by approximately eight
cycles, while that of the axicon with the base angle of 0.5◦ varies by approximately four cycles, which
is half of the former. Figure 4b,d,e presents the corresponding experimental results, thereby indicating
that the simulation and experimental results are consistent.
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Figure 4. Phase of axicons with different base angle. (a) Theoretical simulation of axicon with base angle
of 0.5◦. (b) Experimental measurement of axicon with base angle of 0.5◦. (c) Theoretical simulation
of axicon with base angle of 1◦. (d) Experimental measurement of one axicon with base angle of 1◦.
(e) Experimental measurement of another axicon with base angle of 1◦.
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The phase change curve along the radial distance (along the black line in Figure 4b,d,e) shows the
details of the error between theoretical simulation and experimental measurements, as presented in
Figure 5. The experimental results of the three axicons show consistent results with the theoretical
simulation. After calculation in radial range from 0 mm to 0.63 mm, the axicon with a base angle of
0.5◦ changed 3.924 periods in simulation and 4 periods in the experiment. Therefore, the error is 1.94%.
The first axicon with the base angle of 1◦ (Figure 4d) shifts 7.849 periods in the simulation and 8.197
periods in the experiment, with the error of 4.43%; the second 1◦ axicon (Figure 4e) shifts 7.977 periods
in the experiment, and the error is 1.63%. The errors may be caused by the following factors. First,
axicon is not well-manufactured. As shown in Figure 3b, the position of the axicon tip is not at the
center of the phase diagram, and the phase of the central spot shows insignificant change. Second, the
phase-shift introduced by SLM may deviate from the required value.
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We solve the phase of an axicon by phase-shifting digital holography, and obtain the base angle
of the axicon by the phase map. If the digital holography is used instead of digital-phase shifting
holography, only one hologram is recorded. In the hologram, the axicon phase is embedded with
the phase of the reference beam. Some possible methods can be considered to solve the phase of the
axicon. One is traditional digital hologram. For this method, the reconstruction of axicon’s phase
should introduce another beam to illuminate the hologram in simulation. To perfectly qualify for
reconstruction, this beam should possess the same properties as the reference beam, which is difficult
to realize. Also, the statistic property of the hologram should be satisfied. Two other methods can be
considered to eliminate the influence of reference beam. One is using a plane wave as a reference, then
the phase of the reference can be treated as a constant. However, an ideal plane wave is difficult to
achieve in experiment. The other one is detecting the phase of reference, which requires additional
experimental measurement. Moreover, all these methods will introduce additional error, which affects
the detection of the angle, especially for axicons with extremely small angle (smaller than 1 degree).
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4. Conclusions

In conclusion, we introduced digital holography to measure the base angle of an axicon. With the
help of Mach-Zehnder interference system, we used SLM to introduce phase shift and calculated the
phase of the axicon by using interference holograms with different phase shifts. We experimentally
calculated the phase by using four, five, or eight phase-shifted holograms. Our results showed that
a better result can be obtained using eight holograms. Compared with theoretical simulation, we
measured the phase of three axicons, that is, one with the base angle of 0.5◦ and the other two with
1◦ base angle, and the errors are 1.94%, 4.43%, and 1.63% respectively. The results indicated that the
method can accurately measure the base angle of the axicon.
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