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Abstract: An accurate and efficient Large-for-Gestational-Age (LGA) classification system is
developed to classify a fetus as LGA or non-LGA, which has the potential to assist paediatricians and
experts in establishing a state-of-the-art LGA prognosis process. The performance of the proposed
scheme is validated by using LGA dataset collected from the National Pre-Pregnancy and Examination
Program of China (2010–2013). A master feature vector is created to establish primarily data
pre-processing, which includes a features’ discretization process and the entertainment of missing
values and data imbalance issues. A principal feature vector is formed using GridSearch-based
Recursive Feature Elimination with Cross-Validation (RFECV) + Information Gain (IG) feature
selection scheme followed by stacking to select, rank, and extract significant features from the LGA
dataset. Based on the proposed scheme, different features subset are identified and provided to
four different machine learning (ML) classifiers. The proposed GridSearch-based RFECV+IG feature
selection scheme with stacking using SVM (linear kernel) best suits the said classification process
followed by SVM (RBF kernel) and LR classifiers. The Decision Tree (DT) classifier is not suggested
because of its low performance. The highest prediction precision, recall, accuracy, Area Under
the Curve (AUC), specificity, and F1 scores of 0.92, 0.87, 0.92, 0.95, 0.95, and 0.89 are achieved
with SVM (linear kernel) classifier using top ten principal features subset, which is, in fact higher
than the baselines methods. Moreover, almost every classification scheme best performed with ten
principal feature subsets. Therefore, the proposed scheme has the potential to establish an efficient
LGA prognosis process using gestational parameters, which can assist paediatricians and experts to
improve the health of a newborn using computer aided-diagnostic system.

Keywords: recursive feature elimination with cross-validation; stacked generalization; large for
gestational age; feature engineering; machine learning; bioinformatics

1. Introduction

During the last several decades, an increased in the incidence of LGA neonates in the developed
countries are reported, which is even wider in developing countries [1,2]. It is defined as a fetus whose
gestational weight is above the 90th percentile of a fetus with a similar gestational age and sex [3].
It exhibits serious pre/post maternal complications, which are comprised of shoulder dystocia [4,5],
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insulin resistance [6,7], metabolic syndrome [6], prolonged labor [5], cesarean section [8], postpartum
bleeding [8], serious adverse consequences before and after delivery including breast cancer [9,10],
and expedited chances of infants mortality rate [11]. Therefore, based on these serious complications,
which are associated with the health of a newborn, it is a topic of keen interest for paediatricians and
related health-care officials.

On the basis of the above-discussed concerns, the primary motivation behind this research is to
develop an accurate LGA classification model, which is capable of classifying an LGA fetus before birth
using maternal biochemical indicators. To improve LGA classification performance, using the national
pre-pregnancy and examination program of China (2010–2013) dataset [12], the master feature vector
(MFV) is created to formalize LGA dataset, where we discretized feature values and entertained missing
values. Principal feature subsets were created using the proposed GridSearch-based RFECV+ IG
feature selection scheme followed by stacking to select, extract, and rank features to enhance proposed
classification schemes performance with minimal generalization error. Based on the experimental
results, it is foreseen that the top ten features selected by each of the feature selection processes proved
best, but Support Vector Machine (SVM) with linear kernel remained best with the production of
highest performance metrics scores. Moreover, to establish comparative analysis, the proposed scheme
is compared with previously published research on the same LGA dataset.

The rest of the paper is organized as follows: Section 2 presents the related work. Section 3 defines
the methodology of this research with complete details of data pre-processing, experimental flow,
and performance metrics. Section 4 presents experimental results of various experimental processes.
Section 5 discusses experimental results and compares them with existing baselines schemes to signify
the importance of the proposed scheme. Finally, this paper is concluded in Section 6 and future work
is presented.

2. Related Work

Previously, different practices were used to identify LGA fetus. The most common methods
were using estimated fetal weight (EFW), abdominal circumferences (AC), ultrasound surveillance of
an obese woman, maternal BMI, gestational weight, gestational diabetes mellitus (GDM), etc. Most
of them were observational or retrospective studies that used simple logistic regression to extract
discriminant features subset for the establishment of an LGA prognosis process. For example, Shen
used sonographic estimated fetal weight (EFW) of Chinese women to classify a fetus as LGA or
non-LGA and achieved specificity and sensitivity of 48.1% and 97.3% respectively [13]. Blue used AC
with EFW for LGA classification [14]. Harper proposed to use ultrasound surveillance of obese women
before 32 weeks of the gestational period to classify a fetus as LGA or non-LGA [15]. Chen used
maternal BMI with gestational weight for LGA classification [16]. Moore established a cohort analysis
and demonstrated that LGA fetus exhibits dichotomous risks at term [17]. Luangkwan used linear
modelling to observe the risk of parental complications in pregnant women with an LGA fetus [18].
In addition, some research was proposed to monitor variations in fetus bio-chemical indicators during
different physical checkups to control its consequences [19–21]. Based on this, it can easily be foreseen
that most of them were observational or retrospective studies that used simple logistic regression to
extract discriminant features subset for the establishment of an LGA prognosis process.

Perhaps, in our previous work, we were the first who exploited machine learning (ML) techniques
for the establishment of an efficient LGA prognosis process. In [22], we used information gain (IG)
feature selection scheme for the LGA prognosis and achieved precision and Area Under the Curve
(AUC) score of 0.71 and 0.70, respectively. In [23], we used IG with an ensemble scheme to improve
classification performance with the extraction of useful features to establish an efficient LGA prognosis
process where we achieved precision and AUC scores of 0.84 and 0.72 respectively. Furthermore,
in [24], using experts’ expertise, we reached to obtain prediction precision and AUC scores of 0.95
and 0.86, respectively. In this research, we identified ranked twenty in practice features for the
establishment of an efficient LGA prognosis process. However, still, there is still room to improve
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the prediction performance of an LGA classification system. Therefore, a master feature vector is
created and GridSearch-based Recursive Feature Elimination with Cross-validation (RFECV) scheme
followed by stacked generalization is introduced to select, rank, extract suitable feature subset with
higher classification prediction performance with reduced generalization errors. RFECV and stacked
generalization have previously been proven best in various related application domains [25,26].

3. Materials and Methods

This research proposes two different schemes for LGA classification. In the first scheme, creation of
a master feature vector, GridSearch-based Recursive feature elimination with cross-validation (RFECV)
feature selection scheme with machine learning models that are tuned with GridSearch, and ranked
features subset based on Information gain (IG) feature selection scheme are given to four influential
machine learning classifiers, as shown in Scheme 1, which illustrates the methodology of the first
proposed LGA classification scheme. The second scheme is intended to enhance the LGA classification
performance with minimized generalization errors. The objective is to expedite LGA classification
performance with an ensemble of stacked classifiers based on the meta-level features extracted from
the level-0 of the stacking procedure. Later, the extracted features from Level-0 of stacking process is
given to Level-1 of the stacking process to establish a state of the art LGA classification model. Refer to
Scheme 2, which illustrates the methodology of the proposed LGA classification scheme. In both of the
schemes, the classifiers are constructed and tested with ten-fold cross-validation to diagnose an infant
as LGA or non-LGA. The reason to deploy ten-fold cross-validation is to minimize the generalization
errors and come up with a standardized LGA classification framework.
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Scheme 1. The completemethodology of the proposed GridSearch + Recursive Feature Elimination
with Cross-validation + Information Gain-based feature selection scheme for the establishment of an
efficient Large for Gestational Age infants prognosis process.



Appl. Sci. 2019, 9, 4317 4 of 18

 

 

 

 

Classifier 

Trained 

 

Binary 

Classification  

LGA 

Non-LGA 

 

Stacked Generalization  

Divide Every Feature subset 

Subset1 Subset2 

Aggregated Classifiers output 

Level 0 

Classifier 1 

Level 0 

Classifier 2 

Level 1 Classifiers 

Master 

Feature 

Vector 

Creation 

 

Grid-Search (GS) for 

Parameter Tuning 

GS + Logistic Regression 

GS + Random Forest 

GS + Decision Tree 

GS + SVM + Linear kernel 

GS + SVM + RBF kernel 

 

RFECV with GS Feature 

Selection 

RFECV + Logistic Regression 

RFECV + Random Forest 

RFECV + Decision Tree 

RFECV + SVM + Linear kernel 

RFECV + SVM + RBF kernel 

 

Ranked with 

Information Gain 

10 

20 

30 

40 

All + RFECV 

All Feature 

GS

Scheme 2. The complete methodology of the proposed GridSearch+Recursive Feature Elimination
with Cross-validation + Information Gain + Information Gain + Stacked generalization based feature
selection and classification scheme for the establishment of an efficient Large for Gestational Age
infants prognosis process with reduced generalization error.

3.1. Dataset Collection

The benchmark LGA dataset used in this research is collected from National Pre-Pregnancy
and Examination Program of China [12]. The program was initiated to eliminate birth deficiencies
of Chinese citizens across China (2010 to 2013). The project covered all of the provisional and
municipal hospitals of China. The examination checklist was suggested and finalized by the mutual
consensus of a panel of experts constituted from various related domains (i.e., obstetrics, paediatrics,
andrology, internal medicine, etc.). The checklist includes pre-pregnancy items ( i.e., eating habits
(male(m)/female(f)), smoking (m/f), drinking (m/f), height (m/f), occupation (m/f), etc.), pregnancy
items that includes parents’ ( clinical measures, reproductive system measures, abnormalities in
pregnancy, etc.) and socio-economic and demographic factors.

The obtained dataset is comprised of 371 features with 215,568 records. The distribution of the
data is accomplished with a widely used LGA classification scheme proposed by Zhu et al. [27]. It is
presented in Table 1. Based on the proposed scheme, each of the records is classified either as LGA or
non-LGA. Therefore, following the proposed scheme, 26,226 records are labelled with the LGA, and
remaining 189,342 are labelled with the non-LGA.

Table 1. Birthwise Large for Gestational Age infants classification chart which is a widely used and
accepted guideline on the Chinese population.

Birth Week Boys Weight (g) Girls Weight (g) Birth Week Boys Weight (g) Girls Weight (g)

24 846 740 34 2843 2768
25 1031 939 35 3114 3028
26 1212 1132 36 3386 3286
27 1390 1321 37 3637 3515
28 1566 1504 38 3828 3691
29 1742 1686 39 3979 3803
30 1925 1872 40 4030 3872
31 2122 2071 41 4092 3921
32 2341 2285 42 4148 3963
33 2584 2519 - - -

3.2. Preparation of the Master Feature Vector

For improving LGA classifiers performance, the master feature vector in the LGA dataset is
required to be accurate, robust, and flawlessly identified. As mentioned previously, the LGA dataset is
obtained from an official project that was launched across almost every related hospital in China; and
it is evident that every massive project always contains a certain amount of missing fields. The reason
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might not always be a human error, but certain times, a paediatrician did not feel to prescribe or
record specific test that is mentioned in the proposed recording guidelines. The entertainment of
these missing fields is a significant and necessary step during the classification task. Otherwise, it will
adversely affect the classification results. Therefore, considering the desired need for the establishment
of a better LGA classification model, the following algorithm is proposed to eliminate discussed issues.

Above defined Algorithm 1 can be explained as follows, Let’s suppose L0 is the basic LGA dataset
with f0 features and n0 records. To create MFV, initially, a classification column is added to each
record as per [27] classification criteria. Each feature value is discretized with the help of literature and
paediatrician’s expertise; a threshold to delete 10% from controls (LGA’s record) and 15% from cases
(non-LGA) records are set and remaining records were imputed with the selected mode of these feature
values. As a result of this process, a Master Feature Vector (MFV) is extracted from the complete LGA
dataset. The details of the resultant MFV is presented in Figure 1. where, Figure 1a, represents the
distribution of original LGA dataset and Figure 1b, represents the details of resultant MFV.

Algorithm 1 Creates a Master Feature Vector with an intention to impute and remove missing values
with a certain threshold to improve classification and feature selection and extraction process
performance on the obtained LGA dataset L0
Input: LGA dataset L0 with f0 features and n0 records.
Output: LGA dataset L with f features and n records

1: For each rth row in L0, add cth classification column c, following [27] infant classification guidelines.
2: Discritize each f0-th feature of L0 with literature and pediatrician’s expertise.
3: Impute nan in vth missing value of each rth record of L0.
4: Remove rth record from L0 with missing threshold of 10% from controls and 15% from the cases
5: Impute discrete vth value with mode of every f0-th feature.
6: return LGA dataset L with f features and n records.

NPEPC Dataset

Live Births: 93%

Still Births: 3%
Abortions: 3%

Miscarriages: 2%

2,30,190 7,564 6,522 4,225

NPEPC-MFV

Records with Missing values: 84%

LGA: 6%non-LGA: 9%

1,94,017 14,658 21,515

(a). (b).

Figure 1. The details of the National Pregnancy and Examination Program of China dataset before
and after applying Master Feature vector (MFV) creation algorithm where (a) represents the details of
original Large for gestational age infants dataset and (b) represents the processed dataset following
MFV creation algorithm.

3.3. Preparation of the Principal Feature Vector

An accurate and robust classification system requires discriminative features with reduced
dimensions. Irrelevant and unnecessary features not only affect classifier performance but also demand
excessive computational resources and time for the classification task [28–31]. A variety of feature
selection, extraction, and reduction schemes are proposed by various researchers to deal with the
curse of irrelevant and dimensionality problem of a classification system [23,28,32–34]. In this article,
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we recommend using an ensemble of feature selection and extraction schemes to build an accurate and
state of the art LGA prediction model. The development of Principal Feature Vector (PFV) is comprised
of two different aspects. In the first aspect, GridSearch-based RFECV + IG feature selection scheme is
applied to select, rank, and remove noisy features from the LGA dataset; whereas the second aspect
further extracted features (i.e., for the sake of dimensionality reduction to eliminate generalization
errors) obtained with the GridSearch-based RFECV + IG scheme using stack generalization to further
improve the classification performance of the proposed scheme with lesser computational overhead.
In the subsequent subsections, these schemes are precisely discussed.

3.3.1. GridSearch-Based RFECV + IG Feature Selection Scheme

Recursive Feature Elimination (RFE) is a scheme that excludes features based on its irrelevancy
and low data integrity to a specified class distribution [25,35]. The elimination process is a continuous
process until a complete list of deterministic feature subset is reached. The elimination process takes
a classification model, and based on the classification weights, selects the weighted features with the
elimination of noisy features. In addition, for a better elimination and selection process, the parameters
for the classification model are required to be tuned. In this research, GridSearch, a popular technique
for parameter tuning, is also accompanied by RFE to improve classification performance. Moreover,
in the case of Recursive feature elimination with cross-validation (RFECV), the fitting is accompanied
by testing, it uses training and test splits provided with a given folding parameter that helps in
minimizing generalization errors.

Support Vector Machine (SVM) with linear and rbf kernels [36,37], Logistic Regression (LR) [38],
and Decision Tree (DT) [39] classifiers are used in RFECV feature selection scheme with the parameters
tuned with GridSearch with five-fold cross validation. During the tuning of GridSearch, for SVM (with
linear kernel) and LR classifiers, ‘C’ is tuned in the range of 2−8 to 28; whereas, SVM with rbf kernel,
‘C’ is tuned in the range of 2−8 to 28 and gamma is tuned in the range of [1, 0.1, 0.01, 0.001, 0.00001, 10].
DT attributes are tuned for maximum depth: [1, 2, 3, 4, 5] , criterion: [′gini′,′ entropy′] , and maximum
features: [′sqrt′,′ log2′,′ auto′]. The complete result of the selected features with discussed LGA classifier
are presented in Table 2. All of the corresponding feature subsets are given to specified machine learning
classifier for the establishment of first experimental setup.

Table 2. Features selected with GridSearch-based Recursive Feature Elimination with Cross-validation
feature selection scheme with execution time using various machine learning classifiers for
tuning parameters.

RFECV + Machine Learning Classifier Selected Features Time (s)

SVM (Linear kernel) 53 25537
SVM (RBF kernel) 99 201331

Logistic Regression 38 40386
Decision Tree 270 118

Furthermore, the IG feature selection scheme is used as an ensemble of feature selection process
to rank above-induced feature subsets which are discussed as follows,

Information Gain (IG): is an extensively used feature selection scheme in a variety of machine learning
problems, especially related to the medical domain. IG feature selection scheme works with an objective
of uncertainty reduction in a feature vector. Once the level of uncertainty is known, the larger the
uncertainty can be reduced, and more the information the feature can bring to the classification system.
Thus, ultimately, we have a larger information gain that is brought to the system for the development
of an efficient LGA classification model. In IG feature selection scheme, “information entropy” is used
to measure the amount of information which is later calculated as the difference between dataset (B)’s
information entropy including with and without LGA features xi.



Appl. Sci. 2019, 9, 4317 7 of 18

Furthermore, while training dataset B with I class labels, $(B) represents the information entropy
of the LGA class distribution in B, which can be expressed as follows,

$(B) = −
I

∑
i=1

pi log2 pI (1)

where Pi represents the probability of i-th class in the training dataset B. Moreover, xi features with
D distinct values can be used to partition dataset B into D distinct groups. Then, each group Bd(d =

1, ..., D) entropy is calculated as,

$(Bd) = −
I

∑
i=1

pdi log2 pdi (2)

where pdi is the probability of i-th class in the training data subset Bd. Based on the fact that each
subset may contain a different number of samples, i.e., each subset Bd contains Zd samples where
(d = 1, ..., D), its weight is set to Zd/Z. Information Gain with features xi to partition dataset B can be
written as

In f ormationGain(B, xi) = $(B)−
D

∑
d=1

Zd
Z

$(Bd) (3)

Based on calculated information gain of every attribute, the attributes with the highest IG are
ranked with descending order for the further experimentations.

3.3.2. Feature Extraction and Dimension Reduction with Stacked Generalization

Stacked generalization (SG): also known as Stacking is a process that combines multiple classifiers
to form an efficient classification system. It was introduced by Wolpert in 1992 [40]. The stacking
process involves output generated from level-0 (base-level) classifiers as an input to level-1 (meta-level)
classifier to improve classification performance using the process of cross validation is as follows,

Let us suppose that L is the obtained LGA dataset with ai attributes with an associated yi-th
class label. Thus, L = {(ai, yi), i =, ..., n} refers to the level-0 of the LGA dataset. Based on K-fold
cross-validation L is divided into K disjoints parts of L1, L2, ..., Lk where at each k-th fold Lk is used as
test and L(−k) = L− Lk is used as the test part. Later, N learning algorithms A1, A2, ..., AN are applied
at training part L(−k) to build N level-0 classifiers C1, C2, ..., CN . The resultant concatenated predictions
of each k-th fold at Lk of N level-0 classifiers with the actual class label are used to form meta-level
vector (MLk). It will be use during the establishment of level-1 classification.

With the development of complete meta-level vector (MLk) also called level-1 data which is
obtained by the union of each of the MLk, where k = 1, 2, 3, ..., K during the cross-validation process,
we applied the algorithm Am to form the meta-level classifier Cm. During the development of Cm,
the Am could be any of the A1, A2, ..., AN or a different one. Based on this procedure, it is foreseen that
after forming the meta-level data, the entire data is trained using the learning algorithms A1, A2, ..., AN
to build final base-level classifiers C1, C2, ..., CN .

Ting et al. [41] proposed to use class probabilities instead of just using class labels for the formation
of the meta-level feature vector, as it can better improve classification performance with an improved
learning rate. Therefore, to classify a new instance predicted probabilities and predicted class labels
by all level-0 classifiers are concatenated to form a meta-level classifier which has N components.
Based on this formed meta-level feature vector, level-1 classifiers assign an actual class label to
the final classification result of the input instance x. Figure 2. refers to the process of creation of
K-fold cross-validation (the left part of the figure) while the right part of the figure represents the
stacking process.
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Figure 2. The establishment of K-fold cross validation process to create meta-level training data and
stacking procedure with minimal generalization errors.

Feature Extraction and Dimension Reduction with Stacking: represents the above-defined process
where the outputs of level-0 classification are combined to form complete meta-level features. It is,
in fact, a process to extract discriminant features rather than just classification predictions. Previously,
the combination strategy has already benefited different researcher to improve generalization errors
during the classification task. On the basis of this, considering the best classification schemes on the
said GridSearch-based RFECV + IG feature subsets, we proposed to use Logistic regression (LR) and
Random forest (RF) classifiers for the creation of the discriminant meta-level feature subset followed
by Support Vector Machine (SVM) classifiers at level-1 to establish a state of the art LGA classification
system. The reason to chose LR, RF, and SVM is because of their efficient performance during the
sensitivity analysis process.

Furthermore, before starting the feature extraction process, we proposed to use the below-defined
technique to reduces the size of data to expedite classification speed and performance without further
deletion of valuable records. Following [26], where the authors trained classifiers on a hyperspectral
data (shape features data and magnitude features data) and combined their results with stacking
to form a new feature subset that is extracted with level-0 classifiers prediction probabilities, actual
and predicted outputs. Based on this, we subdivided the whole LGA dataset L, which is obtained as
a result of MFV creation wherein total 36,172 ( LGA = 14,658, non-LGA = 21,514 ) records are selected.
We subdivided (LGA and non-LGA) / 2 and formulated a new LGA dataset which contains two equal
number of records, and we call it subsets 1 and 2 of LGA dataset L. Each subset of L contains 18,086
(7329 = LGA, 10,757 = non-LGA )records. These two subsets are used at the level-0 of the stacking
process, which is intensively discussed in the previous subsection. The complete process of feature
extraction and classification task is presented in Figure 3 where at level-0 of stacking process RF and
LR classifiers with ten-fold cross-validations are used for feature extraction task and SVM with the
linear kernel is used at level-1 of the stacking process for the classification prediction task. These
classifiers are selected because of their efficient performance on the said dataset L in the first group
of experiments.
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Figure 3. The complete classification procedure of proposed stacking scheme with the creation of
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3.4. LGA Classification Tools and Schemes

IBM SPSS statistics 22.0 and python are used for primary data processing. The LGA classification
schemes are coded in python using the sci-kit-learn toolkit. Based on recent studies, four machine
learning classifiers are selected. Logistic Regression (LR), Support Vector Machine (SVM) [42,43],
and Random Forest (RF) classifiers are selected because of its outstanding performance in previously
reported literature [22–24] and Decision Tree (DT) classifier is selected because of its simplicity, implicit
feature screening process, easiness of data interpretability, and it also does not require any assumptions
of linearity in the data [39] . In addition, SVM with RBF kernel is also exploited to observe the efficiency
of SVM using its kernel trick; other kernels are not exploited because of its high computational time
and cost.

3.5. Performance Evaluation Metrics

To evaluate the performance of proposed GridSearch-based RFECV feature selection scheme which
is followed by IG feature selection scheme with stacked generalization, we selected precision, recall,
accuracy, AUC, specificity, and F1 scores as a performance evaluation measures [44]. The possible
outcomes of the proposed Gridsearh based RFEC + IG and Gridsearh based RFECV + IG followed by
Staking can be described as

TP (True Positive): Records correctly diagnosed as LGA or non-LGA;
FP (False Positive): Records incorrectly diagnosed as LGA or non-LGA;
TN (True Negative): Records correctly rejected by the classifier;
FN (False Negative): Records incorrectly discarded by the classifier;

Furthermore, the derivation of these metrics are as follows,
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Precison is the prediction, when it predicts yes and how often it is accurate or the number of true
positive divided by the summation of a true positive and false positive.

Precision =
TP

TP + FP
(4)

Recall is the fraction of true positive and total actual positives in the dataset or the ability of the
system to extract all relevant cases from the dataset or the number of true positive divided by the
summation of a true positive and false negative.

Recall =
TP

TP + FN
(5)

Accuracy is the correctness of the LGA classifiers in predicting LGA or non-LGA or the fraction
of summation of true positive and true negative with the summation of true positive, true negative,
false positive and false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

AUC is used to analyse the correctness of the classification system in predicting a specific class. In
fact, represents the classwise occupied area of a specific class.

AUC =
1
2
(

TP
TP + FN

+
TN

TN + FP
) (7)

Specificity is the proportion of actual negatives which are correctly identified as it is, It represents
true negative rate or the number of true negatives divided by the summation of a true negative and
false positive.

Speci f city =
TN

TN + FP
(8)

F1 Score is the weighted average recall (true positive rate) and precision or it is the harmonic
mean of recall and precision. Its formation is as follows.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(9)

4. Experiment Results

The experimental process is consolidated into two main processes. Where in the first process,
two groups of experiments are performed. In the first group of experiments, RFECV feature selection
scheme whose parameters are tuned with GridSearch is given to four widely used ML classifiers
(Decision tree (DT), Logistic regression (LR), Support vector machine (SVM) with linear and RBF
kernels) to classify LGA infants. In the second group of experiments, we used Information Gain (IG)
feature selection scheme on previously identified features subsets identified using RFECV feature
selection schemes. It is a sort of ensemble of the feature selection process where two feature selections
schemes are added subsequently to remove noisy features with the identification of ranked feature
subsets. Moreover, in the second process, stacking is proposed to extract features from the previous
ensemble feature subsets to add another ensemble layer on the feature subsets to remove classifiers
generalization errors and to improve classification performance. The results are of the experiments are
presented in the following subsections.

4.1. Results of GridSearch Based RFECV + IG Feature Selection Scheme for LGA Prediction

To highlight the importance of proposed GridSearch-based RFECV feature selection scheme which
is followed by IG feature selection scheme, we executed the initial experiments considering all features
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as per MFV created and the features selected by GridSearch + RFECV features selection scheme. Table 3
can be referred for the details of the results. From the results, it is foreseen that the GridSearch + RFECV
features selection scheme improved the LGA classification prediction scores and best performed with
SVM classifier (using linear and RBF kernel). Furthermore, the classification performance of all of
the classifiers on GridSearch + RFECV features subsets are also improved compared to the results
of MFV features subset. Based on foreseen improvement, considering the primary objective of this
research, which is to identify principal features subset for a better LGA prognosis, we executed the first
proposed experimental process. Figure 4 presents the results of the initial experiment process where
an ensemble of feature selection scheme is created using GridSearch + RFECV and IG feature selection
scheme. From the results, it is discerned that all of the proposed classifiers outperformed with principal
ten feature subsets. SVM (with the linear kernel) outperformed among all with prediction precision,
recall, accuracy, AUC, specificity, and F1 scores of 0.97, 0.61, 0.83, 0.87, 0.999, and 0.74 respectively,
followed by SVM (with RBF kernel), LR, and DT. SVM (with RBF kernel) and LR classifiers remained
almost similar by producing similar performance metrics scores whereas DT classifier remained weak
in producing noticeable performance metrics scores.

Table 3. Results of all features subsets selected by GridSearch-based RFECV features selection scheme
using well known ML classifiers with 10-fold cross validation.

Scheme Feature Subset Metrics SVM (Linear) SVM (rbf) Logistic Regression Decision Tree

Master Featuer Vector All Precision 0.8352 0.2025 0.8289 0.4970
All AUC 0.8447 0.2014 0.8281 0.5907
All Recall 0.6560 0.1198 0.6569 0.6991
All F1-Score 0.7166 0.1117 0.7236 0.5746

GridSearch + RFECV GridSearch + RFECV(All) Precision 0.9498 0.9691 0.9200 0.4961
GridSearch + RFECV(All) AUC 0.8690 0.8606 0.8659 0.5899
GridSearch + RFECV(All) Recall 0.6461 0.6059 0.6686 0.7008
GridSearch + RFECV(All) F1-Score 0.7663 0.7433 0.7716 0.5745
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Figure 4. Comparative results of various machine learning classifiers on different features subset
obtained as the result of applying GridSearch (for parameters tuning), RFECV feature selection scheme,
and Information Gain (IG) feature selection scheme.
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4.2. Results of GridSearch Based RFECV + IG Feature Selection Scheme with Stacking for LGA Prediction

To improve classification performance by removing generalization errors of the selected classifiers,
we executed the second experimental process. The objective is to reduce or eliminate generalization
errors with expedited classification performance using stacking, where level-0 of stacking is used for
principal feature extraction with the intention of dimension reduction and level-1 is used to remove
generalization errors to improve classification performance. Figure 5 presents the complete results of
the proposed scheme. From the results, it is evident that the performance metrics scores are improved
drastically, but with principal ten feature subsets, the results are noticeable. SVM (linear kernel)
remained best with prediction precision, recall, accuracy, AUC, specificity, and F1 scores of 0.92, 0.87,
0.92, 0.95, 0.95, and 0.89 respectively, followed by SVM (RBF kernel), LR, and DT. SVM (RBF kernel)
and LR classifiers remained almost similar by producing similar performance metrics scores whereas
DT classifier remained weak in producing noticeable performance metrics scores.
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Figure 5. Comparative results of various stacked-classifiers on different features subset obtained as the
result of applying GridSearch (for parameters tuning), RFECV feature selection scheme, Information
Gain (IG) feature selection scheme for ranking of features, and Stacking to extract new features and to
eliminate classifiers generalization errors.

5. Discussions and Comparative Analysis with Existing State-of-the-Art LGA Classifications

The proposed scheme for the classification of LGA fetus using stacked generalization with an
ensemble feature selection scheme proved best in the selection of useful features subset which can
accurately identify a fetus with its gestational parameters. From the results, it is also evident that
the ranked ten principal features subset by every feature selection scheme remained best among all
feature subsets and produced its highest prediction performance metrics scores. Table 4 presents the
comparative best results of all three group of experiments with the proposed ensemble of feature
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selection and extraction techniques with stack-generalization. From the results, it is observed that
among the three experimentations, SVM (linear kernel) classifiers outperformed with the production
of highest prediction performance metrics scores and remained best with prediction precision, recall,
accuracy, AUC, specificity, and F1 scores of 0.92, 0.87, 0.92, 0.95, 0.95, and 0.89 respectively. The reason
for being the best is because of the formation of maximum hyperplane between the LGA and non-LGA
class. The creation of maximum hyperplane is possible because of easily superable feature subsets
induced as the result of applying the proposed ensemble of feature selection and extraction schemes
with stacked generalization. SVM (RBF kernel) classifier is also suitable for LGA classification task
because of its impressive results but is not recommended because of its computational complexity.
Furthermore, LR classifier can also be used for the said classification task, but DT classifier is never
recommended due to its low performance. The reason for DT classifier for being insignificant might be
because of inadequacy in applying regression and possibility of duplication with the same sub-tree on
different paths while predicting values.

Table 4. Comparative best results of all three group of experiments with the proposed ensemble of
feature selection and extraction techniques with stack-generalization.

Experiment Type Best Classifier Size Precision AUC Recall Accuracy Specificity F1

GirdSearch with SVM All 0.949 0.843 0.646 0.842 0.976 0.766
tunned parameters (linear kernel)

GirdSearch + RFECV SVM 10 0.971 0.868 0.606 0.833 0.987 0.744
+ Information Gain (linear kernel)

GridSearch + RFECV + IG Stacked SVM 10 0.920 0.950 0.8683 0.9156 0.9478 0.8921
+ Stack generalization (linear kernel)

The significance of the proposed scheme is highlighted by comparing the results of the proposed
scheme with existing state-of-arts LGA classification schemes. Table 5 presents the comparative best
results of recently published schemes on the same dataset with the proposed scheme. The results
reveals that the highest prediction performance metrics scores (i.e., precision = 0.92, AUC = 0.95 ,
recall = 0.87, accuracy = 0.92 , specificity = 0.95, and, F1 = 0.89) are obtained by the proposed scheme
with SVM (linear kernel) using ten principal features subset. Table 6 present the results of ranked
ten principal feature subset of GridSearch-based RFECV + IG feature selection scheme with four ML
classifiers using ten-fold cross-validation. From the comparative analysis of the results of the proposed
scheme, it is also discerned that the feature engineering and classification schemes of this research
best suits the process of establishing a state-of-art LGA prognosis process with improved classification
performance with lesser computational overhead. The reason for the improvement in classification
performance is because of the extraction of reduced numbers of discriminant features subset, which
eventually helps in removing LGA classifiers complexity with decreased generalization errors to
improve LGA classification accuracy.

CD = qα

√
k(k + 1)

6 ∗ N
(10)
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Table 5. Comparative best results of proposed and previously published schemes on the said Large for
gestational age dataset.

Baseline Scheme Precision AUC Recall Accuracy Specificity F1

Akhtar et al. [22] IG + ML 0.71 0.71 - - - -
Classifier - - - -

Akhtar et al. [23] Proposed Ensemble Technique 0.85 0.72 - - - -
+ ML Classifiers - - - -

Akhtar et al. [24] Proposed Expert Driven 0.95 0.86 - 0.85 - -
+ ML Classifiers - - -

This Research GridSearch + RFECV + 0.92 0.95 0.87 0.92 0.95 0.89
+ IG + Stack Generalization

Table 6. The ranked ten principal feature subsets of GridSearch-based RFECV + IG feature selection
scheme with four ML classifiers using ten-fold cross validation.

Number GridSearch + RFECV GridSearch + RFECV GridSearch + RFECV GridSearch + RFECV
+ IG + SVM(Linear) + IG + SVM(RBF) + IG + LR + IG + DT

1 Pregnancy History Pregnancy History Pregnancy History Pregnancy History
2 Smoking (m) Smoking (m) Contraception Used Contraception Used
3 Contraception Used Toxic Pesticide # Full Term Birth Normal Birth
4 # Full Term Birth Contraception Used # of Pregnancies # Full Term Birth
5 # of Pregnancies # Full Term Birth Evaluation Result # of Pregnancies
6 Evaluation Result # of Pregnancies High Risk Fetus ? Region Name
7 High Risk Fetus ? Evaluation Result Delivery Week Follow-up Institution
8 Delivery Week High Risk Fetus ? Normal Birth Delivery Week
9 Normal Birth Delivery Week Induced Labour Child Birth Province
10 # of Fetuses Premature Delivery # of Fetuses Child Birth Town

Moreover, Friedman and Bonferroni–Dunn tests are also introduced to rank and highlight the
significance difference between the results reported in Figures 4 and 5. Initially, Friedman test
considering (p < 0.05) is employed to rank the classifiers based on the result of said experiments.
The longitudinal axis in Figures 6 and 7 represents the average mean ranking calculated by using
Friedman test on all group of experiments. From the results it is foreseen that SVM with linear
kernel outperformed in almost each group of experiment. In addition, Bonferroni–Dunn test is also
employed in the significance level of α < 0.05, α < 0.01, and α < 0.001 to the results of Friedman
test. Equation (10) is used to calculate Critical Distance (CD) used in Bonferroni–Dunn Test. Based
on provided guidelines by the author of [45], for Figure 6, we selected N = 6, and k = 4, q = is
equal to qα(0.05) = 3.4077, qα(0.01) = 4.089, and qα(0.001) = 4.9198 whereas, for Figure 7, N = 5,
and k = 4, q = is equal to qα(0.05) = 3.3045, qα(0.01) = 4.004, and qα(0.001) = 4.8444. Based on
these figures’ results, it is observed that SVM has the largest difference in-between pair-wise means
of control group with the critical values which validates the previously concluded remarks of using
ranked ten features subset with SVM (linear kernel) classifier as an important mean to diagnose infants
as LGA or non-LGA.

Furthermore, the proposed scheme has the potential to classify various disease classes accurately
using gestational parameters as suggested by the panel of experts of different domains. The limitation
of the proposed scheme is that it experiments only for LGA dataset. However, it has the potential to
produce accurate results for Small for Gestational Age (SGA) infants as well, which we will explore
in our future work. In addition, as previously discussed that machine learning techniques on LGA
have never been exercised extensively, so this research presents an extensive work that can facilitate
paediatricians and researcher to extend their research in the defined area. Moreover, in our future
work, deep learning techniques, such Standard Deep Neural network (NN) [46], Hierarchical deep
learning (HDL) [47], Random multimodel deep learning (RMDL) or deep perceptron [48] will also be
exploited to add more scientific results to the related domain.
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Figure 6. Result ranked with Friedman test and Bonferroni–Dunn test of four ML algorithms (SVM
(Linear kernel), SVM (RBF kernel), LR, and DT ) with precision, recall, accuracy, AUC, Specificity, and
F1 Score in significant levels of α < 0.05, α < 0.01, and α < 0.001 taking DT as a control algorithm in
Figure 4 results.
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Figure 7. Result ranked with Friedman test and Bonferroni–Dunn test of four ML algorithms (SVM
(Linear kernel), SVM (RBF kernel), LR, and DT ) with precision, recall, accuracy, AUC, Specificity, and
F1 Score in significant levels of α < 0.05, α < 0.01, and α < 0.001 taking DT as a control algorithm in
Figure 5 results.



Appl. Sci. 2019, 9, 4317 16 of 18

6. Conclusions and Future Work

In this research, an LGA classification model is developed to classify a fetus as LGA or non-LGA.
It is composed of the GridSearch-based RFECV + IG feature selection scheme followed by stacking to
select, rank, and extract significant features from the LGA dataset. The proposed LGA classification
scheme using stacking with an ensemble of feature selection and extraction schemes yielded better
performance in terms of precision, AUC, recall, accuracy, specificity, and, F1 scores, when it is compared
with existing state-of-the-art schemes. This study helps to establish a comprehensive comparison
of various decision models performance on the said LGA dataset, which concludes that GridSearch
based RFECV+IG feature selection scheme with stacking using SVM (linear kernel) best suits the
said classification process followed by SVM (RBF kernel) and LR classifiers. DT classifier is not
suggested because of its low performance. Almost every classification scheme best performed with
ten principal feature subsets. It is evident from the results that the proposed scheme has the potential
to classify an LGA fetus accurately and efficiently. In addition, the promising results indicate that
the paediatrician and experts can use the proposed model for the establishment of an efficient LGA
classification system as a second opinion, which has the potential to assist them in establishing a proper
LGA prognosis process with ranked features subset. In the future, the proposed scheme will also
be extended for the classification and identification of Small for Gestational Age (SGA) infants with
better performance metrics scores and deep learning techniques will also be exploited to improve
classification performance.
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