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Abstract: The low rock breaking efficiency of conventional polycrystalline diamond compact (PDC)
bits in hard abrasive formations prompts the development of PDC cutting elements from the planar
structure to the non-planar structure. As an innovative non-planar cutter, the design and research
of the three-ridged diamond element (3-RDE) cutter is still in its infancy, and its rock breaking
mechanism and laws are not yet clear. In this paper, a three-dimensional (3D) finite element model
of dynamic rock breaking with 3-RDE cutter has been established. The accuracy of the numerical
model was verified by experimental data. Then, the difference of rock breaking mechanism between
3-RDE cutter and conventional cutter was studied. The effects of back-rake angle, cutting depth,
rotational angle, and rock properties on rock breaking efficiency were also analyzed. The results
show that, unlike the conventional PDC shear rock breaking cutter, the 3-RDE cutter breaks rock
mainly by crushing and shearing, and the rock breaking efficiency is higher. A small back-rake angle
and reasonable cutting depth contribute to improving the rock breaking efficiency; the existence of
rotational angle is not conductive to the rock breaking. The field application shows that compared
with the conventional cutter, the 3-RDE cutter is easier to penetrate into the formation, and is more
stable with less torque required. The research results can be of benefit to the design and manufacture
of 3-RDE PDC bits.
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1. Introduction

Currently, polycrystalline diamond compact (PDC) bits are mainly used for drilling soft to medium
hard formations. While in hard abrasive formations serious failures, such as chipping, broken cutter
and falling off of the PDC, often occur and the drilling effect is not satisfactory [1–4], which is difficult
to meet the exploration and development needs of unconventional resources in deep formations [5,6].
To improve the performance of conventional PDC bits in deep formations, a series of approaches has
been conducted on the material refinement and the design method supplement, such as increasing the
number of cutters and blades [7], optimizing diamond packing [8] and using high-temperature and
high-pressure (HT/HP) sintering for higher diamond volume in the PDC layer [9,10]. However, the
actual improvement in field application is not obvious. Efficiently drilling with PDC in hard abrasive
formations remains challenging. At present, conventional PDC bits are still not able to completely
substitute the roller cone bits in deep formations.
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In the last decade, with the advent of new technologies in manufacturing and depleting the catalyst
material (Co) from the diamond structure, the structure of PDC cutting elements is no longer limited to
a flat layer, but turns on a tendency to develop into non-planarization. In 2010, Novatek International
Company initially proposed the innovative new Stinger conical shaped polycrystalline diamond
element (CDE) with a thick synthetic layer (Figure 1a). The conical diamond element delivers improved
wear for superior durability, and generated high point loading for effective formation fracture [11].
Later, Schlumberger Company also introduced its innovative cutter-the Axe cutter, which combines a
standard cylindrical substrate with a modified ridge diamond layer (Figure 1b). Field tests indicate
that this cutter improves drilling performance in terms of rates of penetration (ROP) and footage over
the current PDC bits [1]. In 2015, Sifangda Company in China produced an innovative cutter with
three cutting edges, called the 3-RDE cutter. Laboratory experiments show that its wear resistance
and fatigue resistance are much higher than conventional cutters [12]. In addition, scholars at home
and abroad have also carried out some research on non-planar cutters. Zou, et al. [13] investigated
the influence of back-rake angle, cone apex angle and weight on bit (WOB) on the rock breaking
efficiency of conical cutters through experiment and numerical simulation. Gumich, et al. [14] studied
the rock-breaking process of axe cutters and conventional cutters, and found that axe cutters behavior
better than conventional cutters in wear resistance, cutting forces required and rock breaking efficiency.
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Although the non-planar cutters have shown certain potential in hard abrasive formations, related
design and research are still in their infancy. Furthermore, the current study is mainly focused on the
conical cutters or axe cutters. The research on 3-RDE cutters has rarely been reported in the literature.
In this paper, based on elastic-plastic mechanics and rock mechanics, a three-dimensional (3D) finite
element model of dynamic rock breaking with the innovative 3-RDE cutter has been established, using
the extended Drucker–Prager criterion as the rock yield criterion. The accuracy of the numerical
model was verified by laboratory experiments. The effects of back-rake angle, cutting depth, rotational
angle, and rock properties on rock breaking efficiency were analyzed. The difference of rock breaking
mechanism between 3-RDE cutter and conventional cutter was also studied. The research results could
provide reference for the design and manufacture of the 3-RDE cutter.

2. Introduction to 3-RDE Cutter

As shown in Figure 2b, the 3-RDE cutter has a similar cylindrical tungsten carbide base (Figure 2a);
however, the diamond table is a non-planar structure represented as three convex ridges, three ramps
and a central plane, which is different from the conventional plane cutter. Each ridge is formed
by the interaction of two ramps (or working surfaces), which connect with the central plane by a
curved transition.

The 3-RDE cutter-rock interaction is quietly different from the conventional cutter owing to
its unique structure. There are mainly three aspects: (1) The convex edge of 3-RDE cutter, act as a
“sharp point” to fracture the rock, which is similar to the crush action of a traditional roller cone bit;
(2) the 3-RDE cutter consist of two working faces at the both sides of the convex edge, which can
performs the bevel cutting and make the debris automatically formed into two branches that extruded
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across the working surfaces; and (3) the thickness of 3-RDE cutters’ PDC layer is greater than the
conventional cutter, which indicates the 3-RDE cutter has higher wear and impact resistance.

Due to the flat structure of conventional cutters’ PDC layer (Figure 2a), the actual working angle
of each point on the cutting face is consistent with the positioning angle of the cutter, such as the
normal angle and back-rake angle. Although the 3-RDE cutter can be oriented by the orientation angle
of conventional cutter, the actual working angle is more complicated due to the specific structure.
For instance, the actual back-rake angle of two working faces, named after 3 in Figure 2b, is the
combined effect of the back-rake angle of the cutter and the inclination angle of the working faces
relative to the cutter’s axis. However, the cutting geometry of the 3-RDE cutter is not the content of
this paper.
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Figure 2. Illustration of (a) Conventional planar-cutter and (b) Three-ridged diamond element (3-RDE)
non-planar cutter.

The profile of 3-RDE cutter is more complex than that of the conventional cutter. The main
structural parameters are the diameter ϕ, the total height H, the height of Tungsten carbide alloy H1,
the length of convex edge L1, the slope of the convex edge ζ, the angle of the and the angle η between
the two working faces (Figure 3). The parameter η not only determines the working performance of
the cutter, but also relates to the cutter’s life and its manufacturing cost. In this paper, the structural
parameters are set as ϕ = 16 mm, H = 13.6 mm, H1 = 10.6 mm, L1 = 3 mm, η = 157◦, and ζ = 8◦.
The convex edges are evenly distributed in the circumferential direction.
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3. Numerical Methodology

To facilitate the analysis, the following assumptions are taken

(1) The cutter is regarded as a rigid body, regardless of the effect of detail configurations, i.e. round
borders or chamfers, of the cutting edges.

(2) The influences of temperature, confining pressure, and drilling fluid are neglected.
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(3) When the rock element fails, it’s removed from the rock body immediately, ignoring its impact on
the subsequent cutting.

(4) Simplify the circular cutting motion to a linear cutting one [15]
(5) The rock is continuous isotropic medium, ignoring the effects of initial cracks and internal pressure.

3.1. Strength Criteria and Failure Analysis of Rock

The extended Drucker–Prager criterion reflects the influence of volume stress on material strength,
and treats the deviatoric stress as the cause of material damage, which is suitable for rock cutting
research. This paper employs the linear Drucker–Prager yield surface to evaluate whether the rock
element reaches the plastic state [16]

t− p tan β− d = 0 (1)

t =
1
2

q

1 + 1
k
−

(
1−

1
k

)( r
q

)3 (2)

where p = −(1/3)trace(σ),representing the equivalent compressive stress, β is the internal friction
angle of the material, d is the cohesive force of the material, t is the deviatoric stress parameter, q is the
equivalent stress, r is the third invariant of the deviating stress, k represents the specific value between
triaxial compressive strength and triaxial tensile strength.

When the cutter penetrates into the rock until the plastic strain of the rock reaches a certain
threshold, the rock begins to be damaged. Once the plastic strain achieves the rock’s equivalent plastic
strain, the rock element completely fails and peels off from the rock. In this paper, the judge criterion
of plastic strain of rock-breaking is

εp
≤ ε

pl
f (3)

where εp is the equivalent plastic strain of rock, εpl
f represents the equivalent plastic strain when the

cuttings are completely damaged.

3.2. Finite-Element Model of the Cutter-Rock System

The PDC bit exhibits highly nonlinear characteristics during the rock breaking process, including
geometric nonlinearity, material nonlinearity and contact nonlinearity. By adopting the finite element
method, treat the spatial domain of the cutter-rock contacting system at time t as Ω, and the body force,
boundary stress and Cauchy’s stress respectively as b, r, rc and σ, then the contacting issue could be
represented as [17]:∫

Ω
σδedΩ−

∫
Ω

bδudΩ−
∫

Γ f

rδedS−
∫

Γc

rcδudS +

∫
Ω
ρa1δudΩ = 0 (4)

where Γ f is the border for a given boundary force, Γc is the contact boundary, δu is the virtual
displacement, δe is the virtual strain, ρ is the density, a1 represents the acceleration. By discretizing the
spatial domain Ω with finite element method, one can obtain the following equation

M
¨
u = p(t) + c(u,γ) − f(u,λ) (5)

where M is the mass matrix,
¨
u is the acceleration vector, t is the time variable, p is the external force

vector, c is the contact force and friction force vector, f is the internal stress vector, u is the object
displacement, γ is the variable associated with contact surface characteristics, and λ represents the
variable associated with constitutive relation of materials.

According to the above theory, the nonlinear dynamic finite element model of cutter-rock system
was established in ABAQUS6.14 program, shown in Figure 4. According to the Saint-Venant principle,
the size of the rock is 170 × 50 × 25 mm. The 8-node reduced integration element C3D8R with high
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accuracy, robustness and hourglass control was employed to discrete the rock model, and the rock’s
area nearby the cutter was finely meshed. The model was totally divided into 313,734 elements
(331,185 nodes). And the international system of unit (m-kg-s) was applied in the numerical model,
while for convenience, results were displayed according to the engineering conventions. The mechanical
parameters of rock material are listed in Table 1. Non-reflecting boundary and fixed constraint were
applied to the rock surfaces except the top one. The linear cutting speed of cutter is 0.3 m/s, and the
diameter of the cutter is 16 mm. The contact type between the cutter and rock was eroding surface
to surface. Considering the friction between the cutting surface and rock, the friction coefficient of
contact surfaces was set to 0.4 [18]. In the cutting process, the reaction forces on the cutter can be
divided into axial force Fn, tangential force Fh and the radial force Fr. The tangential force is opposite
to the direction of cutting speed; the axial force is along the positive direction of the z-axis, and the
radial force is determined by the right-hand rule.α is the back-rake angle, and h is the cutting depth.
The cutting edge of the 3-RDE cutter is always perpendicular to the upper surface of the rock in the
absence of a special declaration.
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Table 1. Mechanical parameters of rock material [16,19].

Rock
Sample

Elastic
Modulus/GPa

Poisson’s
Ratio

Tensile
Strength/MPa

Shear
Strength/MPa

Compressive
Strength/MPa

Friction
angle/◦

Wusheng
sandstone 11.54 0.062 4.346 13.56 67.548 38.03

Beibei
limestone 31.2 0.171 6.758 17.72 105.951 43.62

3.3. Cutting Performance Evaluation Index

The cutting forces and Mechanical Specific Energy (MSE) are essential characteristics of rock
breaking process. The axial force represents the ability of the cutter to penetrate into the formation
axially. The smaller the axial force is, the stronger the capacity to penetrate into the formation, and the
lower the required weight on bit (WOB). Similarly, the tangential force characterizes the difficulty of
rock breaking. The smaller the tangential force is, the easier the rock is broken, and the smaller the
torque required by the bit. Meanwhile, the MSE, which represents the energy consumed by breaking
per unit volume of rock, can quantitatively represent the rock breaking efficiency, and its formula is

MSE =
W

Vcut
=

Fhd
Spd

=
Fh
Sp

(6)

where d is the cutting stroke, the projection of cutting area Sp = Sl cosα′l + Sr cosα′r (when both
working faces contact with the rock) or Sp = Sl/r cosα′l/r(when only the working face on one-side
contacts with the rock), Sl/r and α′l/r are the cutting area and the actual back-rake angle of the
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working faces on the left/right side of convex edge respectively. Sl/r is be obtained according to the
infinitesimal method.

In the process of rock breaking, the forces on the cutters belong to impact loads, whose amplitude
affects the cutter’s life. Here, the cutting forces are statistically processed. The average value is
considered as an index to evaluate the cutting performance, and the standard deviation is adopted to
assess the cutting stability.

4. Model Verification

An experiment on the rock cutting process is conducted to verify the correctness of the numerical
model. Figure 5 reveals the experiment apparatus for rock cutting, which consists of a tool-holder,
triaxial forces sensors, a data acquisition system, a rock sample and 3-RDE cutters. The planning
blade is mounted on the tool-holder, and the sensors are equipped in the middle of planning blade.
The 3-RDE cutter is fixed below the sensors. Strain gauges (BE120-5AA with an accuracy of 0.05 degree)
are attached to the planning blade, and are bridged as sensors. The cutting forces are represented by
the voltage signal collected by the data acquisition system. And according to the following formula,
the cutting forces can be decoupled.

Fn = 163.09un + 4.22uh − 1.32ur

Fh = −24.38un + 8.74uh + 1.16ur

Fr = −3.43un + 0.12uh + 20.65ur

(7)

where un, uh, ur are the axial, tangential and radial voltages of the sensors output, respectively.
The rock sample was Wusheng sandstone, whose mechanical parameters are shown in Table 1.

The rock sample is fixed and the cutting depth is 1.5 mm. During the test, the cutter moves linearly
with a speed 0.3 m/s. A total of five sets of tests were carried out at the back-rake angle of 5◦, 10◦, 15◦,
20◦, 25◦. To avoid random errors and improve the accuracy of the experiment, each set of tests was
repeated 3 times. The sampling frequency is 1000 Hz. For the convenience of analysis and comparison,
the average value of axial force and tangential force, as well as MSE, are adopted to compare the
experimental and numerical results, as shown in Figure 6. It can be observed that the cutting forces
and MSE in simulation and experiment all gradually increase with the increase of the back-rake angle.
In addition, the tangential force is greater than the axial force. That is, numerical results are basically
consistent with that of the experiment in terms of values and variation laws. However, the experimental
results are slightly smaller than that of the simulation, which may be due to rock heterogeneity.
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5. Results and Discussion

5.1. Comparison of Rock-Breaking Mechanism of 3-RDE Cutter and Conventional Cutter

In this section, the rock breaking process with the conventional cutter and 3-RDE cutter is analyzed,
respectively. The cutting depth is set as 1.5 mm. It can be obviously seen from Figure 7 that the
cutting forces and their fluctuations (representing as the error bars in Figure 7a,b), as well as MSE,
of 3-RDE cutter are significantly smaller than that of conventional cutter. This indicates that 3-RDE
cutter can achieve a better performance than the conventional cutters, representing as a stronger ability
to penetrate into the formation, less torque required, more stable cutting behavior, and higher rock
breaking efficiency.
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The service life is one of the important factors that determine the performance of the cutter.
To some extent, the contact stress of the cutter can be employed to assess the wear of cutters [20,21].
Figure 8 shows the contact stress nephogram of conventional cutter and 3-RDE cutter. It can be seen
that the contact stress of the cutters only exist in the region where the cutters interacts with the rock,
while the stress in other regions is zero. However, there are significant differences in the distribution
of the contact stress in the cutter-rock interaction region. For the conventional cutter, the contact
stress concentrates on the bottom of the outer edge, while the contact stress, for the 3-RDE cutter,
mainly distributes in the region nearby the convex ridge, forming a “convex ridge effect”. Moreover,
the amplitude of the contact stress of 3-RDE cutter is just about 0.5 times of that of conventional cutter,
indicating that the 3-RDE cutter can significantly reduce the contact stress. This is one of the reasons
why the 3-RDE cutter has higher wear resistance than the conventional cutter.
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Figure 9 shows the plastic strain nephogram during rock breaking with the conventional cutter
and 3-RDE cutter. By plotting the plastic strain on the un-deformed rock shape, one can figure out that
for the 3-RDE cutter the characteristics of the plastic deformation zone of the rock are significantly
different from those of the conventional cutter. The former consists of an elongated “red” zone and
a wide “green” zone, where the plastic strain in the “red” zone is greater than that in the “green”
zone (Figure 9b). The reason for this phenomenon is that the 3-RDE cutter interacts the rock with a
similar “V” shape, and the convex ridge is the first spot that contacts with the rock. Then, a large
local concentrated force is generated around the tip area (the red point in Figure 10b), which is higher
enough to cause plastic deformations of the rock. Finally, a local fracture is formed, releasing the
rock’s internal stress. As the 3-RDE cutter continues to move forward, the working faces on both sides
gradually come into contacting with the rock, and bevel the rock. Consequently, under the combined
action of crushing and shearing, the rocks in front of the working faces are rapidly broken, eventually
forming the combined plastic deformation zone in Figure 9b.

In contrast, the fractured area caused by conventional cutter almost entirely turns on the “red”
region, and this region is significantly wider than that formed by 3-RDE cutter. Obviously, the peak of
the plastic strain in Figure 9a is greater than that in Figure 9b. This can be attributed to the fact that the
entire cutting area of the conventional cutter squeezes the rock synchronously (Figure 10a), and the
maximum stress is located at the outer edge of the cutter, where the rock gets damaged due to shear
stress. When the cutter moves forward continuously, the cutting surface squeezes the frontal rock, and
finally the rock loses the coupling force and breaks.
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Figure 11 shows the maximum principal stress nephogram of the rock in rock breaking with the
conventional cutter and 3-RDE cutter. From Figure 11, one can notice that there exists a large tensile
stress region on the rock surface under the action of 3-RDE cutter, especially the frontal region of the
convex ridge, where the tensile stress is the largest. Despite the tensile stress also occurs under the
action of conventional cutter, both the amplitude and distribution region are much smaller than that in
the 3-RDE cutting process. Generally, the tensile strength of rock is much less than the shear strength,
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so the increase of the tensile stress region will be beneficial to the rock breaking, which undoubtedly
results in a higher rock breaking efficiency.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 16 
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In summary, due to the different shape, the rock breaking mechanism of the conventional cutter
and the 3-RDE cutter is different: (1) The conventional cutter breaks rock mainly by shearing. While
the 3-RDE cutter not only shears the rock in the same way as the conventional cutter, but also delivers a
crushing action similar to a roller cone insert. (2) The cutting edge and working face of the conventional
cutter synchronously interact with the rock, while the 3-RDE’s convex edge and working surfaces
asynchronously break the rock. The forces required by the 3-RDE cutter are smaller, and the cutting
process is more stable and efficient.
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5.2. Effect of Back-Rake Angle

The back-rake angle is an important parameter of the PDC bit [22]. A reasonable back-rake angle
not only reduces the vibration of the cutter, but also prolongs the bit life. To investigate the effect of
back-rake angles of the cutter, five different back-rake angles are respectively set as 5◦, 10◦, 15◦, 20◦,
25◦ to carry out the numerical simulation under three cutting depth (1.0 mm,1.5 mm,2.0 mm). Effect of
different back-rake angles on rock breaking is exhibited in Figure 12. Firstly, the axial force is larger than
the tangential force. Secondly, the axial and tangential force increase gradually when the back-rake
angle increases from 5◦ to 25◦ under different cutting depths. Meanwhile, the amplitude of cutting
forces’ fluctuation gradually increases, indicating that the cutting stability gradually deteriorates, as
shown in Figure 12a,b. Finally, MSE gradually increases with the increasing of back-rake angle, which
means that the rock breaking efficiency narrows down (Figure 12c).

In order to further explore the effect of the back-rake angle, the plastic strain of the rock was
analyzed, combined with Figure 13 and Equation (3). It can be seen that both the distribution area
and the peak of the plastic deformation enlarge with the increase of back-rake angle. This might be
attributed to the fact that the actual back-rake angle and the side-rake angle become larger with the
increase of back-rake angle. Then, the squeeze effect of the rock in frontal of working faces is enhanced.
As a result, the plastic strain becomes larger.
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The above analysis shows that a small back-rake angle is beneficial to generate a large stress
concentration in the cutting surface, making the 3-RDE cutter easier to penetrate into the formation
and improving the cutting stability and rock breaking efficiency.
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5.3. Effect of Cutting Depth

Studying the relationship between the MSE and the cutting depth is one of the basic bases for
optimizing the design of PDC bits [20]. The influence of cutting depth on rock breaking with the 3-RDE
cutter is shown in Figure 14. As a whole, the cutting forces increase with the increasing of cutting
depth. In detail, when the back-rake angle is 15◦, the axial force Fn increases from 206.32 N to 367.62 N,
546.79 N, 752.80 N, 943.26 N, and the tangential force Fh varies from 353.82 N to 635.08 N, 957.55 N,
1317.90 N, 1684.60 N as the cutting depth shifts from 1 mm to 3 mm. But visibly, the tangential force
and its growth rate are significantly larger than the axial force. Meanwhile, the fluctuation of cutting
forces increases significantly with the increase of cutting depth, indicating that the cutting stability
gradually deteriorates, and the risk of impact failure increases.

The influence of cutting depth on rock breaking is not only on cutting forces, but also on the MSE.
As shown in Figure 14c, the MSE gradually decreases with the increase of cutting depth, which means
the rock breaking efficiency narrows down. This can be attributed to the fact that as the cutting depth
increases, the rock breaking changes from ductile fracture with a small cutting depth to brittle fracture
with a large cutting depth. The big chip formation finally forms, which reduces the repeated fracture
of the rock and reduces the MSE [23]. Therefore, a proper cutting depth is of great significantly for the
rock breaking efficiency of 3-RDE cutter.
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5.4. Effect of Rotational Angle

As illustrated in Figure 15a, there may be two working states of 3-RDE cutter. Position 1(solid line
in Figure 15a) is the ideal working position. In this state, the convex ridge is perpendicular to the
upper surface of the rock. However, due to the welding or design errors, the 3-RDE cutter might be
placed at Position 2 (dash line in Figure 15a), where the convex ridge is not perpendicular to the upper
surface of the rock any more. In this paper, the angle between the convex ridge and the rock is defined
as the rotational angle δ. To investigate the effect of rotational angles, six levels of rotational angles
are respectively set as 0◦,5◦, 10◦, 15◦, 20◦, 25◦ to carry out the numerical simulation when the cutting
depth is 1.5 mm and the back-rake angle is 15◦.
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The contact stress nephogram in rock breaking process with the 3-RDE cutter is shown in Figure 16
under different rotational angles. Here, the polar angle θ, which represents the cutter’s region involved
in the cutting, is defined (Figure 15b). The polar angle coincides with the convex ridge at 0◦, the left
(right) side of which is negative (positive). It can be seen from Figure 16 that under the ideal condition
(δ = 0◦) the contact stress is symmetrically distributed with the peak located at the symmetry plane
of the cutter. As the rotational angle increases, the contact region gradually transitions from the area
near the polar angle of 0◦ to the non-zero region of the polar angle. The distribution is no longer
symmetrically with respect to the 0◦ polar angle. The unsymmetrical distribution of contact stress
would result in non-uniform wear of 3-RDE cutter and reduce the cutter’s life.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 16 
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The effect of rotational angles on the cutting forces and MSE is depicted in Figure 17. It can
be seen that both the cutting forces and the fluctuations, as well as the MSE, increases gradually
with the increase of the rotational angle, which indicates that the increasing of the rotational angle
leads to the reduction of the cutter’s penetration capacity and the breaking efficiency, as well as the
deterioration of cutting stability. Particularly, when the rotational angle exceeds 15◦, the axial and
the tangential force, along with MSE, of 3-RDE cutter are larger than those of the conventional cutter
(Figure 7). This suggests that the actual breaking efficiency is not as good as conventional cutter,
and the advantages of 3-RDE cutter are not shown. In addition, the radial force also increases as the
rotational angle increases. The larger radial force can cause the imbalance forces on the 3-RDE PDC
bit and exacerbate the lateral vibration, which may results in the premature failure of the bit. The
reason for the above phenomenon is that with the increasing of the rotational angle, the balance of
the radial force on the working faces are broken, and the actual back-rake angle of the working face
becomes larger, and the regions of the convex edge interacts with the rock descales. As a consequence,
the capacity of balancing the radial force on working forces gradually weakens.

In summary, the rotational angle has a significant impact on the rock breaking process.
More attention should be focus on the brazing of 3-RDE cutter to minimize the welding error.
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5.5. Effect of Rock Properties

This section simulates the process of cutting heterogeneous rocks using the following methods.
Based on the secondary development of ABAQUS, the sandstone formation with a high content
of gravels and the interbeded formation are respectively modeled by adjusting the distribution of
Wusheng sandstone and Beibei limestone, shown in Figure 18. The physical properties of the Beibei
limestone can be founded in Table 1. In the former formation, Beibei limestone is randomly distributed,
while in the later formation Beibei limestone is distributed in an orderly manner.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 16 
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When the cutting depth is 1 mm, the back-rake angle is 15◦ and the rotational angle is 0◦,
the tangential force in heterogeneous rock breaking with conventional cutter and 3-RDE cutter is
revealed in Figure 19. It can be seen that either cutting the sandstone formation with a high content
of gravels or cutting the soft-hard staggered formation, the tangential force and its fluctuation of the
3-RDE cutter are significantly smaller than that of the conventional cutter. This suggests that the 3-RDE
cutter is more suitable for drilling hard and heterogeneous formations with less torque required and
more stable cutting behavior.
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6. Field Application

In order to verify the application of the 3-RDE PDC bit, two 3-RDE PDC bits were applied in the
gravel formation and migmatitic grannite formation in the instinct of Liaohe Oilfield, China. The effects
of the 3-RDE PDC bit, the Hybrid bit and the conventional PDC bit are compared when the application
condition, such as the wellbore dimension, drilling parameters, depths and the lithology, are similar.

Figure 20a shows the use of the 3-RDE PDC bit and the Hybrid bit whose diameter are both
241.3 mm in Mesozoic gravel formation in the first trial. It can be seen that compared with the Hybrid
bit, the use of 3-RDE PDC bit can increase the ROP by 10.9%~21.0%, along with the drilling footage
increased by 1.91~2.41 time [24]. Moreover, the tripped-out bit has not been damaged and new enough
to be re-tripped in, while the Hybrid bit has been worn and damaged at the shoulder (Figure 21a,b).
Additionally, the application of 3-RDE PDC bit saves a Hybrid bit and times on trips.

Figure 20b illustrates the uses of 3-RDE PDC bit and conventional PDC bit with the diameter
152.4mm for drilling the migmatitic grannite formation in the second trial. Field data reveals that in a
comparison of conventional PDC bit, the 3-RDE PDC bit has a 60.3% increase in ROP and a 1.2-fold
increase in drilling footage, with a higher wear resistance and impact resistance (Figure 21c,d).Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 16 
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Figure 21. Pictures of bits after field trials: (a) 3-RDE PDC bit in gravel formation; (b) Hybrid bit in
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Field trials show that in the deep formations, both in comparison with the conventional PDC bit
and the Hybrid bit, the 3-RDE PDC bit achieves a better performance in drilling footage and ROP,
showing a stronger drilling capacity, higher wear resistance and impact resistance. The uses of 3-RDE
PDC bit can enhance the drilling efficiency and save costs.

7. Conclusions

In this paper, a three-dimensional (3D) finite element model of dynamic rock breaking with an
innovative 3-RDE cutter has been established. The extended Drucker–Prager criterion is used as the
constitutive model of rock. The accuracy of the numerical model was verified by experimental results.
The effects of back-rake angle, cutting depth, rotational angle and rock properties on the rock breaking
efficiency were analyzed. The difference of rock breaking mechanism between the 3-RDE cutter and
the conventional cutter was also studied. The following conclusions can be drawn:

(1) Due to the different shape, the rock breaking mechanism of conventional PDC cutter is mainly
shear failure, while the 3-RDE cutter not only shears the rock in the same way as the conventional
cutter, but also delivers a crushing action similar to a roller cone insert with a higher rock breaking
efficiency. The cutting edge and working face of conventional cutter synchronously interact
with the rock, while the 3-RDE’s convex edge and working surfaces asynchronously break the
rock. The forces required by the 3-RDE cutter are smaller, and the cutting process is more stable
and efficient.

(2) The cutting forces and their fluctuations, as well as MSE, of 3-RDE cutter increase with the
increase of the back-rake angle. A small back-rake angle should be selected for the design.

(3) With the increase of cutting depth, the cutting forces and their fluctuations, as well as MSE,
of 3-RDE cutter increase. Reasonable cutting depth facilitates the rock breaking.

(4) With the increase of the rotational angle, the cutting forces and theirs’ fluctuations, as well as
MSE, of 3-RDE cutter increase gradually. When designing or manufacturing the 3-RDE PDC
bit, the rotational angle should be set at 0◦ to ensure that the 3-RDE cutter’s convex edge is
perpendicular to the rock surface.

(5) Simulation results and field trials show that compared with the conventional cutter, the 3-RDE
cutter is easier to penetrate into the formation and more stable with less torque required. The use of
3-RDE cutter in hard abrasive heterogeneous formation can achieve a higher ROP and save costs.

Combined with the content of this paper, works in the future will focus on the optimization of the
structure parameters and the cutting geometry of the 3-RDE cutter in order to have a better inspection
for 3-RDE PDC bit design.
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