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Abstract: Insider threats are malicious activities by authorized users, such as theft of intellectual
property or security information, fraud, and sabotage. Although the number of insider threats is much
lower than external network attacks, insider threats can cause extensive damage. As insiders are very
familiar with an organization’s system, it is very difficult to detect their malicious behavior. Traditional
insider-threat detection methods focus on rule-based approaches built by domain experts, but they
are neither flexible nor robust. In this paper, we propose insider-threat detection methods based on
user behavior modeling and anomaly detection algorithms. Based on user log data, we constructed
three types of datasets: user’s daily activity summary, e-mail contents topic distribution, and user’s
weekly e-mail communication history. Then, we applied four anomaly detection algorithms and
their combinations to detect malicious activities. Experimental results indicate that the proposed
framework can work well for imbalanced datasets in which there are only a few insider threats and
where no domain experts’ knowledge is provided.

Keywords: insider threat detection; anomaly detection; machine learning; behavioral model; latent
dirichlet allocation; e-mail network

1. Introduction

Insider threat is a security issue that arises from persons who have access to a corporate network,
systems, and data, such as employees and trusted partners [1]. Although insider threats do not occur
frequently, the magnitude of damage is greater than from external intrusions [2,3]. Because insiders
are very familiar with their organization’s computer systems and operational processes, and have
the authorization to use these systems, it is difficult to determine when they behave maliciously [4].
Many system protection technologies have been developed against intrusions attempted by outsiders,
e.g., quantifying the pattern of connection Internet protocols (IPs) and types of attacks [5]. However,
past research on the security of a company’s internal information has mainly focused on detecting
and preventing intrusion from the outside, and few studies have addressed methods to detect insider
threats [6].

There are three research mainstream strategies for insider threat detection. The first strategy is
to develop a rule-based detection system [7,8]. In this strategy, a pool of experts generates a set of
rules to identify insiders’ malicious activities. Then, each user’s behavior is recorded as a log and is
tested to determine whether it meets any of the pre-designed rules. Cappelli et al. [9] discussed the
types of insider threats and domain knowledge to prevent/detect insider threats. Rule-based detection
methods have a critical limitation in that the rules must be constantly updated through the knowledge
of domain experts, so the risk of someone circumventing the rules always exists [10]. Hence, rule-based
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methods based on expert knowledge are inflexible to changing insider threats methods, which results
in unsatisfactory detection performance [7,10,11].

The second strategy is to build a network graph to identify suspicious users or malicious behaviors
by monitoring the changes of the graph structure [12]. Graph-based insider threat identification
does not only analyze the value of the data itself but also analyzes the relationships among the
data. The relationships among the data are represented by edges connecting the nodes of the graph,
and its properties can be analyzed to determine the relationships of specific nodes to insider threats.
Eberle et al. [12] defined an abnormal activity if modifications, insertions, or deletions occur in the
underlying structure of a normal data graph. To determine the structure of a normal data graph,
they employed a graph-based knowledge discovery system called “SUBDUE”. Parveen et al. [13]
used graph-based anomaly detection (GBAD)-MDL, GBAD-P and GBAD-MPS to determine the ideal
structure of a graph, and added an ensemble-based approach to detect abnormal insider activities in
the “1998 Lincoln Laboratory Intrusion Detection” dataset.

The third strategy is to build a statistical or machine learning model based on previous data to
predict potential malicious behavior [14]. Machine learning is a methodology in which a computer
learns an algorithm to optimize appropriate performance criteria from training data to perform given
tasks [15]. Insider threat detection using machine learning aims at developing a method to automatically
identify users who perform unusual activities among all users without prior knowledge or rules.
Because the machine learning methodology can continuously learn and update the algorithms from the
data, it can perform stable and accurate detection compared to rule-based detection. Gavai et al. [16]
employed random forest [17] and isolation forest [18] to classify retirees for the ‘Vegas’ dataset, in which
behavior features are extracted from e-mail transmission patterns and contents, logon and logoff records,
web browsing patterns, and file access patterns. Ted et al. [4] collected user activity data for 5500 users
using a tool called “SureView” (Forcepoint, Austin, TX, USA). They extracted features from the data by
considering potential malicious activity scenarios by insiders, implied abnormal activities, temporal
order, and high-level statistical patterns. They created variables involving insider’s various actions
such as email, files, and logons, and they applied 15 statistical indices and various machine-learning
algorithms to determine the most suitable combination of algorithms. Eldardiry et al. [10] detected
insider threats by measuring similarity in behavior between the role group to which a user actually
belongs and another role group to which he/she does not belong, assuming that users in the same role
groups have similar patterns of activities.

Although the learning model-based strategy is advantageous in that it does not depend on the
knowledge of domain experts to define a set of rules or to construct a relational graph, it has two
practical obstacles: (1) the way of quantifying a user’s behavioral data and (2) the lack of abnormal
cases available for model building. As most statistical/machine learning models take a continuous
value as an input to the detection model, each user’s behavior during a certain period (e.g., day)
should be transformed into a numerical vector in which each element represents a specific behavioral
characteristic. Because a user’s behavior can be extracted from different data sources, such as systems
usage logs, e-mail sending and receiving networks, and e-mail contents, one of the key points of
building successful insider threat detection models is to define useful features for different types of data
and to transform the unstructured raw data into a structured dataset. From a modeling perspective,
it is virtually impossible to train a binary classification algorithm when only a few abnormal examples
exist [19]. Under this class imbalance circumstance, most statistical/machine learning algorithms tend
to classify all activities as normal, which results in a useless insider-threat detection model. To resolve
these shortcomings, we propose an insider-threat detection framework based on user activity modeling
and one-class classification. During the user activity modeling stage, we consider three types of
data. First, all activity logs of individual users recorded in the corporate system are collected. Then,
candidate features are extracted by summarizing specific activities. For example, if the system logs
contain information on when a user connects his/her personal Universal serial bus (USB) drive to
the system, the total number of USB connections per day can be extracted as a candidate variable.
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Second, we consider user-generated contents, such as the body of an e-mail, to create candidate features.
Specifically, we used topic modeling to convert unstructured text data to a structured vector while
preserving the meaning of text as much as possible. Lastly, we construct a communication network of
users based on e-mail exchange records. Then, summary statistics for a node including centrality indices
are computed and used as candidate features. During the insider-threat detection model-building stage,
we employ one-class classification algorithms to learn the characteristics of normal activities based
on three categories of candidate feature sets. We then employ four individual one-class classification
algorithms and exploit the possible advantages of their combinations. By considering heterogeneous
feature sets, we expect an improved detection performance compared to detection models based on a
single dataset. In addition, by employing one-class classification algorithms, it becomes practically
possible to build an insider-threat detection model without the need for past abnormal records.

The rest of this paper is organized as follows. In Section 2, we introduce the dataset used in this
study and demonstrate user activity modeling, i.e., how to transform unstructured logs or contents
to a structured dataset. In Section 3, we introduce the one-class classification algorithms employed
to build the insider-threat detection model. In Section 4, experimental results are demonstrated
with some interesting observations. Finally, in Section 5, we conclude our study with some future
research directions.

2. Dataset and User Activity Modeling

In this section, we briefly introduce the dataset used in our study. Then, we demonstrate how we
define candidate features for the insider-threat detection model and how we transform three different
types of user activity data into numeric vectors.

2.1. CERT Dataset

Because it is very difficult to obtain actual corporate system logs, we used the “CERT Insider
Threat Tools” dataset (Carnegie Mellon’s Software Engineering Institute, Pittsburgh, PA, USA) [20].
The CERT dataset is not real-world enterprise data, but it is an artificially generated dataset created for
the purpose of validating insider-threat detection frameworks [1].

The CERT dataset includes employee computer usage logs (logon, device, http, file, and email)
with some organizational information such as employee departments and roles. Each table consists of
columns related to a user’s ID, timestamps, and activities. The CERT dataset has six major versions
(R1 to R6) and the latest version has two variations: R6.1 and R6.2. The types of usage information,
number of variables, number of employees, and number of malicious insider activities are different
depending on the dataset version. We conducted this study using R6.2, which is the latest and
largest dataset. In this version, the dataset includes 4000 users, among whom only five users behaved
maliciously. The description of the logon activity table is provided in Table 1 and the other activities
are provided in the Appendix A, Table A1.

Table 1. Log records of logon activities.

Recorded Item Description

ID Primary key of an observation
Date Day/Month/Year
User User ID

Personal computer (PC) Key number of a PC logged on
Activity Log on or log off (Binary type)

2.2. User Activity Modeling Based on Daily Activity Summaries

In the CERT dataset, user behaviors are stored in five data tables: logon, USB, http, file, and email.
To comprehensively utilize heterogeneous user behavior data, it is necessary to integrate the behavioral
information into one standardized data table in chronological order. Because the proposed user-level
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insider-threat detection models developed in this study work on a daily or weekly basis, we first
integrated a user’s fragmented activity records for each day and summarized them to quantify the
intensity of activity, which becomes an input variable in the detection model. For example, based on
the information stored in the logon table, it is possible to extract the number of times a user has logged
on to the computer during a specific day.

To determine candidate input variables for insider-threat detection, we examined the input
variables used in past studies, as shown in Table 2. From these references, we created all possible input
variables that can be extracted from the CERT dataset. The total number of candidate input variables
is 60 and the description of each variable is provided in the Appendix A, Table A2. Once this daily
summarization process was completed, a total of 1,394,010 instances were obtained. Each instance
represents a behavior summary of a specific day for a specific user.

Table 2. Referred articles for variable selection.

Research Papers Authors Year

Supervised and unsupervised methods to detect insider threat
from enterprise and online activity data Gavai et al. [16] 2015

Detecting insider threats using ben-ware: beneficial intelligent
software for identifying anomalous human behavior McGough et al. [21] 2015

Multi-source fusion for anomaly detection: using
across-domain and across-time peer-group consistency checks Eldardiry et al. [10] 2014

Use of domain knowledge to detect insider threats in
computer activities Young et al. [22] 2013

Insider threat simulation and performance analysis of insider
detection algorithms with role-based models Nellikar [23] 2010

Among more than 1 million instances, only 73 instances are potentially actual insider threats.
To identify the characteristics of malicious insiders, we investigated the roles of the 73 abnormal
instances, as shown in Table 3. We found that most abnormal activities (nearly 90%) are committed by
three roles: “Salesman”, “Information Technology (IT) Admin”, and “Electrical Engineer”. If a role
has no abnormal instances, or in the case of roles with less than three abnormal instances, it is not
only impossible to build a good detection model, it is also impossible to verify the performance of the
developed model. For this reason, we constructed role-dependent insider-threat detection models and
evaluated the performance of the developed model for the above three roles. The frequency of normal
instances and abnormal instances in the three roles are shown in Table 4.

Table 3. The number of anomalous records according to role.

Role Number of Anomalous Records

Salesman 32
IT Admin 23

Electrical Engineer 10
Computer Programmer 3

Manager 2
Director 1

Production line worker 1
Software developer 1

Total 73

Table 4. Frequency of records of three roles.

Electrical Engineer IT Admin Salesman

Normal Abnormal Normal Abnormal Normal Abnormal
141,199 10 34,244 23 125,524 32
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The performance of machine learning models, including anomaly detection, is strongly affected
by the input variables used to train the model [24]. Theoretically, the performance of machine
learning models improves as the number of variables increases when independence between input
variables is ensured. However, when applied to a real-world dataset, a large number of input
variables sometimes degenerate the model performance because of the high dependency between
input variables (multi-collinearity) and the existence of noise. Hence, it is necessary to select a set of
effective variables rather than using all variables to secure better performance. In this study, we used
the univariate Gaussian distribution to select possible beneficial variables to detect malicious instances.
For each variable, we first estimated the parameter of Gaussian distribution (mean and standard
variation). Then, if at least one of the abnormal activities was located in the rejection region with the
significance level α = 0.1 for a certain variable, we included the variable as an input variable for further
anomaly detection modeling. Table 5 shows the selected variables obtained by the univariate Gaussian
distribution test.

Table 5. Selected variables for each role.

Number Electrical Engineer IT Admin Salesman

1 numlogoffNight numlogoffNight numlogonDay
2 numPClogoffNight onoffNotsameDay numPClogonDay
3 numOpenOnPCNight numConnectionDay onoffNotsameNight
4 numAttachmentNight numCopyFromDeviceNight numConnectionNight
5 numSendNight numWriteFromDeviceNight numWriteFromDeviceNight
6 numEmailSentwithAttachNight numWebAccNight numUploadNight
7 numPClogonDay numDownloadNight numSendDay
8 numOpenOnPCDay numPClogoffNight numlogonNight
9 numAttachmentDay numPCwithUSBDay onoffNotsameDay

10 numSendDay numCopy2DeviceNight numPCwithUSBNight
11 numEmailSentwithAttachDay numCopyFromDeviceNight numWrite2DeviceDay
12 Electrical engineer numWebAccDay numOpenOnPCDay
13 numlogoffNight numURLAccessedNight numAttachmentDay
14 numPClogoffNight numRecievedDay

2.3. User Activity Modeling Based on E-mail Contents

A user’s daily e-mail usage logs (number of sent and received e-mails) are stored as shown in
Table 6. Although some summary statistics are included in the input variables in Table 5, it is sometimes
more important to analyze the content of each e-mail than to rely on simple statistics. Because the
e-mail data table in the CERT dataset also contains content information as well as log records as shown
in Table 6, we can conduct an individual e-mail-level content analysis. To do so, we employed topic
modeling to transform a sequence of words (e-mail body) to a fixed size of numerical vectors to be
used for training the insider-threat detection models.

Topic modeling is a method of text analysis that uncovers main topics that permeate in a large
collection of documents [25,26]. Topic models assume that each document is a mixture of topics
(Figure 1(c-1)) and each topic has its own word selection probability distribution (Figure 1(c-2)). Hence,
the purpose of topic modeling is to estimate the parameters of the probabilistic document generation
process such as topic distribution per document and word distribution per topic. Latent Dirichlet
allocation (LDA) is the most widely used topic modeling algorithm [25]. The document generation
process and two outputs of the LDA are shown in Figure 1. By observing actual words wd,i in each
document, LDA estimates the topic distribution per document θd and the word distribution per topic
ϕk given the hyper-parameter α. In this study, we set the number of topics to 50 and the value of α to 1.
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Table 6. Log records of email activities.

Email Description

ID Primary key of an observation
Date Day/Month/Year Hour:Min:Sec
User Primary key of a user
PC Primary key of a PC
To Receiver
Cc Carbon Copy
Bcc Blind carbon copy

From Sender
Activity Activity (Send/Receive)

Size Size of an email
Attachments Attachment file name

Content Content of an email

Figure 1. Latent Dirichlet allocation (LDA) process and its two outputs. (a) LDA document generation
process, (b)An illustrative example of the LDA document generation process, (c) Two outputs of LDA
((c-1) Per-document topic proportions (θd), (c-2) Per-topic word distributions (Φk)).

Table 7 shows the data format for insider-threat detection based on e-mail content analysis
using LDA. The “ID” is a unique string that distinguishes a specific e-mail from other observations.
The columns “Topic 1” through “Topic 50” indicate the probabilities assigned to the 50 topics per
individual e-mail and are used as an input variable of the anomaly detection model. Note that the sum
of the probabilities of the 50 topics is always 1. The “Target” is a variable that indicates whether the
e-mail is normal (0) or abnormal (1). Table 8 shows the number of normal and abnormal e-mails for
each of the three roles. We assumed that the e-mail topic distributions in each role are similar. Thus, if a
topic distribution of a certain e-mail is significantly different from that of the other e-mails, it should be
suspected as abnormal/malicious behavior.
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Table 7. Quantified e-mail content examples with actual label (normal = 0 and abnormal = 1).

ID Topic1 Topic2 . . . Topic50 Target

(I1O2-B4EB49RW-7379WSQW) 0.008 0.012 . . . 0.154 1
(L7E7-V4UX89RR-3036ZDHU) 0.021 0.008 . . . 0.125 1
(S8C2-Q8YX87DJ-0516SIWZ) 0.014 0.006 . . . 0.145 0

(A1V9-O5BL46SW-1708NAEC) 0.352 0.014 . . . 0.086 0
(N6R0-M2EI82DM-5583LSUM) 0.412 0.058 . . . 0.285 0
(O2N1-C4ZZ85NQ-8332GEGR) 0.085 0.421 . . . 0.001 0

Table 8. Normal (0) and abnormal (1) e-mail count for the three roles.

Salesman IT Admin Electrical Engineer

Normal Abnormal Normal Abnormal Normal Abnormal
644,252 40 170,765 15 694,050 13

2.4. User Activity Modeling Based on E-mail Network

Because the sender/receiver information is also available from the e-mail log records, as shown
in Table 6, we constructed the e-mail communication network on a weekly basis and extracted
quantified features as the third source of user activity analysis for insider-threat detection. Based on
the information available from Table 6, a directed e-mail communication network can be constructed,
as shown in Figure 2. The imaginary company name for CERT data is “dtaa” and uses the email
domain @dtaa.com. There are also 21 other domain names. In the CERT dataset, users used either
the company account email domain “@dtaa.com” or another domain such as “@gmail.com”. Users
sent and received e-mails to/from users in the same department or different departments in the same
company. They also sent and received emails to/from entities outside of the company. In this study,
a user’s email account is set as a node, and the edges between two e-mail accounts are weighted based
on the number of incoming and outgoing e-mails.

Figure 2. Example of email communication network.

Once the weekly e-mail communication network was constructed, we computed a total of
28 network-specific quantified features for each user, as shown in the Appendix A, Table A3.
These variables include the in- and out-degrees for personal or business e-mail account, the in-
and out-degree similarity between two consecutive time-stamps for the same account in terms of
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the Jaccard similarity [27], as computed by Equation (1), and the centrality measure in terms of the
betweenness, as computed by Equation (2).

Jaccard(Nodet−1, Nodet) =

∣∣∣Degree|Nodet−1| ∩Degree|Nodet|
∣∣∣∣∣∣Degree|Nodet−1| ∪Degree|Nodet|
∣∣∣ , (1)

Betweenness(i) =
∑
j<k

g jk(Ni)

g jk
, (2)

where, g jk is the number of the shortest paths between two nodes j and k, and g jk(Ni) is the number of
paths containing node i among the shortest paths between the two nodes j and k. Betweenness centrality
tends to be higher when one node in a network plays a bridging role for other nodes. Among the four
well-known centrality measures, i.e., degree centrality, closeness centrality, betweenness centrality,
and eigenvector centrality [28], we used the betweenness centrality to determine whether a specific
e-mail account behaves as an information gateway in the overall e-mail communication network.

Among the 4000 users in the CERT dataset, only four users, i.e., CDE1846, CMP2946, DNS1758,
and HIS1706, sent or received unusual emails. The numbers of normal and abnormal e-mails for these
users are shown in Table 9.

Table 9. Normal (0) and abnormal (1) e-mails for each user.

CDE1846 CMP2946 DNS1758 HIS1706

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal
456 9 474 7 498 3 493 3

3. Insider-Threat Detection

Figure 3 shows the overall framework of the insider-threat detection method developed in this
study. In the user behavior-modeling phase, each user’s behaviors stored in the log system are converted
to three types of datasets: daily activity summary, e-mail contents, and e-mail communication network.
In the anomaly detection phase, one-class classification algorithms are trained based on the three
datasets. Once a new record is available, it is input to one of these three models to predict potential
malicious scores.

Figure 3. Insider-threat detection framework.
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For the insider-threat detection domain, it is very common that a very large number of normal user
activity cases is available, whereas there are only a handful or no abnormal cases available. In this case,
conventional binary classification algorithms cannot be trained due to the lack of abnormal classes [19].
Alternatively, in practice, one-class classification algorithms can be used in such unbalanced data
environments [29]. Unlike binary classification, one-class classification algorithms only use the normal
class data to learn their common characteristics without relying on abnormal class data. Once the
one-class classification model is trained, it predicts the likelihood of a newly given instance being
a normal class instance. In this paper, we employed Gaussian density estimation (Gauss), Parzen
window density estimation (Parzen), principal component analysis (PCA) and K-means clustering
(KMC) as one-class classification algorithms for insider-threat detection, as shown in Figure 4.

Figure 4. Four anomaly detection algorithms used in this paper. (a) Gaussian density estimation,
(b) Parzen window density estimation (reprinted from Alpaydin (2014)), (c) Principal component
analysis (PCA), and (d) K-means clustering (KMC).

Gauss [30] assumes that the entire normal user behavior cases are drawn from a single multivariate
Gaussian distribution (Figure 4a), as defined in Equation (3):

p(x) =
1

(2π)d/2
|Σ|

exp
[
−

1
2
[x− µ]TΣ−1[x− µ]

]
(3)

Hence, training Gauss is equivalent to estimating the mean vector and covariance matrix that are
most likely to generate the given dataset, as in Equations (4) and (5):

µ =
1
n

∑
xi∈Xnormal

xi (4)

Σ =
1

n− 1

∑
xi∈Xnormal

(xi − µ)
TΣ−1(xi − µ) (5)
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where, xi is an object of a normal training instance and Xnormal is the entire learning dataset consisting
of only normal instances. The anomaly score of a test observation can be determined by estimating the
generation probability of the given observation with the estimated distribution parameters [31].

Parzen is one of the well-known, kernel-based, non-parametric density function estimation
methods [32]. Parzen does not assume any type of prior distribution and estimates the probability
density function based solely on the given observations using a kernel function K, as in Equation (6):

ˆfh(x) =
1
n

n∑
i=1

K
(x− xi

h

)
(6)

where, h is the bandwidth parameter of the kernel function that controls the smoothness of the estimated
distribution. The kernel function (Uniform, Triangular, Gaussian, and Epanechnikov) is a non-negative
function that is symmetric about the origin and has an integral value of 1 [33]. In this paper, we used
the Gaussian kernel function. It is possible to estimate the density of the given dataset by adding all
kernel function values for a certain location and dividing the sum by the total number of observations.
If the density of a new observation is low, it is highly likely that it is abnormal.

PCA is a statistical method that finds a new set of axes that preserves the variance of the original
dataset as much as possible [34]. Once these axes are determined, the high-dimensional original dataset
can be mapped to a lower dimensional space without significant loss of information [15]. Solving PCA
for the dataset X ∈ Rn×p is equivalent to finding the eigenvector matrix V ∈ Rn×p and the corresponding
eigenvalues λ1,λ2, · · · ,λp (λ1 > λ2 > · · · > λp). Applying PCA, an instance x ∈ Rp is mapped into a k
-dimensional space (k < p) using the first k eigenvectors:

x′ = V′Tx (7)

where, V′ ∈ Rn×k consists of the first k eigenvectors. In PCA, the reconstruction error e(x), which is the
difference between the original vector and its image reconstructed from the lower dimensional space
to the original space, can be used as an anomaly score:

e(x) = ‖x−V′V′Tx‖
2
= ‖x‖2 − ‖V′V′Tx‖

2
(8)

KMC is a clustering method that assigns each observation (x j) to the closest centroid (ci) so that
observations assigned to the same centroid form a cluster [15]:

argmaxc

K∑
i=1

∑
x j∈Ci

‖x j − ci‖
2 (9)

where, K is the number of clusters and is an algorithm-specific hyper-parameter that must be determined
prior to executing the algorithm. We examined three K values (3, 5, and 10) in this study. Once KMC is
completed based only on normal instances, the distance information between a new instance and its
closest centroid is used to compute the anomaly score, as shown in Figure 4d [35]. Di is the distance
between the test instance and its closest centroid while R is the radius of the cluster (the distance
between the centroid and the farthest instance from the centroid in the cluster). The relative distance
Di/R is the commonly used anomaly score in KMC-based anomaly detection.

In addition to the individual anomaly detection algorithms, we also consider a combination of
these algorithms. Even when learning the same data, the methodology for building the optimal model
for each algorithm is different, so there is no single algorithm that is superior in all situations in the
machine learning field [36]. In this situation, combining different techniques can be advantageous as
they generally improve the prediction performance compared to a single algorithm [36–39]. Hence,
we examined all possible combinations of four individual anomaly detectors to determine the best
combination for the given task and dataset. Since each algorithm has a different range of anomaly
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scores, we used the rank instead of score to produce the ensemble output. More specifically, for each
test instance, its anomaly score ranking for each model in the ensemble is computed and the inverse of
the averaged ranks was used as the anomaly score of the ensemble.

4. Results

Generally, an anomaly detection algorithm is trained based only on normal data in a situation
where most instances belong to the normal class and only a few instances are from the abnormal
class. Under this condition, it is impossible to set a cut-off value for detection as generally used
by classification models. Hence, for daily activity-based model and e-mail contents-based model,
the performances of anomaly detectors are evaluated as follows. First, the dataset is split to the
training dataset, which contains 90% of randomly selected normal instances, and the test dataset,
which contains the remaining 10% of normal instances and all abnormal instances. Second, an anomaly
detection algorithm is trained based on the training dataset only. Third, the anomaly scores for the
instances in the test dataset are computed and sorted in descending order. Finally, we compute the
true detection rate using seven different cut-off values (1%, 5%, 10%, 15%, 20%, 25%, and 30%) based
on Equation (10):

True detection rate (in top X%)

=
The number o f malicious activities included in the top X% anomaly scores

Total number o f malicious activities
(10)

In order to achieve statistically reasonable performances, we repeated the above process 30 times
for each anomaly detection algorithm and used the average true detection rate in the top X% as the
performance measure for insider-threat detection. Since the number of samples for e-mail network data
is not as sufficient as those of daily activity data and e-main contents data, we used all normal instances
for training, and anomaly scores are computed for all normal instances and abnormal instances for the
e-mail network-based anomaly detection model.

4.1. Insider-Threat Detection with Daily Activity Summaries

Tables 10–12 show the insider-threat detection performance of six individual anomaly detectors
with the best combination we determined (i.e., Parzen + PCA), based on the daily activity summary
dataset for the three roles: "Electrical Engineer", "IT Admin", and "Salesman". As explained in the
previous section, we tested all combinations of individual models and the "Parzen + PCA” combination
resulted in the best performance for 10 out of 21 cases (three roles with seven cut-off rankings) followed
by "Gauss + Parzen + PCA” (5 cases). The anomaly detection performances of all possible ensemble
models are provided in Tables A4–A6 in the Appendix A. Table A7 summarizes the number of best cases
for each ensemble model. The proposed method exhibits effective detection performance. For example,
among the top 1% of the anomaly scores predicted by Gauss for “Electrical Engineer”, half of the actual
abnormal behaviors are successfully detected, which is more than 50 times higher than a random
model that randomly determines 1% of test instances as anomalous behaviors.

For the “Electrical Engineer” role, when the top 1% of suspicious daily behaviors are monitored,
the system can detect at most 53.66% of the actual insider threats (KMC with K = 10). It means that
among the 141 test instances belonging to the 1% of highest anomaly score ranking, 5.367 out of
10 actual malicious behaviors are correctly detected, which can improve the monitoring efficiency of
insider surveillance systems by prioritizing suspicious behaviors with high accuracy. This detection
rate increases up to 76.33%, 79.33%, and 90% when the coverage of monitoring activities increases to the
top 5%, 10%, and 15% anomaly scores, respectively. For the “IT Admin” role, detection performance is
not as apparent as for “Electrical Engineer”, but it is still much better than the random guess model.
The lift of the true detection rate against the random guess is 9.71 with 1% cut-off and 4.35 with 5%
cut-off. For the “Salesman” role, although the detection performance is not as good as for “Electrical
Engineer” with the higher cut-off values (1–15%), actual malicious activities are gradually detected
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when the cut-off values are lowered (15–30%). Hence, when the cut-off value is set to the top 30%
of anomaly scores, 94.79% of the actual malicious behaviors are identified by the Parzen + PCA
combination, which is the highest detection rate among the three roles (90% for “Electrical Engineer”
and 40.87% for “IT Admin”).

Table 10. True detection rate of each anomaly detection algorithm based on the daily activity summary
dataset (Electrical Engineer). Best performance is shown in bold and underlined (number of normal
behaviors in the test set: 14,120, number of malicious behaviors in the test set: 10).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.5000 0.4000 0.4933 0.5233 0.5333 0.5367 0.4833
5% 0.6000 0.5000 0.6667 0.6400 0.6300 0.6333 0.7633
10% 0.6167 0.7933 0.7467 0.7033 0.6467 0.6933 0.7933
15% 0.7000 0.9000 0.7800 0.7167 0.6767 0.7333 0.8000
20% 0.7000 0.9000 0.7900 0.7500 0.6967 0.7600 0.8167
25% 0.7000 0.9000 0.8000 0.7767 0.7433 0.7767 0.8233
30% 0.7000 0.9000 0.8033 0.7767 0.7700 0.7933 0.8500

Table 11. True detection rate of each anomaly detection algorithm based on the daily activity summary
dataset (IT Admin). Best performance is shown in bold and underlined (number of normal behaviors
in the test set: 3424, number of malicious behaviors in the test set: 23).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0435 0.0478 0.0739 0.0580 0.0521 0.0522 0.0971
5% 0.0435 0.1739 0.2130 0.0841 0.0739 0.0768 0.2174
10% 0.0435 0.3015 0.2304 0.1246 0.1087 0.1174 0.2580
15% 0.0971 0.3043 0.2884 0.1391 0.1275 0.1362 0.2913
20% 0.1594 0.3043 0.3348 0.2333 0.2000 0.2043 0.3246
25% 0.1739 0.3043 0.3681 0.3029 0.2681 0.2797 0.3551
30% 0.2609 0.3043 0.4087 0.3493 0.3304 0.3406 0.3928

Table 12. True detection rate of each anomaly detection algorithm based on the daily activity summary
dataset (Salesman). Best performance is shown in bold and underlined (number of normal behaviors in
the test set: 14,120, number of malicious behaviors in the test set: 32).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0093 0.1177 0.0781 0.0375 0.0396 0.0281 0.1021
5% 0.0313 0.3271 0.3375 0.1083 0.0843 0.0802 0.3406
10% 0.0313 0.5677 0.5458 0.1396 0.1125 0.1135 0.6156
15% 0.6563 0.5844 0.6625 0.2604 0.1969 0.2115 0.7958
20% 0.6563 0.7781 0.7177 0.2938 0.2427 0.2416 0.8646
25% 0.6563 0.8396 0.7677 0.3240 0.2854 0.2802 0.9041
30% 0.6563 0.8719 0.8042 0.3927 0.3260 0.3219 0.9479

Among the single algorithms, Parzen yielded the best detection rate for eight cases out of 21 cases
(seven cut-off values and three roles). Although both Gauss and Parzen are based on density estimation,
the assumption of Gauss, i.e., single multivariate Gaussian distribution for the entire dataset, is too
strict to be applied to real datasets, which results in the worst performances in many cases. On the
other hand, Parzen estimates the probability distribution in a more flexible manner, so it can be well
fitted to non-Gaussian shape distributions. Note also that the Parzen + PCA combination yields the
best detection performance in most cases. Compared to the detection performance of single algorithms,
Parzen + PCA outperformed the single best algorithms for 10 cases. The effect of model combination is
especially noticeable for the “Salesman” role.
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4.2. Insider-Threat Detection with E-mail Contents

Tables 13–15 show the insider threat detection performance of six individual anomaly detectors
with the best combination of them, i.e., Parzen + PCA, based on the e-mail contents dataset for the
three roles. In contrast to the daily activity datasets, anomaly detection is more successful for “IT
Admin” than the other two roles. Parzen + PCA yields a 37.56% detection rate with the top 1% of
cut-off values, and it steadily increases to 98.67% for the top 30% of cut-off values. Anomaly detection
performance for “Electrical Engineer” and “Salesman” are similar, the lift of the true detection rate
against the random guess is above 4.5 with 1% of the cut-off value and approximately two-thirds of
abnormal activities are detected with the 30% cut-off values.

Table 13. True detection rate of each anomaly detection algorithm based on the e-mail contents dataset
(Electrical Engineer). Best performance is shown in bold and underlined (number of normal behaviors
in the test set: 69,405, number of malicious behaviors in the test set: 13).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0000 0.0000 0.0000 0.0416 0.0458 0.0442 0.0000
5% 0.0000 0.0500 0.0016 0.1383 0.1358 0.1433 0.0008
10% 0.0750 0.0717 0.0392 0.3200 0.2717 0.2783 0.0200
15% 0.0750 0.0742 0.0417 0.4575 0.4242 0.4025 0.0500
20% 0.1016 0.0791 0.0792 0.5317 0.5133 0.4692 0.0608
25% 0.1725 0.0800 0.1592 0.6008 0.5792 0.5525 0.0808
30% 0.5608 0.0800 0.2908 0.6675 0.6542 0.6242 0.1050

Table 14. True detection rate of each anomaly detection algorithm based on the e-mail contents dataset
(IT Admin). Best performance is shown in bold and underlined (number of normal behaviors in the
test set: 17,077, number of malicious behaviors in the test set: 15).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0666 0.0000 0.0600 0.0000 0.0000 0.0000 0.3756
5% 0.2022 0.3178 0.2867 0.0000 0.0000 0.0000 0.6867
10% 0.3333 0.7533 0.4178 0.0000 0.0000 0.0000 0.8333
15% 0.5156 0.8622 0.5867 0.0000 0.0000 0.0000 0.8667
20% 0.6667 0.9333 0.6867 0.0000 0.0000 0.0000 0.9044
25% 0.7378 0.9356 0.8222 0.0000 0.0000 0.0000 0.9600
30% 0.8667 0.9356 0.9067 0.0000 0.0000 0.0000 0.9867

Table 15. True detection rate of each anomaly detection algorithm based on the e-mail contents dataset
(Salesman). Best performance is shown in bold and underlined (number of normal behaviors in the test
set: 64,425, number of malicious behaviors in the test set: 40).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0000 0.0000 0.0000 0.0376 0.0436 0.0487 0.0000
5% 0.0000 0.1949 0.0000 0.1154 0.1128 0.1359 0.0359
10% 0.0000 0.2359 0.0000 0.1692 0.1487 0.1385 0.1436
15% 0.0000 0.2769 0.0000 0.2154 0.2282 0.1974 0.2410
20% 0.0000 0.3026 0.0359 0.3205 0.3205 0.3128 0.2846
25% 0.0000 0.3051 0.1692 0.5180 0.5410 0.5333 0.3103
30% 0.2872 0.3103 0.4077 0.6128 0.6487 0.6564 0.3282

Among the anomaly detection algorithms, KMC is the most effective algorithm for “Electrical
Engineer” but no single algorithm yielded the best performance for “Salesman”. Another observation
that is worth noting is that the performance of single anomaly detection algorithms is highly dependent
on the characteristics of the dataset. Parzen + PCA yielded the highest detection rate for “IT Admin”
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but did not work well for “Electrical Engineers” and “Salesman”. On the other hand, KMC produced
the highest detection rate for “Electrical Engineer” but it failed to detect any of the actual malicious
e-mails for “IT Admin”.

4.3. Detection with E-mail Network

For the email communication history dataset among the 4000 users, four users (CDE1846,
CMP2946, DNS1758, and HIS1706) sent or received numerous unusual e-mails. Tables 16–19 show the
user-level insider-threat detection performance of the anomaly detection models based on the e-mail
communication network dataset.

Table 16. True detection rate of each anomaly detection algorithm based on the e-mail communication
network dataset (CDE1846). Best performance is shown in bold and underlined (number of normal
behaviors in the test set: 456, number of malicious behaviors in the test set: 9).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.4444 0.1111 0.1111 0.3333 0.0000 0.0000 0.1111
5% 1.0000 0.1111 0.4444 0.4444 0.0000 0.0000 0.1111
10% 1.0000 0.1111 0.5556 0.5556 0.0000 0.0000 0.4444
15% 1.0000 0.1111 0.7778 0.5556 0.0000 0.0000 0.4444
20% 1.0000 0.2222 0.7778 0.5556 0.1111 0.1111 0.5556
25% 1.0000 0.2222 0.7778 0.5556 0.1111 0.1111 0.5556
30% 1.0000 0.2222 0.7778 0.5556 0.2222 0.1111 0.6667

Table 17. True detection rate of each anomaly detection algorithm based on the e-mail communication
network dataset (CMP2946). Best performance is shown in bold and underlined (number of normal
behaviors in the test set: 474, number of malicious behaviors in the test set: 7).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20% 0.3333 0.0000 0.3333 0.0000 0.0000 0.0000 0.0000
25% 0.6667 0.0000 1.0000 0.0000 0.0000 0.0000 0.3333
30% 0.6667 0.0000 1.0000 0.0000 0.0000 0.0000 0.3333

Table 18. True detection rate of each anomaly detection algorithm based on the e-mail communication
network dataset (DNS1758). Best performance is shown in bold and underlined (number of normal
behaviors in the test set: 498, number of malicious behaviors in the test set: 3).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0.0000
5% 0.3333 0.0000 0.0000 0.6667 0.6667 0.3333 0.0000
10% 0.3333 0.0000 0.3333 1.0000 1.0000 0.3333 0.0000
15% 0.6667 0.3333 0.6667 1.0000 1.0000 0.3333 0.0000
20% 0.6667 0.3333 0.6667 1.0000 1.0000 0.3333 0.3333
25% 0.6667 0.3333 0.6667 1.0000 1.0000 0.3333 0.3333
30% 0.6667 0.3333 0.6667 1.0000 1.0000 0.6667 0.3333

It is worth noting that all the malicious e-mail communication of three users (CDE1846, DNS1758,
and HIS1706) were successfully detected by the anomaly detection algorithms using at most 25% of
the cut-off value. Surprisingly, Gauss yielded a 100% detection rate by monitoring only the top 5%
of suspicious instances for user CDE1846, whereas KMC succeeded in detecting all the malicious
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instances of user HIS1706 by monitoring the top 10% of suspicious instances. The only exceptional
user is CMP2946, for whom the anomaly detection model failed to detect more than 30% of actual
malicious e-mail communications although the cut-off value was lowered to the top 30% of anomaly
scores. Another interesting observation is that unlike the other two datasets, model combinations did
not achieve a better detection performance than individual models. The best algorithms for each user
are Gauss for CDE1846 and KMC for HIS1706. For the other two users, none of the single algorithms
yielded the highest detection rate for all cut-off values.

Table 19. True detection rate of each anomaly detection algorithm based on the e-mail communication
network dataset (HIS1706). Best performance is shown in bold and underlined (number of normal
behaviors in the test set: 493, number of malicious behaviors in the test set: 3).

Anomaly
Rank Gauss Parzen PCA KMC (K = 3) KMC (K = 5) KMC (K = 10) Parzen + PCA

1% 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0.0000
5% 0.3333 0.0000 0.0000 0.6667 0.6667 0.3333 0.0000
10% 0.3333 0.0000 0.3333 1.0000 1.0000 0.3333 0.0000
15% 0.6667 0.3333 0.6667 1.0000 1.0000 0.3333 0.0000
20% 0.6667 0.3333 0.6667 1.0000 1.0000 0.3333 0.3333
25% 0.6667 0.3333 0.6667 1.0000 1.0000 0.3333 0.3333
30% 0.6667 0.3333 0.6667 1.0000 1.0000 0.6667 0.3333

5. Conclusions

In this paper, we proposed an insider-threat detection framework based on user behavior
modeling and anomaly detection algorithms. During the user behavior modeling, individual users’
heterogeneous behaviors are transformed into a structured dataset where each row is associated with
an instance (user-day, e-mail content, user-week) and each column is associated with input variables for
anomaly detection models. Based on the CERT dataset, we constructed three datasets, i.e., daily activity
summary dataset based on user activity logs, an e-mail content dataset based on topic modeling, and an
e-mail communication network dataset based on the user’s account and sending/receiving information.
Based on these three datasets, we constructed insider-threat detection models by employing machine
learning-based anomaly detection algorithms to simulate real-word organizations in which only a few
insiders’ behaviors are actually potentially malicious.

Experimental results show that the proposed framework can work reasonably well to detect
insiders’ malicious behaviors. Based on the daily activity summary dataset, the anomaly detection
model yielded at most 53.67% of the detection rate by only monitoring the top 1% of suspicious
instances. When the monitoring coverage was extended to the top 30% of anomaly scores, more than
90% of actual abnormal behaviors were detected for two roles among the three evaluated. Based on the
e-mail content datasets, at most 37.56% of malicious e-mails were detected with the 1% cut-off value
while the detection rate increased to 65.64% (98.67% at most) when the top 30% of suspicious e-mails
were monitored. Based on the e-mail communication network dataset, all the malicious instances were
correctly identified for three out of four tested users.

Although the proposed framework was empirically verified, there are some limitations in the
current research, which led us to future research directions. First, we constructed three structured
datasets to train the anomaly detection algorithms. Because the instances of these three datasets are
different from each other (a user’s daily activity, an e-mail’s topic distribution, a user’s weekly e-mail
communication), anomaly detection models are independently trained based on each dataset. If these
different anomaly detection results are properly integrated, it may be possible to achieve a better
insider-threat detection performance. Second, we built the insider-threat detection model based on
specific time unit, e.g., a day. In order words, this approach can detect malicious behaviors based
on the batch process, but cannot detect them in a real-time. Hence, it could be worth developing a
sequence-based insider-threat detection model that can process online stream data. Third, the proposed
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model is purely data-driven. However, in the security domain, combining the knowledge of experts and
a pure data-driven machine learning model can enhance the insider-threat detection performance. Lastly,
although the CERT dataset was carefully constructed containing various threat scenarios designed by
domain experts, it is still a simulated and artificially generated dataset. If the proposed framework can
be verified through a real-world dataset, its practical applicability could be more validated.
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Appendix A

Table A1. User behavior log records of computer activities in the CERT dataset.

Recorded Item Description

File

ID Primary key
Date Day/Month/Year Hour:Min:Sec
User Primary key of a user
PC Primary key of a PC

Filename File directory
Activity File Open/Write/Copy/Delete

To_removable_media Data PC to Removable media (TRUE, FALSE)
From_removable_media Data Removable media to PC (TRUE, FALSE)

Content Hexadecimal encoded file header and contents text

Device

ID Primary key of an observation
Date Day/Month/Year Hour:Min:Sec
User User ID
PC Key number of a PC logged on

File tree File directory
Activity Log on or log off (Binary type)

HTTP

ID Primary key
Date Day/Month/Year Hour:Min:Sec
User Primary key of a user
PC Primary key of a PC

URL URL address
Activity Activity (Visit/Upload/Download)
Content Content of a URL

Email

ID Primary key of an observation
Date Day/Month/Year Hour:Min:Sec
User Primary key of a user
PC Primary key of a PC
To Receiver
Cc Carbon copy
Bcc Blind carbon copy

From Sender
Activity Activity (Send/Receive)

Size Size of an email
Attachments Attachment file name

Content Content of an email

Psychometric

Employee name Employee name
User ID ID of an employee

O Openness to experience
C Conscientiousness
E Extraversion
A Agreeableness
N Neuroticism
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Table A1. Cont.

Recorded Item Description

LDAP

Employee name Employee name
User ID ID of a user
Email Email address
Role Role of a user

Project Project participation
Business unit Business unit

Functional unit Functional unit
Department Department

Team Team
Supervisor Supervisor

Decoy file Decoy filename Decoy file directory
Name and extension

PC PC name

Table A2. List of variables extracted from integrated daily activities.

Variable Name Description

Base
user User ID
date Date

workingday Working day or not (Binary type)

Logon

numlogonDay Number of logons on working hours
numlogonNight Number of logons on off-hours
numlogoffDay Number of logoffs on working hours

numlogoffNight Number of logoffs on off-hours
numPClogonDay Number of s PC logons on working hour

numPClogonNight Number of PC logons on off-hours
numPClogoffDay Number of PC logoffs on working hour

numPClogoffNight Number of PC logoffs on off-hours
onoffNotsameDay Counts of the number of logons and logoffs are not the same on working hours

onoffNotsameNight Counts of the number of logons and logoffs are not the same on off-hours

Device

numPCwithUSBDay Number of PC that uses USB device on working hours
numPCwithUSBNight Number of PC that uses USB device on off-hours
numConnectionDay Number of connections with devices on working hours

numConnectionNight Number of connections with devices on off-hours
numCopy2DeviceDay Number of copied files from PC to devices on working hours

numCopy2DeviceNight Number of copied files from PC to devices on off-hours
numWrite2DeviceDay Number of written files from PC to devices on working hours

numWrite2DeviceNight Number of written files from PC to devices on off-hours
numCopyFromDeviceDay Number of copied files from devices to PC on working hours

numCopyFromDeviceNight Number of copied files from devices to PC on off-hours
numWriteFromDeviceDay Number of files written from devices to PC on working hours

numWriteFromDeviceNight Number of files written from devices to PC on off-hours
numDelFromDeviceDay Number of deleted files from devices on working hours

numDelFromDeviceNight Number of deleted files from devices on off-hours
numOpenOnPCDay Number of opened files on working hours

numOpenOnPCNight Number of opened files on off-hours

Web access

numWebAccDay Number of web accesses on working hours
numWebAccNight Number of web accesses on off-hours

numURLAccessedDay Number of accessed URLs on working hours
numURLAccessedNight Number of accessed URLs on off-hours

numUploadDay Number of uploads on working hours
numUploadNight Number of uploads on off-hours

numDownloadDay Number of downloads on working hours
numDownloadNight Number of downloads on off-hours

Email

numAttachmentDay Number of attachments on working hours
numAttachmentNight Number of attachments on off-hours

numSendDay Number of sent emails on working hours
numSendNight Number of sent emails on off-hours

numRecievedDay Number of received emails on working hours
numRecievedNight Number of received emails on off-hours

numEmailSentwithAttachDay Number of sent emails containing attachments on working hours
numEmailSentwithAttachNight Number of sent emails containing attachments on off-hours

numEmailRecievedwithAttachDay Number of received email containing attachments on working hour
numEmailRecievedwithAttachNight Number of received emails containing attachments on off-hours

numdistinctRecipientsDay Number of recipients on working hours
numdistinctRecipientsNight Number of recipients on off-hours
numinternalRecipientsDay Number of internal recipients on working hours

numinternalRecipientsNight Number of internal recipients on off-hours
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Table A2. Cont.

Variable Name Description

Role

role Role
functional_unit Functional unit

department Department
team Team

Psychometric

O Openness to experience
C Conscientiousness
E Extraversion
A Agreeableness
N Neuroticism

Target Anomaly or not (Binary type)

The list of variables calculated to apply the email sending/receiving network information to the
one-class classification models is shown in Table A3.

Table A3. List of email networks variables.

User_ID User ID

Start_Data Start date
End_Data End date

Target Anomaly or not (Binary type)
Jaccard_Out_Degree_Zero Personal email based on previous time Out degree of Jaccard Similarity
Jaccard_In_Degree_Zero Personal email based on previous time In degree of Jaccard Similarity

Jaccard_Out_Degree_One Company email based on previous time Out degree of Jaccard Similarity
Jaccard_In_Degree_One Compony email based on previous time In degree of Jaccard Similarity

Not_Company_Out_Other_Role Personal email based on current time Out degree sent to other company’s Role
Not_Company_Out_FROM_To_Me_Role Personal email based on current time Out degree sent to me

Not_Company_Out_Other_Company Personal email based on current time Out degree sent to not company domain
Not_Company_Out_Same_Role Personal email based on current time Out degree sent to same company’s Role
Not_Company_In_Other_Role Personal email based on current time In degree sent to other company’s Role

Not_Company_In_FROM_To_Me_Role Personal email based on current time In degree sent to me
Not_Company_In_Other_Company Personal email based on current time In degree sent to not company domain

Not_Company_In_Same_Role Personal email based on current time In degree sent to same company’s Role
Company_Out_Other_Role Company email based on current time Out degree sent to other company’s Role

Company_Out_FROM_To_Me_Role Company email based on current time Out degree sent to me
Company_Out_Other_Company Company email based on current time Out degree sent to not company domain

Company_Out_Same_Role Company email based on current time Out degree sent to same company’s Role
Company_In_Other_Role Company email based on current time In degree sent to other company’s Role

Company_In_FROM_To_Me_Role Company email based on current time In degree sent to me
Company_In_Other_Company Company email based on current time In degree sent to not company domain

Company_In_Same_Role Company email based on current time In degree sent to same company’s Role
Company_Account_Bet Company email based on current time Betweenness centrality

NotCompany_Account_Bet Personal email based on current time Betweenness centrality

Same_Role_View The number of on current time viewing company email from the same role except
notification email in the same role

Same_Role_Send The number of on current time sending company email from the same role except
notification email in the same role

Other_Company_View The number of on current time viewing not company email from the same role
except notification email in the same role

Other_Company_Send The number of on current time sending not company email from the same role
except notification email in the same role

Diff_Role_View The number of on current time viewing email from the same role except
notification email in the different role

Diff_Role_Send The number of on current time sending email from the same role except
notification email in the different role
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Table A4. True detection rate of each anomaly detection algorithm based on the daily activity summary
dataset (Electrical Engineer). Best performance is shown in bold and underlined.

Algorithm 0.10% 0.50% 1.00% 3.00% 5.00% 7.00% 10.00%

Parzen + PCA 0.3367 0.4300 0.4833 0.6833 0.7633 0.7800 0.7933
Gauss + Parzen 0.0300 0.3000 0.5767 0.7000 0.7000 0.7000 0.7000
Gauss + kMeans 0.4933 0.5000 0.5133 0.6033 0.6100 0.6300 0.6900

Gauss + PCA 0.3200 0.4667 0.5300 0.6400 0.6767 0.6867 0.6933
Parzen + kMeans 0.3133 0.3633 0.6167 0.7533 0.7633 0.7867 0.8000
kMeans + PCA 0.3400 0.5033 0.5600 0.6800 0.7267 0.7400 0.7567

Gauss + Parzen + kMeans 0.2733 0.5033 0.6033 0.7167 0.7367 0.7467 0.7900
Gauss + Parzen + PCA 0.2900 0.5133 0.6433 0.6900 0.7500 0.8000 0.8000
Gauss + kMeans + PCA 0.3267 0.5167 0.5600 0.6233 0.6867 0.7167 0.7400
Parzen + kMeans + PCA 0.3200 0.5667 0.6933 0.7533 0.7633 0.7700 0.7767

Gauss + Parzen +
kMeans + PCA 0.3067 0.5567 0.6400 0.7333 0.7767 0.7967 0.8000

Table A5. True detection rate of each anomaly detection algorithm based on the daily activity summary
dataset (IT Admin). Best performance is shown in bold and underlined.

Algorithm 0.10% 0.50% 1.00% 3.00% 5.00% 7.00% 10.00%

Parzen + PCA 0.0029 0.0710 0.0971 0.1812 0.2174 0.2232 0.2580
Gauss + Parzen 0.0130 0.0435 0.0435 0.0870 0.1275 0.1304 0.1333
Gauss + kMeans 0.0000 0.0377 0.0449 0.0710 0.0739 0.0870 0.0899

Gauss + PCA 0.0014 0.0420 0.0435 0.0478 0.1014 0.1261 0.1536
Parzen + kMeans 0.0217 0.0638 0.0797 0.1101 0.1420 0.1739 0.2043
kMeans + PCA 0.0014 0.0333 0.0739 0.1014 0.1116 0.1406 0.1971

Gauss + Parzen + kMeans 0.0275 0.0464 0.0551 0.0783 0.0971 0.1130 0.1536
Gauss + Parzen + PCA 0.0217 0.0435 0.0522 0.1101 0.1348 0.1696 0.1797
Gauss + kMeans + PCA 0.0014 0.0420 0.0565 0.0768 0.0942 0.1116 0.1565
Parzen + kMeans + PCA 0.0246 0.0246 0.0246 0.0246 0.0246 0.0246 0.0246

Gauss + Parzen +
kMeans + PCA

0.0275 0.0478 0.0652 0.0928 0.1232 0.1522 0.1957

Table A6. True detection rate of each anomaly detection algorithm based on the daily activity summary
dataset (Salesman). Best performance is shown in bold and underlined.

Algorithm 0.10% 0.50% 1.00% 3.00% 5.00% 7.00% 10.00%

Parzen + PCA 0.0344 0.0667 0.1021 0.1938 0.3406 0.4771 0.6156
Gauss + Parzen 0.0000 0.0625 0.0625 0.2188 0.3302 0.3313 0.5302
Gauss + kMeans 0.0000 0.0229 0.0510 0.0896 0.1104 0.1271 0.1583

Gauss + PCA 0.0000 0.0146 0.0635 0.2344 0.3292 0.3625 0.4125
Parzen + kMeans 0.0010 0.0167 0.0333 0.1615 0.1927 0.2615 0.3063
kMeans + PCA 0.0135 0.0354 0.0542 0.1313 0.1979 0.2323 0.2771

Gauss + Parzen + kMeans 0.0042 0.0417 0.0677 0.1854 0.2646 0.3406 0.4052
Gauss + Parzen + PCA 0.0000 0.0438 0.0688 0.2500 0.3813 0.4792 0.5750
Gauss + kMeans + PCA 0.0167 0.0438 0.0635 0.1417 0.2156 0.2677 0.3292
Parzen + kMeans + PCA 0.0000 0.0323 0.0927 0.1938 0.2646 0.3313 0.4302

Gauss + Parzen +
kMeans + PCA 0.0042 0.0542 0.1010 0.2344 0.3052 0.3740 0.4813
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Table A7. The number of selected best model for each ensemble algorithm.

Number Algorithm The Number of Selected Best Model

1 Parzen + PCA 10
2 Gauss + Parzen 0
3 Gauss + kMeans 1
4 Gauss + PCA 0
5 Parzen + kMeans 2
6 kMeans + PCA 0
7 Gauss + Parzen + kMeans 0
8 Gauss + Parzen + PCA 5
9 Gauss + kMeans + PCA 0

10 Parzen + kMeans + PCA 3
11 Gauss + Parzen + kMeans + PCA 3
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