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Featured Application: The model proposed in this paper can be deployed to the enterprise
gateway, dynamically monitor network activities, and connect with the firewall to protect the
company network from attacks. It can be deployed in cloud computing environment or in
software-defined networks to monitor network behavior and alerts in real time.

Abstract: Machine learning plays an important role in building intrusion detection systems.
However, with the increase of data capacity and data dimension, the ability of shallow machine
learning is becoming more limited. In this paper, we propose a fuzzy aggregation approach
using the modified density peak clustering algorithm (MDPCA) and deep belief networks (DBNs).
To reduce the size of the training set and the imbalance of the samples, MDPCA is used to divide the
training set into several subsets with similar sets of attributes. Each subset is used to train its own
sub-DBNs classifier. These sub-DBN classifiers can learn and explore high-level abstract features,
automatically reduce data dimensions, and perform classification well. According to the nearest
neighbor criterion, the fuzzy membership weights of each test sample in each sub-DBNs classifier are
calculated. The output of all sub-DBNs classifiers is aggregated based on fuzzy membership weights.
Experimental results on the NSL-KDD and UNSW-NB15 datasets show that our proposed model has
higher overall accuracy, recall, precision and F1-score than other well-known classification methods.
Furthermore, the proposed model achieves better performance in terms of accuracy, detection rate
and false positive rate compared to the state-of-the-art intrusion detection methods.

Keywords: intrusion detection; modified density peak clustering algorithm; restricted Boltzmann
machine; deep belief networks; fuzzy aggregation

1. Introduction

Today, with the rapid growth and the wide application of the Internet and Intranet, computer
networks have brought great convenience to people’s life and work. However, at the same time, they
also brought a lot of security problems, such as various types of viruses, vulnerabilities and attacks,
which cause heavy losses. How can necessary protection and security be provided for computer
networks, and their integrity and availability be maintained? This question has become a hot issue in
research. Intrusion Detection System (IDS) is an important security device or software application in a
network environment. It is widely used to monitor network activities and detect whether the system is
subjected to network attacks such as DoS (Denial of Service) attacks. According to the analysis method
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and detection principle, IDS can be anomaly-based detection or misuse-based detection [1,2]. In this
work, we focus on misuse-based IDS.

In recent years, many researchers have introduced more and more innovative techniques to detect
intrusions, such as machine learning, data mining and swarm intelligence. In the literature, these
techniques are divided into three categories. The first category is the anomaly detection methods,
which require normal datasets to train the classifier and determine whether the new data sample
is in conformity with the model. Examples of these methods include the cluster algorithm [3],
SOM (Self-Organizing Map) [4] and GMM (Gaussian Mixture Model) [5]. The second category
uses an individual machine learning algorithm to solve intrusion detection problems, such as KNN
(K-Nearest Neighbor) [6,7], SVM (Support Vector Machines) [8], ANN (Artificial Neural Network) [9],
DT (Decision Tree) [10], etc. The last category uses various ensemble and hybrid techniques, combined
with various machine learning techniques to improve detection performance. These methods include
Bagging, Boosting, Stacking, and combined classifier methods [11]. RF (Random Forest) [12] is an
ensemble learning method based on bagging, which builds a classification model from a multitude of
decision trees. AdaBoost (Adaptive Boosting) [13] is a popular boosting method that has the ability to
adapt to errors associated with weak hypotheses. The idea of Stacking is that the output of a set of
classifiers is used as the input of another classifier [14].

In 2006, Hinton proposed Deep Belief Networks (DBNs) [15,16], which made deep learning
the meteoric rise in the field of machine learning. In recent years, deep learning has become a hot
research topic, and has achieved great success in extracting high-level latent features from data samples.
Deep learning can reconstruct the approximate compression of the original features and has been
successfully used in many applications such as speech recognition, natural language processing,
image processing, network security detection [17,18], and so on. DBNs are probabilistic generative
neural network composed by several layers of RBMs (Restricted Boltzmann Machines) and a single
layer of BP (Back Propagation) neural network. RBMs are used to initialize the neural network
through a pre-training process, which can make the initialization parameters of neural network closer
to the global optimal value, and make the network training easier to achieve global optimization.
Huda et al. [19] used optimal deep belief networks to detect malware behaviors.

However, there are still many problems with intrusion detection systems. First, different types
of network traffic in a real network environment are imbalanced, and network intrusion records are
less than normal records. As a result, unbalanced network traffic greatly compromises the detection
performance of most classifiers. The classifier is biased towards the more frequently occurring records,
which reduces the detection rate of small attack records such as U2R and R2L records. Second,
due to the high dimensionality of network data, the feature selection methods in many intrusion
models are first considered as one of the preprocessing steps [20], such as PCA (Principal Component
Analysis) and chi-square feature selection. However, these feature selection methods rely heavily on
manual feature extraction, mainly through experience and luck, and these algorithms are not effective
enough. Third, because of the large amount of network traffic and complex structure, the traditional
classifier algorithm cannot achieve higher attack detection rate with lower false positive rate. Fourth,
the network operating environment and structure in the real world are changing, for example, the
popularity of the Internet of Things and the widespread use of cloud services, as well as various new
attacks are emerging. Many unknown attacks do not appear in the training dataset. For example, for
the NSL-KDD [21,22] dataset, 16.6% of the attack samples in the test dataset did not appear in the
training dataset [23]. As a result, all traditional intrusion detection methods usually perform poorly.

Taking into account the above factors, we propose a novel fuzzy aggregation method called
MDPCA-DBN, which combines the modified density peak clustering algorithm (MDPCA) and the
deep belief networks (DBNs). The MDPCA divides the original training dataset into several smaller
subsets according to the feature similarity of the training samples. These subsets are used to train their
respective sub-DBNs classifiers. These sub-DBNs can automatically extract high-level abstract features
from the training samples and reduce the dimensions of network traffic data without heuristic rules
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and manual experience. DBNs integrate feature extraction and classification into a system that extracts
high-level features by identifying network traffic and classifies them based on labeled samples. In the
test phase, the fuzzy membership weight of each test sample in each sub-DBNs classifier is calculated
based on the nearest neighbor criteria of the training sample cluster. Then, each test sample is tested in
each trained sub-DBNs classifier. Finally, the output of all sub-DBNs classifiers is aggregated based on
the fuzzy membership weights.

The key contributions of this paper are as follows. First, we improve the Euclidean distance
calculation method of the density peak clustering algorithm (DPCA) [24], and use the kernel function
to project the original features into the high-dimensional kernel space to better cluster the complex
nonlinear inseparable network traffic data. Second, we use MDPCA to extract similar features of
complex network data and divide the network dataset into several subsets with different clusters.
Compared with the original dataset, these subsets reduce the imbalance of multi-class network data
and improve the detection rate of the minority classes. Third, we use DBNs to automatically extract
high-level features from massive and complex network traffic data and perform classification. DBNs
with several hidden layers initialize network parameters through greedy layer-by-layer unsupervised
learning algorithms, and adjust network weights by backpropagation and fine-tuning to better solve the
classification problem of complex, large-scale and nonlinear network traffic data. The deep generation
model can obtain a better attack classification than the shallow machine learning algorithm, and
can solve many nonlinear problems of complex and massive data. Finally, we have evaluated the
proposed method on the NSL-KDD [21,22] and UNSW-NB15 [25–27] datasets. Experimental results
show that, compared with the well-known classification algorithms, the proposed method achieved
better performance in terms of accuracy, detection rate and false positive rate.

The rest of this paper is organized as follows. Section 2 introduces intrusion detection related
works based on RBM and deep learning. In Section 3, we detail the MDPCA and DBNs algorithms.
Section 4 presents the proposed hybrid model for intrusion detection and describes how the model
works. Section 5 demonstrates the experimental details and results. Finally, we draw some conclusions
and suggest the further work in Section 6.

2. Related Works

As far as we know, there are no reports on DPCA and DBN hybrid methods for intrusion detection,
although related works to DPCA have been done in other areas. Cha et al. [28] employed the DPCA
algorithm for structural damage detection. Li et al. [29] proposed a hybrid model combining the core
ideas of KNN and DPCA for intrusion detection. The model uses the idea of density and the process
of the k-nearest neighbors to detect attacks. Ma et al. [30] presented a hybrid method combining
spectral clustering and deep neural networks, named SCDNN. SCDNN uses spectral clustering to
divide the training set and test set into several subsets, and then input them into the deep neural
network for intrusion detection. They reported an overall accuracy of 72.64% on the NSL-KDD dataset.
The clustering algorithm and classifier of SCDNN are spectral clustering (not DPCA) and DNN
(not DBN), respectively. Moreover, the output of SCDNN on the test set is only a simple summary,
without any integration principle. This is completely different from our proposed method.

The deep learning method integrates high-level feature extraction and classification tasks,
overcomes some limitations of shallow learning, and further promotes the progress of intrusion
detection systems. Recently, many studies have applied deep learning models to classification in
the intrusion detection field. Thing et al. [31] used stacked autoencoders to detect attacks in IEEE
802.11 networks with an overall accuracy of 98.6%. Naseer et al. [32] proposed a deep convolutional
neural network (DCNN) to detect intrusion. The proposed DCNN uses graphics processing units
(GPUs) to train and test on the NSL-KDD dataset. Tang et al. [33] implemented a Gated Recurrent
Unit Recurrent Neural Network (GRU-RNN) intrusion detection system for SDNs with an accuracy
of 89%. Shone et al. [34] implemented a combination of deep and shallow learning, using a stacked
Non-symmetric Deep Auto-Encoder (NDAE) for unsupervised feature learning and random forest
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(RF) as a classifier. Muna et al. [35] proposed an anomaly detection technique for Internet Industrial
Control Systems (IICSs) based on the deep learning model, which uses deep auto-encoder for feature
extraction and deep feedforward neural network for classification.

In recent years, many researchers have successfully applied DBN to intrusion detection systems.
DBN is an important probabilistically generated model consisting of multi-layer restricted Boltzmann
machines (RBMs) with good feature representation and classification functions. Tamer et al. [36]
employed a restricted Boltzmann machine to distinguish between normal and abnormal network
traffic. Experimental results on the ISCX dataset show that RBM can be successfully trained to classify
normal and abnormal network traffic. Li et al. [37] proposed a hybrid model (RNN-RBM) to detect
malicious traffic. The model combines a recurrent neural network (RNN) with a restricted Boltzmann
machine (RBM) that takes byte-level raw data as input without feature engineering. Experimental
results show that the RNN-RBM model outperforms the traditional classifier on the ISCX-2012 and
DARPA-1998 datasets. Imamverdiyev [38] used the multilayer deep Gaussian–Bernoulli RBM method
to detect denial of service (DoS) attacks. They reported an accuracy of 73.23% for the NSL-KDD dataset.

The above intrusion detection evaluation results are very encouraging, but these classification
techniques still have detection defects, low detection rate for unknown attacks and high false positive
rate for unbalanced samples. To overcome these problems, we use fuzzy aggregation technology
to summarize the output of several classifiers combined with MDPCA and DBN. First, MDPCA
divides the original training dataset into several subsets based on feature similarity, thereby reducing
sample imbalance. Next, the multi-layer RBM learns and explores the high-level features in an
unsupervised, greedy manner, automatically reduces data dimensions, and is used to effectively
initialize the parameters of the DBN. We then train the corresponding DBN classifier on each
training subset in a supervised manner. Finally, the fuzzy membership of the test data in the nearest
neighbor of each cluster is calculated, and the outputs of all classifiers are aggregated according to the
fuzzy membership.

3. Background

3.1. Modified Density Peak Clustering Algorithm

The purpose of clustering is to organize data into groups based on attribute similarity so that
data from the same cluster have similar properties and data from different clusters are different from
each other. The density peak clustering algorithm (DPCA) was originally proposed by Alex et al. in
2014 [24]. It is a fast clustering technique based on density. The core of DPCA is to find cluster centers,
which must satisfy two important basic assumptions. One is that the cluster center is surrounded by
lower density neighbors. The other is that the cluster center is away from any other cluster center
point with a higher local density. DPCA uses two measures to calculate cluster centers: the local
density and the distance. Both measures need to calculate the distance between two data points. The
original DPCA adopts the default Euclidean distance to compute the distance between two data points.
However, when the dataset is complex and linearly inseparable, the Euclidean distance can cause
severe misclassifications [39]. We improve the DPCA and name it the modified density peak clustering
algorithm (MDPCA). A Gaussian kernel function is introduced to measure the distance by implicitly
mapping the raw data into a high-dimensional feature space. Furthermore, to improve the performance
of the proposed method, we introduce the Gaussian kernel instead of the cut-off kernel to calculate the
local density of the data points. The MDPCA can detect non-spherical clustering which can not be
detected by traditional distance clustering methods such as K-Means and K-Medoids clustering.

3.1.1. The Kernel-Based Similarity Measure

Since Euclidean distances are difficult to cluster on complex, linearly inseparable datasets, we
adopt a kernel function to map two data points into high-dimensional feature space to make the data
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easier to cluster. Given a dataset S = {~xi}N
i=1, where ~xi ∈ Rd, we use a nonlinear kernel function to

map the raw data from the input space Rd to the high-dimensional feature space H, as follows:

ϕ : Rd → H, ~xi → ϕ(~xi), (1)

where
~xi = [xi,1, xi,2, · · · , xi,d],

and
ϕ(~xi) = [ϕ1(~xi), ϕ2(~xi), · · · , ϕH(~xi)].

Hence, the kernel distance between two data points, ~xi and ~xj, is calculated as follows:

||ϕ(~xi)− ϕ(~xj)||2 = (ϕ(~xi)− ϕ(~xj))
T(ϕ(~xi)− ϕ(~xj))

= ϕT(~xi).ϕ(~xi)− 2ϕT(~xi).ϕ(~xj) + ϕT(~xj).ϕ(~xj)

= K(~xi, ~xi)− 2K(~xi, ~xj) + K(~xj, ~xj).

(2)

The Gaussian kernel can be expressed as follows:

K(~xi, ~xj) = exp(−
||~xi − ~xj||2

2σ2 ) , σ> 0. (3)

Clearly, K(~xi, ~xi) = K(~xj, ~xj) = 1, thus Equation (2) reduces to:

||ϕ(~xi)− ϕ(~xj)||2 = 2(1− K(~xi, ~xj)). (4)

In fact, we use this measurement in MDPCA to compute the distance between two data points ~xi
and ~xj, as follows:

di,j = ||ϕ(~xi)− ϕ(~xj)|| =
√

2(1− K(~xi, ~xj)). (5)

3.1.2. Determination of Clustering Categories

For the dataset S = {~xi}N
i=1, the corresponding index set is IS = {1, 2, · · · , N}, and the distance

between two data points ~xi and ~xj is noted as dij = dist(~xi, ~xj). These distances can be expressed as
Euclidean distances or distances based on kernel functions. The local density of data point ~xi in dataset
S is defined as ρi, which includes cut-off kernel or Gaussian kernel.

Cut-off kernel:

ρi = ∑
j∈IS\{i}

X(dij − dc), and X(x) =

{
1, x < 0
0, x ≥ 0

, (6)

where dc is a cut-off distance that must be specified in advance.
Gaussian kernel:

ρi = ∑
j∈IS\{i}

e−(
dij
dc

)2
. (7)

The local density ρi in Equation (6) is equal to the number of data points that are closer than dc

around the specific data point ~xi, thus the ρi in Equation (6) is a discrete value. However, the local
density ρi in Equation (7) is calculated by using the Gaussian kernel, thus the ρi in Equation (7) is a
continuous value. As a result, the latter is less likely to conflict (that is, different data points have the
same local density).

The distance δi for each data point ~xi is defined as the minimum distance between the data point
~xi and any other data point with a higher local density. For the data point ~xi with the highest local
density, we conventionally take the maximum distance between the point ~xi and any other points
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with a lower local density. We assume that {qi}N
i=1 represents the descending order index set of local

density set {ρi}N
i=1, that is, it satisfies:

ρq1 ≥ ρq2 ≥ · · · ≥ ρqN . (8)

The distance δi of data point ~xi in dataset S is calculated as follows:

δqi =


min
j<i

{
dqiqj

}
, i ≥ 2

max
j≥2

{
δqj

}
, i = 1

. (9)

The cluster centers are defined as those points with higher δi and relatively higher ρi at the same
time. To find cluster centers, we consider the ρi and the δi together to define a value γi. The γi value of
each point ~xi is calculated as follows:

γi = ρiδi, i ∈ IS. (10)

We define {mi}N
i=1 as the descending order index set of {γi}N

i=1, that is:

γm1 ≥ γm2 ≥ · · · ≥ γmN . (11)

Obviously, the greater is the γi value, the more likely it is a cluster center. We assume that the
number of clusters in the dataset S is K, so we can select the data points corresponding to the K
maximum values of {γi}N

i=1 as the clustering centers. The cluster centers that have been selected can
be denoted as follows:

C = {Ci|Ci = xmi , i = 1, 2, · · · , K}, (12)

where Ci is the center of the ith cluster, K represents the number of clusters.
After the cluster centers have been found, MDPCA assigns each remaining point to the same

cluster as its nearest neighbor of higher density. After obtaining cluster labels of all data points, the
training dataset S is divided into K subsets DC1, DC2, · · · , DCK.

The next step is to use the K subsets to train K different DBN classifiers. The MDPCA algorithm is
described in Algorithm 1.

Algorithm 1 MDPCA (Modified Density Peak Clustering Algorithm)

Input: Training dataset S = {~x1, ~x2, · · · , ~xN}, the number of clusters K, Gaussian Kernel parameter σ.
Output: the K subsets DC1, DC2, · · · , DCK.

1: Calculate the distance di,j between data points ~xi and ~xj according to Equation (5).
2: Assign the cut-off distance dc.
3: Calculate the local density ρi of each data point ~xi according to Equation (7).
4: Calculate the distance δi of each data point ~xi according to Equation (9).
5: Calculate γi = ρiδi, i ∈ IS, select the data points corresponding to the K maximum values of

{γi}N
i=1 as the cluster centers C = {Ci}K

i=1.
6: Finally, assign each remaining point to the same cluster as its nearest neighbor of higher density,

the training dataset S is divided into K subsets DC1, DC2, · · · , DCK.
7: return the K subsets DC1, DC2, · · · , DCK.

3.1.3. Fuzzy Membership of Test Samples

After all the points in the training dataset have been assigned clusters, we calculate the distance
dr,j between the test sample xj and data point xr in each cluster DCi according to Equation (5). Then,
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we use the nearest neighbor principle to find the nearest neighbor ci of the test sample xj in each cluster
DCi according to Equation (13), as shown in Figure 1.

ci = arg min
xr

(
dr,j
)

, where xr ∈ DCi. (13)

Test sample

jx
1, jd 2, jd

3, jd

1C 1c
2C

2c

3C

3c

jx

1DC

2DC

3DC

Figure 1. The nearest neighbor distance of the test sample in each cluster.

Then, based on these nearest neighbor distances, we can calculate the fuzzy membership matrix
U = {µi,j|i = 1, 2, · · · , K, j = 1, 2, · · · , N} of the test samples in each cluster. µi,j is the fuzzy
membership degree of the test sample xj in the ith cluster DCi, as follows:

µi,j =
1

K
∑

k=1

( di,j
dk,j

)2
, where di,j =

√
2(1− K(~ci, ~xj)), (14)

where ci represents the sample in the ith cluster that is closest to the test sample xj.

3.2. Deep Belief Networks

Deep belief networks (DBNs) are multi-layer probabilistic generative models that can learn to
extract a deep hierarchical representation of the training data. DBNs are composed of several layers of
restricted Boltzmann machines (RBMs) and a classifier added on the top layer. DBNs can be quickly
trained by training several RBMs using the greedy layer-wise unsupervised training strategy [16,40].
After network pretraining, the network parameters using supervised learning are fine-tuned to achieve
better classification results. RBMs are an energy model in which the visible–hidden layers have
full connections and the visible–visible and hidden–hidden layers have no connections. RBMs have
been widely used in classification, dimension reduction, feature extraction, topic modeling and
collaborative filtering.

An RBM has visible and Bernoulli random-valued hidden units, and maps the sample data
from an input space of dimension m to the feature space of dimension n, where n < m, as shown
in Figure 2. An RBM is an energy-based generation model that contains a layer of visible nodes
(v1, v2, · · · , vi, · · · , vm) representing the data and a layer of hidden nodes (h1, h2, · · · , hj, · · · , hn)

learning to represent features, with each vi ∈ {0, 1} and hj ∈ {0, 1}. We define that the biases of the
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visible nodes are (b1, b2, · · · , bi, · · · , bm), and the biases of the hidden nodes are (c1, c2, · · · , cj, · · · , cn).
The energy function E(v, h) of the joint configuration {v, h} is defined as follows [41,42]:

E(v, h) = −
m

∑
i=1

bivi −
n

∑
j=1

cjhj −
n

∑
j=1

m

∑
i=1

viwijhj. (15)

...

1b 2b mb

1c 2c nc

Hidden Layer

Visible Layer 1v 2v mv

1h 2h nh

Parameter

...

... ...iv

ib

jh

jc

m nW 

mb

nc

mnW

Figure 2. The graphical representation of an RBM with m visible nodes and n hidden nodes.

According to the energy function E(v, h), the joint probability distribution for visible and hidden
vectors can be defined as follows:

P(v, h) =
1
Z

exp(−E(v, h)), (16)

where Z is the partition function, which is the sum over all possible pairs of visible and hidden vectors.

Z = ∑
v

∑
h

exp(−E(v, h)). (17)

The probability assigned to a visible vector v is given by summing over all possible binary hidden
vector h, as follows:

P(v) = ∑
h

P(v, h) =
1
Z ∑

h
exp(−E(v, h)). (18)

Since there are no direct connections between the same layers in an RBM, these hidden units
are independent given the visible units, and vice versa. Therefore, given the visible vector v, the
conditional probability of the hidden vector h is given by:

P(h|v) =
n

∏
j=1

P(hj|v). (19)

Similarly, given the hidden vector h, the conditional probability of the visible vector v is given by:

P(v|h) =
m

∏
i=1

P(vi|h). (20)

Given a visible vector v, the activation state of each hidden unit is conditionally independent.
At this point, hj ∈ {0, 1}, and the activation probability of the jth hidden unit is described as follows:

P(hj = 1|v) = Sigm(
m

∑
i=1

wijvi + cj), (21)

where Sigm(x) = 1
1+e−x is the logistic sigmoid function.
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Accordingly, the activation probability of each visible unit is also conditionally independent when
given a hidden vector h:

P(vi = 1|h) = Sigm(
n

∑
j=1

wijhj + bi). (22)

An RBM is trained to minimize the energy in Equation (15) by finding the values of the network
parameters θ = (W, b, c). If the RBM has been trained, the energy of the network is minimized, and
the probability in Equation (18) is maximized. To maximize the log-likelihood of P(v), its gradient
with respect to the network parameters θ can be calculated as follows [36,43]:

∂ log P(v)
∂θ

= −EP(h|v)

[
∂E(v, h)

∂θ

]
+EP(v′ ,h′)

[
∂E(v′, h′)

∂θ

]
, (23)

where E denotes the expectation operator. In Equation (23), the expectation on the left hand
side can be calculated exactly, but the expectation on the right hand side is hard to calculate.
To overcome the difficulty of calculating expectations, the contrastive divergence (CD) algorithm [44]
for estimating log-likelihood gradient was developed by Hinton in 2002. CD-k algorithm approximates
the expectation in Equation (23) by limited k (often k = 1) iterations of Gibbs sampling to update
the network parameters θ = (W, b, c). The improved algorithm of the CD algorithm is persistent
contrastive divergence (PCD) algorithm [45], which makes the training process more efficient.
The update process of parameter θ is as follows:

∂log P(v)
∂wij

= P(hj = 1|v) · vi −∑
v′

P(v′)P(hj
′ = 1|v′) · vi

′, (24)

∂log P(v)
∂bi

= vi −∑
v′

P(v′) · vi
′, (25)

∂log P(v)
∂cj

= P(hj = 1|v)−∑
v′

P(v′)P(hj
′ = 1|v′). (26)

After an RBM has been trained, another RBM can be stacked on top of the first one. The hidden
layer output of the first RBM is used as the visible layer input of the second RBM. Therefore, several
layers of RBMs can be stacked to extract different features automatically, which represent gradually
more complex structure in the data. In practice, we stack RBMs and train them with the greedy
layer-wise unsupervised learning algorithm. During the training phase, each added hidden layer is
trained as an RBM. When the DBNs have been trained, the network parameters θ = (W, b, c) are used
to initialize the weights of a multi-layer feed-forward neural network. The back propagation algorithm
is used to fine-tune the network parameters θ = (W, b, c) to improve the detect performance of the
neural network. The DBNs structural model is shown in Figure 3.
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Figure 3. DBNs structural model.

Each BernoulliRBM (Bernoulli Restricted Boltzmann Machine) algorithm in DBNs is described in
Algorithm 2.

Algorithm 2 BernoulliRBM (Bernoulli Restricted Boltzmann Machine)

Input: Training dataset S =
{

x(1), x(2), · · · , x(N)
}

, RBM(v1, · · · , vm; h1, · · · , hn), m is the number of

visible units, n is the number of hidden units; learning rate λ .
Output: the RBM weight matrix W; the bias vector b = (b1, b2, · · · , bi, · · · , bm) of the RBM visible

layer , the bias vector c = (c1, c2, · · · , cj, · · · , cn) of the RBM hidden layer.
1: init: Wij = bi = cj = ∆Wij = ∆bi = ∆cj = 0, f or i = 1, · · · , m, j = 1, · · · , n.
2: for iter = 1, 2, · · · , T do
3: for all x(l) ∈ S do
4: v(0) = x(l);
5: for t = 0, 1, · · · , k− 1 do
6: for all hidden units j = 1, 2, · · · , n, do sample hj

(t) ∼ P(hj|v(t));
7: for all visible units i = 1, 2, · · · , m, do sample vi

(t+1) ∼ P(vi|h(t));
8: end for
9: for i = 1, 2, · · · , m, j = 1, 2, · · · , n do

10: ∆Wij = ∆Wij + λ ·
(

P(hj = 1|v(0)) · v(0)i − P(hj = 1|v(k)) · v(k)i

)
;

11: end for
12: for i = 1, 2, · · · , m do
13: ∆bi = ∆bi + λ ·

(
v(0)i − v(k)i

)
;

14: end for
15: for j = 1, 2, · · · , n do
16: ∆cj = ∆cj + λ ·

(
P(hj = 1|v(0))− P(hj = 1|v(k))

)
17: end for
18: end for
19: W = W + ∆W
20: b = b + ∆b
21: c = c + ∆c
22: end for
23: return network parameters θ = (W, b, c).
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4. The Proposed Hybrid Approach for Intrusion Detection

Recent literature surveys have shown that several hybrid methods combining feature selection
with classifiers can effectively deal with many common intrusion detection problems. However,
when faced with high-dimensional, randomized, unbalanced and complex network intrusion data,
they often perform poorly. To solve the above problems, we propose an effective intrusion detection
framework based on the modified density peak clustering algorithm and deep belief networks, named
MDPCA-DBN, as shown in Figure 4.
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Figure 4. The framework of the proposed hybrid model.

The proposed framework is composed of four main phases: (1) data collection, where network
traffic packets are collected; (2) data preprocessing, where each symbol feature of the training and
testing data is converted into a numerical value and scaled to the range [0, 1]; (3) training classifier,
where the proposed hybrid classification model is trained by using the training dataset; and (4) attack
recognition, where the trained classifier is used to detect attacks on test data. Each test datum is input
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to all trained sub-DBN classifiers, and the results of all sub-classifiers are aggregated according to the
fuzzy membership degree. The final classification result is output.

MDPCA can divide the original training dataset into several subsets with similar attributes,
thereby reducing the volume of data in each subset. Deep learning based on DBNs can automatically
reduce the dimensions of data samples, extract high-level features, and perform classification.

4.1. Data Collection

Network traffic collection is the first and key step in intrusion detection. The location of the
network collector plays a decisive role in the efficiency of intrusion detection. To provide the best
protection for the target host and network, the proposed intrusion detection model is deployed on the
nearest victim’s router or switch to monitor the inbound network traffic. During the training phase,
the collected data samples are categorized according to the transport layer and network layer protocol
and are labeled based on the domain knowledge. However, the data collected during the test phase
are classified according to the trained hybrid model.

4.2. Data Preprocessing

The data obtained during the data collection phase are first processed to generated network
features similar to the KDD Cup 99 [46,47] dataset, including the basic features of individual TCP
connections, content features within a connection suggested by domain knowledge, traffic features
computed using a two-second time window, and host features based on the purpose of the TCP
connection. This process consists of two main stages shown as follows.

4.2.1. Feature Mapping

The features extracted from network traffic include numerical and symbol features, but machines
can only identify numerical values. Therefore, each symbol feature needs to be first converted
into numerical values. For example, the NSL-KDD [21,22] dataset contains 3 symbol features and
38 numeric features, and the UNSW-NB15 [25,26] dataset contains 3 symbol features and 39 numeric
features. Symbol features in the NSL-KDD dataset include protocol types (e.g., TCP, UDP, and ICMP),
destination network services (e.g., HTTP, SSH, FTP, etc.) and normal or error status of the connection
(e.g., OTH, REJ, S0, etc.). In the proposed model, the original training dataset is divided into several
subsets using the MDPCA clustering algorithm. To avoid the influence of the discrete attributes on
clustering, these symbol features are encoded using a one-hot encoding scheme. For example, the
symbol feature “protocol type” in the NSL-KDD dataset has three discrete values, namely TCP, UDP,
and ICMP, which can be encoded in a space of three dimensions (with one-hot feature vectors [0, 0, 1],
[0, 1, 0], and [1, 0, 0]). Since the symbol features “service types” and “flag types” in the NSL-KDD
dataset include 70 and 11 discrete attributes, respectively, they can be transformed to 70 and 11 one-hot
feature values, respectively. According to this method, the 41-dimensional original features of the
NSL-KDD dataset are finally transformed into 122-dimensional features. Similarly, the 42-dimensional
features in the UNSW-NB15 dataset are converted to 196-dimensional features.

4.2.2. Data Normalization

Since the network feature values vary greatly, the value of each feature must be normalized to a
reasonable range in order to reduce the influence of values between different features. Because DBNs
require input data in the range of [0, 1], each feature must be normalized by the respective minimum
and maximum feature values and fall within the same range of [0, 1]. The normalization process
is also applied to the test data. The most common method of data normalization is the minimum
and maximum normalization, often between zero and one. Each feature value should be normalized
as follows:

xi
∗ =

xi − xmin
xmax − xmin

, (27)
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where xi is the original feature value and xmin and xmax represent the minimum and maximum feature
values from the input data x, respectively. After normalization, all data points are scaled within the
range of [0, 1].

4.3. Training Classifier

The method for training classifier is a two-phase hybrid approach: unsupervised clustering and
supervised learning. First, the unsupervised clustering algorithm MDPCA is utilized to divide the
original training dataset into K subsets DC1, DC2, · · · , DCK. Next, the DBNs initialize the network
parameters through the unsupervised pre-training of BernoulliRBM, and then use the back-propagation
algorithm to fine tune the network connection weights. We use the K subsets DC1, DC2, · · · , DCK
from the training dataset to train the K sub-DBN classifiers. Each subset DCi (where i = 1, 2, · · · , K)
is assigned to train the corresponding DBNi (where i = 1, 2, · · · , K). These DBNs are different from
each other because they have been trained on different subsets. Each DBN has one input layer, three
hidden layers, and one output layer. Three hidden layers automatically learn features from each
training subset. The network structures of each DBN in the NSL-KDD and UNSW-NB15 datasets are
122-40-20-10-5 and 196-80-40-20-10, respectively.

4.4. Attack Recognition

After completing the above steps, we obtain clusters of training datasets, which are divided into K
disjoint subsets DC1, DC2, · · · , DCK . These clusters are used to calculate the fuzzy membership matrix
U =

[
µi,j
]

, i = 1, 2, · · · , K; j = 1, 2, · · · , N of the test samples associated with each cluster. For each test
sample xj, we use the nearest neighbor sample ci of the ith cluster to calculate the fuzzy membership
degree µi,j according to Equation (14). Once these sub-DBNs classifiers have been trained on their
training subsets, the test data are applied to each trained classifier DBNi (where i = 1, 2, · · · , K) to
detect and identify normal and intrusion network traffic. The predicted values of each sub-DBNi
classifier are aggregated according to the fuzzy membership degree µi,j. The output of test sample xj
in each sub-DBNi classifier is defined as DBNi(~xj). The fuzzy aggregate output of each test sample ~xj
can be computed as follows:

Out =
K

∑
i=1

µi,j · DBNi(~xj) , (28)

where K is the number of clusters and represents the number of sub-DBNs classifiers.
The predictions of these sub-DBNs classifiers are aggregated into the final output of the intrusion

detection system and used to detect attack categories. The proposed hybrid approach for intrusion
detection is detailed in Algorithm 3.

Algorithm 3 MDPCA-DBN (Modified Density Peak Clustering Algorithm and Deep Belief Networks)

Input: Dataset S, cluster number K, Gaussian kernel parameter σ.
Output: the final classification results.

1: Data collection: a training dataset and a testing dataset.
2: Data preprocessing: feature mapping and data normalization.
3: According to Algorithm 1, MDPCA is used to divide the original training dataset into K subsets

DC1, DC2, · · · , DCK.
4: According to Algorithm 2, each training subset DCi is used to train the corresponding classifier

DBNi.
5: Caculate the fuzzy membership matrix U of test samples according to Equation (14).
6: Test sample xj is tested on each trained DBNi classifier. The predictions of these DBNi classifiers

are fuzzy aggregated according to Equation (28), and the final classification results are output.
7: return the final classification results.
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5. Experimental Results and Analysis

Experiments were carried out to evaluate the performance of the proposed model. We used three
different datasets from the NSL-KDD and UNSW-NB15 datasets. We compared the results of the
proposed model with other well-known detection methods. The proposed system was implemented
in the Tensorflow environment on a ThinkStation with 64 GB RAM, Intel E5-2620 CPU and 64-bit
Windows 10 operating system.

5.1. Performance Evaluation

To evaluate the performance of the proposed intrusion detection model, we used several widely
applied metrics: accuracy, detection rate (DR), precision, recall, false positive rate (FPR), and F1-score.
These metrics can be calculated based on four basic metrics of the confusion matrix, as shown in
Table 1: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). TP and
TN indicate that the attack and normal records are correctly classified, respectively; FP represents a
normal record that is incorrectly predicted as an attack; and FN represents an attack record that is
incorrectly classified as a normal record.

Table 1. The four basic metrics of the confusion matrix.

Test result positive
(Predicted as an Attack)

Test result negative
(Predicted as a Normal Record)

Actual positive class (Attack record) True positive (TP) False negative (FN)
Actual negative class (Normal record) False positive (FP) True negative (TN)

Accuracy is the proportion of all predictions that are correctly identified as “Attack record” and
“Normal record”. Accuracy is the most intuitive performance measure of an intrusion detection system.
It directly reflects the superiority of the system. Accuracy is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (29)

The detection rate (DR) is the proportion of the actual attack records that are correctly classified.
DR is an important value for measuring the performance of the intrusion detection system. DR is
defined as follows:

DR =
TP

TP + FN
. (30)

Precision is the proportion of all predicted attack records that are actually attack records. Precision
is defined as follows:

Precision =
TP

TP + FP
. (31)

Recall is a measure of coverage and can indicate the ratio of the actual attack records that are
correctly identified. Recall is also considered as the detection rate. With a certain accuracy, the recall
rate of the classifier is required to be as high as possible. The recall is defined as follows:

Recall =
TP

TP + FN
. (32)

The false positive rate (FPR) generally indicates the probability that normal records are incorrectly
predicted as attack records. The FPR affects the performance of the intrusion detection system. The FPR
is defined as follows:

FPR =
FP

FP + TN
. (33)

The F1-score is the harmonic mean of precision and recall. In other words, it can be interpreted as
a weighted average of the precision and recall. The F1-score takes false positives and false negatives
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into account. The F1-score is usually more useful than accuracy, especially if you have an imbalanced
class distribution. The F1-score is defined as follows:

F1− score =
2(Precision ∗ Recall)

Precision + Recall
=

2TP
2TP + FP + FN

. (34)

5.2. Description of the Benchmark Datasets

Currently, only few public benchmarks in the intrusion detection domain can be utilized
to evaluate the performance of the IDS, such as KDD Cup 99 [46,47], NSL-KDD [21,22],
UNSW-NB15 [25–27], ADFA [48], Kyoto 2006+ [49], ISCXIDS2012 [50], and CICIDS2017 [51]. The KDD
Cup 99 dataset is from UCI (University of California, Irvine) Machine Learning Repository and is an
upgraded version of the DARPA98 dataset. The KDD Cup 99 dataset has a large size and includes a
huge number of duplicate and redundant records. The huge duplicate records can cause the classifier
to bias toward the frequently occurring records. The NSL-KDD dataset is a modified version of the
KDD Cup 99 dataset and removes redundant, duplicate and irrelevant data records in the KDD Cup 99
dataset. UNSW-NB15 is a new dataset created by the Cyber Range Lab of the Australian Cyber Security
Center (ACCS) in 2015 through the IXIA PerfectStorm tool to generate a hybrid of real modern normal
activities and synthetic contemporary attacks. The UNSW-NB15 dataset is more in line with today’s
complex network environments. The ADFA dataset covers Linux and Windows system logs and is
designed for HIDS (Host-based Intrusion Detection System) evaluation. In addition, Kyoto 2006+,
ISCXIDS2012 and CICIDS2017 datasets contain only two types of data records, normal and abnormal.
Therefore, we selected the NSL-KDD and UNSW-NB15 datasets to evaluate the proposed method.

5.2.1. NSL-KDD Dataset

The NSL-KDD is the most widely used dataset for evaluating intrusion detection performance.
The NSL-KDD is derived from the original KDD Cup 99 dataset presented by Tavallaee et al. [47].
The NSD-KDD dataset removes duplicate and redundant records in the KDD Cup 99 dataset and is
more suitable for evaluating the performance of intrusion detection system. There are five classes in
the NSL-KDD dataset: v Normal, Probe, Denial of Service (DoS), User to Root (U2R), and Remote to
Local (R2L) (Table 2).

Table 2. Categories of the NSL-KDD dataset records.

Categories Description Examples

Normal include data with no attack. normal
Probe include attacks in which attackers try to scan

the computer networks with the purpose
of collecting information and finding out
vulnerabilities.

ipsweep, nmap, portsweep, satan, saint,
mscan

DoS include attacks in which attackers try to
prevent legitimate users of a service from
using the service

back, land, neptune, pod, smurf, teardrop,
apache2, mailbomb, udpstorm, processtable

U2R include attacks in which attackers have local
access to the victim target machine and try to
get super user privileges.

perl, rootkit, loadmodule, buffer_overflow,
httptunnel, ps, sqlattack, xterm

R2L include attacks in which attackers do not have
a local account and try to gain access by
sending packets to the target host over the
internet.

ftp_write, guess_passwd, multihop, phf,
imap, spy, warezclient, warezmaster,
named, xsnoop, xlock, sendmail, worm,
snmpgetattack, snmpguess

The NSL-KDD dataset is unbalanced, with fewer U2R and R2L records, but more Normal and DoS
records. We used three datasets in the NSL-KDD dataset to evaluate intrusion detection performance:
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KDDTrain+_20Percent.txt (a 20% subset of the KDDTrain+.txt file), KDDTest+.txt (the full NSL-KDD
test set), and KDDTest-21.txt (a subset of the KDDTest+.txt file which has removed records with
difficulty level 21). In our experiments, KDDTrain+_20Percent is used as a training set, and KDDTest+
and KDDTest-21 are used as test sets. Table 3 shows the number of records for each category on the
NSL-KDD dataset.

Table 3. The class distribution of the NSL-KDD dataset.

Category
Training Dataset Testing Dataset

KDDTrain+_20Percent KDDTest+ KDDTest-21

Normal 13,449 9711 2152
Probe 2289 2421 2402
DoS 9234 7458 4342
U2R 11 200 200
R2L 209 2754 2754

Total 25,192 22,544 11,850

5.2.2. UNSW-NB15 Dataset

The UNSW-NB15 is a new dataset that reflects real modern normal activities and contains synthetic
contemporary attack behaviors [26]. This dataset is completely different from NSL-KDD, which reflects
a more modern and complex threat environment. The raw network packet of the UNSW-NB15 dataset
was created by the Tcpdump tool, and then 49 features with the class label were generated by Argus,
Bro-IDS tool and 12 algorithms [27]. The full dataset contains a total of 25,400,443 records. The partition
of the dataset is configured as a training set and a test set, namely, UNSW_NB15_training-set.csv and
UNSW_NB15_testing-set.csv, respectively. The number of features in the partitioned dataset [26] is
different from the number of features in the full dataset [25]. The partitioned dataset has only 43
features with the class label, removing 6 features (i.e. “srcip”, “sport”, “dstip”, “dsport”, “Stime”
and “Ltime”) from the full dataset. There are ten different class labels in the partitioned dataset, one
normal and nine attacks, namely, Generic, Exploits, Fuzzers, DoS, Reconnaissance (Reconn), Analysis,
Backdoor, Shellcode and Worms. We used a stratified sampling method to randomly select 20% of the
records from the UNSW_NB15_training-set and UNSW_NB15_testing-set datasets as training and test
datasets. The training dataset consists of 35,069 records, whereas the testing dataset contains 16466
records. Table 4 shows in detail the class distribution of the UNSW-NB15 subset.

Table 4. The class distribution of the UNSW-NB15 subset.

Category
Training Dataset Testing Dataset

UNSW_NB15_Training-Set 20% UNSW_NB15_Testing-Set 20%

Normal 11,200 7400
Generic 8000 3774
Exploits 6679 2226
Fuzzers 3637 1212
DoS 2453 818
Reconnaissance 2098 699
Analysis 400 135
Backdoor 349 117
Shellcode 227 76
Worms 26 9

Total 35,069 16,466

5.3. Experimental Setup

In the proposed MDPCA-DBN model, the MDPCA divides the training dataset into several
subsets according to the feature similarity. An unreasonable subset will seriously affect the detection
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performance of the proposed model. The number of clusters K determines the division of clustering
subsets and directly affects the detection performance. If the value of K is too large, the integrity of the
original dataset will be destroyed and the detection accuracy will decrease. The appropriate K can
divide the original dataset into more reasonable subsets and, to a certain extent, break the imbalance
of the training dataset, thus achieving higher detection accuracy. We calculated the decision graph and
γ sorting graph of the MDPCA algorithm according to Equation (10), and determined the number of
subsets according to the number of discrete points. Figures 5 and 6 show the decision graph and γ

sorting graph on the NSL-KDD and UNSW-NB15 datasets, respectively. Figures 5a and 6a show the
relationship between the local density ρ and distance δ of each training sample. Figures 5b and 6b show
the γi = ρiδi graph sorted in descending order. Rodriguez et al. [24] pointed out that the clustering
centers have a high local density ρ and maximum distance δ, that is, those with larger γ values are
clustering centers. The descending order of γ values provides the number of clustering centers to
be selected. The γ value of non-clustering centers is relatively smooth, while the γ value from the
non-clustering center to the clustering center has a significant jump. As can be seen from Figure 5b,
there are two discrete jump points (marked red and green), so the optimal number of clusters on the
NSL-KDD dataset is 2, and the data points corresponding to the red and green points are clustering
centers. In Figure 6b, there are two discrete jump points (marked red and green) with large spacing, so
the optimal clustering number on the UNSW-NB15 dataset is 2, and the data points corresponding to
the red and green points are clustering centers.

(a) Decision graph on the NSL-KDD dataset (b) γ sorting graph on the NSL-KDD dataset

Figure 5. Decision graph and γ sorting graph of MDPCA algorithm on the NSL-KDD dataset.

(a) Decision graph on the UNSW-NB15 dataset (b) γ sorting graph on the UNSW-NB15 dataset

Figure 6. Decision graph and γ sorting graph of MDPCA algorithm on the UNSW-NB15 dataset.
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Based on the experiment, we used the network structure and parameters that achieved the
highest detection accuracy. The optimal network structures of the proposed model on the NSL-KDD
and UNSW-NB15 datasets are 122-40-20-10-5 and 196-80-40-20-10, respectively. The Gaussian kernel
parameter σ projects the original dataset into high dimensional space so that the spatial distribution of
the original dataset is changed. The Gaussian kernel parameter σ varies between 1 and 300. Through
a grid search on the NSL-KDD and UNSW-NB15 datasets, we found that the best σ values were 250
and 50, respectively. The proposed model uses the ReLU6 [52] activation function, 1000 iterations, 0.01
learning rate and Adam learning algorithm. We experimented on both datasets with the optimal K
and σ values to evaluate the intrusion detection performance of the proposed model. These results are
shown in Tables 5 and 6. Tables 7–9 show the confusion matrix of the MDPCA-DBN on the NSL-KDD
and UNSW-NB15 data sets, respectively.

Based on the above research results, to demonstrate the superiority of the proposed model,
six currently well-known intrusion detection models were established using the NSL-KDD and
UNSW-NB15 datasets. The comparison results are shown in Tables 10–12. In addition, the
performance of the proposed model was further compared with other state-of-the-art models. Table 13
depicts the comparison results based on NSL-KDD (KDDTest+), NSL-KDD (KDDTest-21), and
UNSW-NB15 datasets.

5.4. Results and Discussion

The optimal K and σ values for each dataset are shown in Tables 5 and 6. The optimal K value on
the NSL-KDD (KDDTest+), NSL-KDD (KDDTest-21), and UNSW-NB15 datasets is 2. A value of 2 for K
implies that MDPCA can divide the original data into normal and attack records. The training dataset
is divided into two subsets, which reduces the imbalance of the training dataset and improves the
detection accuracy of the intrusion detection system. MDPCA-DBN has the same training set on the
NSL-KDD (KDDTest+) and NSL-KDD (KDDTest-21) datasets, but the detection accuracy of the latter
is lower than that of the former. The main reason is that the latter’s test set does not include records
with difficulty level of 21 out of 21, and the proportion of unknown attacks is increasing.

Table 5. Detection accuracy (%) with optimal parameters K and σ for NSL-KDD (KDDTest+) and
NSL-KDD (KDDTest-21) datasets.

Dataset K σ Normal Probe DoS U2R R2L Accuracy

NSL-KDD (KDDTest+) 2 250 97.38 73.94 81.09 6.5 17.25 82.08
NSL-KDD (KDDTest-21) 2 250 86.94 63.2 68.75 6. 34.93 66.18

Table 6. Detection accuracy (%) with optimal parameters K and σ for UNSW-NB15 dataset.

K σ Normal Generic Exploits Fuzzers DoS Reconnaissance

2 50

82.85 96.93 83.51 44.39 23.72 76.68

Analysis Backdoor Shellcode Worms Accuracy

0.00 0.85 39.47 11.11 90.21

Tables 7–9 show the confusion matrix of MDPCA-DBN with the optimal K and σ values on the
NSL-KDD and UNSW-NB15 datasets. As can be seen in Table 5, the detection rates of U2R and R2L
are relatively low. The main reason may be that there are too few samples of U2R and R2L in the
training dataset (11 and 209 samples, respectively), and almost half of the U2R and R2L attacks in the
test dataset never appear in the training dataset, such as httptunnel, sqlattack, etc. From the results
in Tables 7 and 8 we can infer that the attack features of U2R and R2L are similar to those of Normal.
For example, snmpgetattack and Normal records have almost the same features. As a result, the U2R
and R2L attack records provide less information for the MDPCA-DBN classifier, and most U2R and
R2L attack records are incorrectly marked as normal records. Table 6 shows that the detection rates of
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DOS, Analysis, Backdoor, and Worms attacks are very low. It can be inferred from the results in Table 9
that the features of these attacks are similar to those of Exploits attacks. As a result, DOS, Analysis,
Backdoor, and Worms attacks are misclassified as Exploits attacks.

Table 7. Confusion matrix of NSL-KDD (KDDTest+) dataset with optimal parameters K and σ.

Normal Probe DoS U2R R2L

Normal 9457 186 55 5 8
Probe 443 1790 174 13 1
DoS 906 96 6048 69 339
U2R 181 0 0 13 6
R2L 2255 13 1 10 475

Table 8. Confusion matrix of NSL-KDD (KDDTest-21) dataset with optimal parameters K and σ.

Normal Probe DoS U2R R2L

Normal 1871 217 61 2 1
Probe 703 1518 158 1 22
DoS 1076 58 2985 0 223
U2R 178 1 1 12 8
R2L 1770 12 4 6 962

Table 9. Confusion matrix of UNSW-NB15 dataset with optimal parameters K and σ.

Normal Generic Exploits Fuzzers DoS Reconn Analysis Backdoor Shellcode Worms

Normal 6131 2 158 906 18 128 48 0 9 0
Generic 1 3658 97 6 3 6 0 0 3 0
Exploits 37 12 1859 45 230 20 6 0 14 3
Fuzzers 284 0 205 538 79 80 0 2 24 0
DoS 7 6 589 14 194 4 0 0 4 0
Reconn 10 0 134 4 14 536 0 0 1 0
Analysis 0 0 81 1 52 1 0 0 0 0
Backdoor 1 0 67 3 43 1 0 1 1 0
Shellcode 3 1 16 10 2 14 0 0 30 0
Worms 0 0 7 1 0 0 0 0 0 1

5.5. Comparative Study

We compared the results of the proposed model with some well-known classification methods
such as K-Nearest Neighbor (KNN), Multinomial Naive Bayes (MultinomialNB), Random Forest (RF),
Support Vector Machine (SVM), Artificial Neural Network (ANN), and Deep Belief Network (DBN).
The proposed model is named MDPCA-DBN, which is used to distinguish it from other models.
The optimal cluster number K and Gaussian kernel parameter σ were selected on the NSL-KDD and
UNSW-NB15 datasets according to Tables 5 and 6. We performed performance evaluation based on
the five metrics introduced in Section 5.1. The results compared with six well-known classifiers are
depicted in Tables 10–12.

Table 10. Comparison results for the NSL-KDD (KDDTest+) dataset (%).

Model Normal Probe DoS U2R R2L Accuracy Recall Precision F1-Score FPR

KNN 92.78 59.4 82.25 3.5 3.56 76.51 64.19 92.16 75.68 7.22
MultinomialNB 96.03 82.61 37.1 0.5 22.22 78.73 65.64 95.62 77.85 3.97
RF 97.37 58.53 80.24 0.50 7.55 76.49 60.69 96.84 74.62 2.63
SVM 92.82 61.71 74.85 0.00 0.00 72.28 56.73 91.26 69.97 7.18
ANN 93.68 58.65 83.51 0.50 13.25 77.61 65.45 93.19 76.89 6.32
DBN 97.04 69.85 83.11 5.50 12.56 80.82 68.53 96.84 80.26 2.96
MDPCA-DBN 97.38 73.94 81.09 6.50 17.25 82.08 70.51 97.27 81.75 2.62
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Table 11. Comparison results for the NSL-KDD (KDDTest-21) dataset (%).

Model Normal Probe DoS U2R R2L Accuracy Recall Precision F1-Score FPR

KNN 68.49 59.08 69.81 3.50 3.56 55.5 52.62 88.27 65.93 31.51
MultinomialNB 83.32 82.81 38.12 0.5 22.22 60.08 54.93 93.69 69.25 16.68
RF 88.38 60.45 66.08 0.50 10.42 56.84 49.84 95.08 65.39 11.62
SVM 68.26 61.41 56.79 0.00 0.00 47.38 42.74 85.85 57.07 31.74
ANN 67.24 56.45 50.41 0.00 0.00 45.0 40.06 84.64 54.38 32.76
DBN 71.75 58.33 71.72 0.50 13.25 57.45 54.28 89.65 67.62 28.25
MDPCA-DBN 86.94 63.20 68.75 6.00 34.93 66.18 61.57 95.51 74.87 13.06

As shown in Table 10, the proposed MDPCA-DBN has the best overall accuracy, recall, precision,
F1-score and FPR on the NSL-KDD (KDDTest+) dataset. In addition, our proposed model also achieved
the best detection rate in the Normal and U2R classes. ANN has a slightly better detection rate in the
DoS class compared to MDPCA-DBN (2.42% more). Moreover, MultinomialNB has 8.67% and 4.97%
higher detection rates in Probe and R2L classes than MDPCA-DBN, respectively, but MDPCA-DBN
has the best overall detection rate. Table 11 shows that MDPCA-DBN achieved the best overall
performance, except for RF (slightly more 1.44% on the overall FPR). In addition, the detection rate of
RF in the Normal class is 1.44% higher than that of the MDPCA-DBN, and the detection rate of DBN
in the DoS class is 2.97% higher than that of MDPCA-DBN, but they are poor in other performances.
MDPCA-DBN has the best detection rates on classes U2R and R2L. Tables 10 and 11 show that
MultinomialNB achieved the highest detection rate on the Probe class, which implies that the Probe
attacks conform to the multinomial distribution. As shown in Tables 10 and 11, all classifiers have very
low detection rates on both U2R and R2L classes. Unlike DoS and Probe attacks, U2R has very few
records (with only 11 records) in the NSL-KDD training dataset, which results in the classifier not being
adequately trained; however, some of the attacks included in R2L class, such as snmpgetattack and
snmpguess, exhibit highly similar features to those of normal records, which can cause the classifier to
misclassify them as normal records.

Table 12. Comparison results for the UNSW-NB15 dataset (%).

Class KNN MultinomialNB RF SVM ANN DBN MDPCA-DBN

Normal 74.81 62.0 76.85 58.36 63.89 72.12 82.85
Generic 96.63 96.24 96.4 96.21 95.55 96.08 96.93
Exploits 74.48 42.81 77.63 75.52 87.74 91.02 83.51
Fuzzers 42.33 33.25 51.32 69.31 68.98 43.32 44.39
DoS 19.44 73.84 17.6 0.00 5.13 2.32 23.72
Reconnaissance 58.94 36.34 76.68 0.00 63.38 70.67 76.68
Analysis 1.48 0.0 3.7 0.00 0.00 0.00 0.00
Backdoor 2.56 0.0 5.13 0.00 0.00 0.00 0.85
Shellcode 14.47 0.0 51.32 0.00 0.00 0.00 39.47
Worms 11.11 0.0 11.11 0.00 0.00 0.00 11.11

Accuracy 85.38 76.75 87.56 79.36 83.29 86.02 90.21
Recall 94.01 88.78 96.29 96.49 99.12 97.36 96.22
Precision 82.05 74.11 83.6 73.95 77.08 81.06 87.3
F1-score 87.63 80.78 89.5 83.73 86.72 88.46 91.54
FPR 25.19 38.0 23.15 41.64 36.11 27.88 17.15

Table 12 shows that MDPCA-DBN achieved the best overall performance compared to the other
six well-known models, except for the overall recall rate (ANN slightly higher, 2.9%). MDPCA-DBN
reaches the highest detection rate on the Normal, Generic, Reconnaissance, and Worms classes, but the
detection rates are slightly worse on other classes. MultinomialNB achieves a highest detection rate of
73.84% in the DoS class, which implies that the DoS attack features are suitable for the multinomial
distribution. RF reaches the highest detection rates on the Analysis, Backdoor, and Shellcode classes,
but it is worse than the MDPCA-DBN on the overall F1-Score. In addition, we can see that all
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classifiers have low detection rates on the Analysis, Backdoor, and Worms classes, mainly because
many contemporary attacks in the UNSW-NB15 dataset have similar behaviors, such as attack features
of Analysis, Backdoor and Worms similar to those of Exploits.

5.6. Additional Comparison

To better demonstrate the performance of our proposed MDPCA-DBN model, we compared
its performance with eight state-of-the-art intrusion detection techniques, namely, a Hybrid
Spectral Clustering and Deep Neural Network Ensemble Algorithm (SCDNN) [30], Self-taught
Learning Technique (STL) [53], Deep Neural Network (DNN) [54], Gaussian–Bernoulli RBM [38],
Recurrent Neural Networks (RNN-IDS) [55], a Multiclass Cascade of Artificial Neural Network
(CASCADE-ANN) [56], EM Clustering [27] and Decision Tree (DT) [27]. Table 13 demonstrates the
comparison results of the proposed model with other models in terms of accuracy, DR (detection rate)
and FPR (false positive rate) on the NSL-KDD (KDDTest+), NSL-KDD (KDDTest-21), and UNSW-NB15
datasets. As shown in Table 13, the proposed method achieved the best performance in terms
of accuracy, detection rate and false positive rate on the NSL-KDD (KDDTest +) and NSL-KDD
(KDDTest-21) datasets. It can be seen from the results that the proposed method achieved the highest
accuracy of 90.21% and the highest detection rate of 96.22% on the UNSW-NB15 dataset, but the FPR
is slightly worse. The CASCADE-ANN method proposed by Baig et al. [56] achieved a better false
positive rate (with 4.05% more), but its accuracy and DR are worse than the proposed method.

Simulation results show that the proposed method outperformed on the NSL-KDD (KDDTest+),
NSL-KDD (KDDTest-21), and UNSW-NB15 datasets in terms of Accuracy, DR and FPR except for
CASCADE-ANN (FPR on UNSW-NB15 dataset). The results clearly demonstrate that the detection
performances of the proposed model are more effective. However, because deep learning requires two
stages of pre-training and fine-tuning, the proposed method requires more computation time than
other shallow classification methods.

Table 13. Comparison results based on NSL-KDD and UNSW-NB15 datasets (N/A means no available
results, * Ranked first, ** Ranked second).

Method Dataset Accuracy(%) DR(%) FPR(%)

SCDNN [30] NSL-KDD (KDDTest+) 72.64 57.48 N/A
STL [53] NSL-KDD (KDDTest+) 74.38 62.99 ** 7.21 **
DNN [54] NSL-KDD (KDDTest+) 75.75 N/A N/A
Gaussian–Bernoulli RBM [38] NSL-KDD (KDDTest+) 73.23 N/A N/A
RNN-IDS [55] NSL-KDD (KDDTest+) 81.29 ** N/A N/A
MDPCA-DBN NSL-KDD (KDDTest+) 82.08 * 70.51 * 2.62 *

SCDNN [30] NSL-KDD (KDDTest-21) 44.55 37.85 N/A
STL [53] NSL-KDD (KDDTest-21) 57.34 52.73 ** 15.06 **
RNN-IDS [55] NSL-KDD (KDDTest+) 64.67 ** N/A N/A
MDPCA-DBN NSL-KDD (KDDTest-21) 66.18 * 61.57 * 13.06 *

CASCADE-ANN [56] UNSW-NB15 86.40 ** 86.74 ** 13.1 *
EM Clustering [27] UNSW-NB15 78.47 N/A N/A
DT [27] UNSW-NB15 85.56 N/A N/A
MDPCA-DBN UNSW-NB15 90.21 * 96.22 * 17.15 **

6. Conclusions and Future Work

In this paper, we propose a hybrid intrusion detection approach combining modified density
peak clustering algorithm (MDPCA) and deep belief networks (DBNs). MDPCA is used to find similar
features of complex and large-scale network data. According to the similarity of traffic features,
large-scale network data are divided into several training subsets of different clustering centers.
To a certain extent, MDPCA breaks the imbalance of multiclass records, reduces the complexity of
training subsets, and makes the model achieve the best detection performance. DBN can automatically
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extract high-level abstract features from each training subset without a lot of heuristic rules and
manual experience, and reduce data dimensions to avoid the curse of dimensions. As a deep
learning approach, DBNs integrate feature extraction and classification modules into a system that
can automatically extract features and classify them. This is an effective way to improve the detection
performance. The classification performance of MDPCA-DBN was evaluated on the NSL-KDD
(KDDTest+), NSL-KDD (KDDTest-21), and UNSW-NB15 datasets and compared with six well-known
classifiers. In addition, the classification performance of MDPCA-DBN was also compared with other
state-of-the-art classifiers on theNSL-KDD (KDDTest+), NSL-KDD (KDDTest-21), and UNSW-NB15
datasets. The experimental results show that the classification accuracy, detection rate and false
positive rate of MDPCA-DBN are better than those of traditional methods.

Since fewer U2R and R2L attacks in the NSL-KDD dataset are recorded, and nearly half of the
unknown attacks on the testing dataset never appear in the training dataset, it is difficult for all
classifiers to detect U2R and R2L attacks. For future work, we plan to use the adversarial learning
method to synthesize U2R and R2L attacks, thereby increasing training samples for U2R and R2L
attacks. Through the adversarial learning method, similar unknown U2R and R2L attack records can
be synthesized. As a result, the imbalance of five types of attack records is reduced and the detection
accuracy of U2R and R2L attacks is improved. This can further improve the detection performance of
the proposed model.
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