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Featured Application: We use the proposed packet2vec learning algorithm for IDS preprocessing,
the basic steps of IDS are as follows. First, the originally collected traffic is split into packets to
be truncated into fixed length. Next, the packet2vec learning algorithm is used to obtain local
proximity structure features of the packet for preprocessing. Then, the original features of the
packet are combined with the local proximity features as the input of deep auto-encoder for
IDS. Finally, the accuracy was evaluated with the detection rate in IDS. In addition, the model
proposed in this paper can be deployed to the enterprise gateway, dynamically monitor network
activities, and connect with the firewall to protect the enterprise’s network from attacks. It can
be deployed in a cloud computing environment or a software-defined network to classify traffic,
and monitor network behavior and alerts in real time. It can be deployed into a network security
situational awareness system for prediction and visualization through spatial feature extraction.

Abstract: Most existing studies on an unsupervised intrusion detection system (IDS) preprocessing
ignore the relationship among packets. According to the homophily hypothesis, the local proximity
structure in the similarity relational graph has similar embedding after preprocessing. To improve
the performance of IDS by building a relationship among packets, we propose a packet2vec learning
algorithm that extracts accurate local proximity features based on graph representation by adding
penalty to node2vec. In this algorithm, we construct a relational graph G′ by using each packet as
a node, calculate the cosine similarity between packets as edges, and then explore the low-order
proximity of each packet via the penalty-based random walk in G′. We use the above algorithm as a
preprocessing method to enhance the accuracy of unsupervised IDS by retaining the local proximity
features of packets maximally. The original features of the packet are combined with the local
proximity features as the input of a deep auto-encoder for IDS. Experiments based on ISCX2012 show
that the proposal outperforms the state-of-the-art algorithms by 11.6% with respect to the accuracy of
unsupervised IDS. It is the first time to introduce graph representation learning for packet-embedded
preprocessing in the field of IDS.

Keywords: graph representations; instruction detection; local proximity features; packet2vec; packet
preprocessing; penalty

1. Introduction

Intrusion detection systems (IDSs) [1–3] have been introduced to monitor the network status,
assess the security status, and take appropriate precautionary measure before the attack with serious
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consequences. IDSs are classified into signature-based detection [4] and anomaly-based detection [5].
Signature-based intrusion detection has the ability to detect known attack behavior. Anomaly-based
detection has the ability to detect known attack behavior and unknown attack behavior by analyzing
the features of network packets. Anomaly-based detection requires finding features that accurately
characterize network packets. However, the network packet preprocessing methods suffer from low
performance to extract features [6].

One of the main reasons to lead the above situation is that the features extracted by the existing
unsupervised algorithms [7–9] are not accurate to preprocess network packets. The network packets
in the existing unsupervised algorithms [7–9] are considered to be independent. These algorithms
ignore the similarity relationship between network packets. According to homophily hypothesis [10],
it can be seen that network packets with strong similarity belong to the same class and are closer in
the similarity relational graph. In addition, network packets with strong similarity have similar local
proximity embedding [11]. Skip-gram [12] can be used to embed the local proximity features of the
similarity relationships between network packets. Therefore, it can be concluded that the analysis of
the similarity relationship between network packets has the ability to be more flexible and accurately
determine whether the network packet has an intrusion. Moreover, effective preprocessing is the
basis for improving the performance of the entire IDS because the network packet features obtained
by preprocessing directly affect the final performance of the IDS. Graph representation approaches
have a good potential for achieving effective similarity relationship representation of network packet.
Therefore, this paper proposes a packet2vec learning algorithm preprocessing network packet, which is
an unsupervised preprocessing algorithm based on graph representation learning. The algorithm uses
packet2vec for preprocessing to obtain local proximity features that describe the similarity relationship
between network packets. The local proximity features are combined with the original features of the
network packet to describe the network packet. The performance of IDS is improved by the increase in
effective information in preprocessing.

The motivation to introduce graph representation for network packets preprocessing is as
follows. The graph representation learning algorithm has achieved good results in the application of
approximate semantic classification of words [12]. An interesting analogy is that we treat a network
packet as a word. Then, the problem of distinguishing the class of network packet according to
the similarity relationship between network packets can be regarded as the approximate semantic
classification problem of words. In the approximate semantic classification of words, similar words
tend to appear in similar word neighbors [10]. Therefore, network packets belonging to the same class
also have similar local neighbors, where the class consists of DDOS, HttpDos, normal, Brute Force SSH,
Infiltrating [13–15]. That is, whether there are similar local neighbors has the ability to characterize the
similarity between network packets. Therefore, we believe that the features obtained by preprocessing
network packets based on graph representation learning algorithm have the ability to achieve better
performance of IDS.

The main contributions of this paper are as follows. (1) In order to improve the performance of
the existing unsupervised algorithms of intrusion detection, this paper proposes a packet2vec learning
algorithm to extract the local proximity features of network packets. The proposed algorithm based on
graph representation by considering the relationship between network packets, and then uses deep
Auto-encoder for an intrusion detection system. The system is named by Packet2vec-AE. Compared
with the existing preprocessing algorithms for extracting the features of network packets, our proposed
packet2vec learning algorithm combines the original features of the network packet and the local
proximity features that characterize the similarity between network packets. Therefore, the accuracy of
unsupervised intrusion detection is improved. (2) In this algorithm, we construct a relational graph
G′ by using each packet as a node, calculate the cosine similarity between packets as edges, and then
explore the low-order proximity of each packet via the penalty-based random walk in G′. We use the
above algorithm as a preprocessing method to enhance the accuracy of unsupervised IDS by retaining
the local proximity features of packets maximally. This is the first time in the intrusion detection to
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extract features using the graph representation leaning algorithm. (3) In this paper, the penalty is
added on the basis of the existing graph representation algorithm node2vec [10].This method can
increase the probability of selecting nodes within the local proximity, and the closer the source network
packet is, the greater the probability of being selected. Therefore, this method has the ability to
extract the local proximity features of the network packet more accurately, and thus more accurately
describe the similarity relationship between the network packets. (4) The local proximity features
are obtained to accurately characterize the similarity relationship between network packets from the
similarity relational graph. The penalty term is used to limit the random walk range of node2vec [10]
to k-order proximity. In detail, k is a positive integer that can be customized. This approach has
the ability to accurately characterize the neighbor structure of network packets. Experiments have
shown that using packet2vec-AE with penalty has the ability to achieve better performance than
packet2vec-AE without penalty. In the best case, the accuracy, the detection rate, the precision, and the
F1 of packet2vec-AE are up to 94.7%, 90.9%, 94.3%, and 92.6%, respectively. The proposed algorithm
achieves the best performances regarding the accuracy, the precision, and the F1 exceeding those of the
other state-of-the-art algorithms by 11.6%, 11.9% and 8.7%, respectively. In the worst case, the accuracy,
the detection rate, the precision, and the F1 of packet2vec-AE reached 87.4%, 81.1%, 87.3% and 84.1%,
respectively. In the worst case, the proposed algorithm achieves the good performances regarding the
accuracy, the precision, and the F1 exceeding those of the other state-of-the-art algorithms by 4.3%,
4.9% and 0.2%, respectively. (5) An empirical formula, i.e., the pruning threshold ε ≈ the mean of
weights in G′ − depth′ * penalty value η, is designed to calculate the approximately optimal penalty
value. The experimental results show that the penalty value calculated by this formula has the ability
to obtain better intrusion detection performance.

Section 2 describes related work. Section 3 introduces the IDS based on packet preprocess using
packet2vec-Autoencoder. Section 4 introduces the experiment. Section 5 discusses the results. Section 6
concludes the paper.

2. Related Work

2.1. Unsupervised Intrusion Detection Techniques

Intrusion detection mainly includes signature-based intrusion detection and anomaly-based
intrusion detection. In detail, signature-based intrusion detection is also known as rule-based intrusion
detection. Signature-based intrusion detection has a high detection rate for known attacks, but has
no ability to detect attack behaviors that are not in the rule base [4]. Anomaly-based intrusion
detection is also known as behavior-based intrusion detection. This algorithm has the ability to detect
unknown attack behavior [5]. Feature extraction based on accurately preprocessed network packets
in anomaly-based intrusion detection is the basis for good performance. At present, it is easy to
collect a large amount of unlabeled data in intrusion detection, and it is difficult to obtain a large
amount of labeled data [16–18]. Therefore, an unsupervised algorithm for intrusion detection has
been introduced.

In recent years, there have been some studies based on unsupervised intrusion detection
techniques. In 2007, Liu et al. used a hierarchical PCA model to detect intrusion behavior on the
KDD99 dataset [8]. In 2017, Gouveia et al. used RBM to detect intrusion behavior on the ISCX2012
dataset [7]. In 2018, Farahnakian et al. used Deep Auto-encoder to detect intrusion behavior on the
KDD99 dataset [9]. The common point of the above studies [7–9] is that the preprocessing ignores the
similarity between network packets. Network packets with strong similarity relationship are closer
in the similarity relation graph and have similar local proximity embedding [10]. The preprocessing
algorithm in the above studies ignores the similarity relationship between network packets, resulting in
low accuracy of intrusion detection. Therefore, we introduce a graph representation leaning algorithm
to solve the above problem. The network packet is preprocessed by using a graph representation
leaning algorithm. In the proposed algorithm, the original features of the network packet are combined
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with the local proximity features describing the similarity relationship between the network packets as
the input of the neural network. The proposed algorithm adds effective features by considering the
similarities between network packets.

2.2. Graph Representation Learning

Graph representation leaning refers to the automatic extraction of proximity features of nodes in a
graph [1].This algorithm has achieved effects in the application of approximate semantic classification
of words [12], handwritten character classification [19] and so on. The existing graph representation
leaning algorithms are mainly the following, such as: Node2vec [10], Deepwalk [20], LINE [21].
However, Deepwalk [5] uses a simple unbiased random walk, which does not control the direction of
random walks. Therefore, Deepwalk is easy to sample into the higher-order proximity range, which
makes it impossible to accurately describe the local proximity features of the current node; LINE [21]
does not have the ability to simultaneously sample first-order proximity and second-order proximity,
so the algorithm has limitations; Node2vec [10] uses a random walk based on breadth first search
(BFS) or depth first search (DFS) to explore the neighbor of the node. However, random walks based
on BFS or DFS are blind searches [22]. In other words, BFS lacks constraints on the range of random
walks. Therefore, the random walk has the probability of sampling to the source node’s higher-order
proximity, which makes it impossible to accurately extract the local proximity features of the source
node that describe the similarity relationship between network packets. Therefore, we propose a
node2vec with penalty for unsupervised automatic preprocessing. The proposed algorithm limits the
range of random walks so that the sampling of random walks only occurs within the low-proximity
of the source node. Therefore, the algorithm has the ability to obtain local proximity features that
accurately characterize the similarity of network packets.

The literature that we surveyed has not used the unsupervised automatic preprocessing of graph
representation learning algorithm with penalty in the field of intrusion detection. In the proposed
algorithm, the original features of the network packet are combined with the local proximity features
describing the similarity relationship between the network packets as the input of the neural network.
The proposed algorithm adds effective features to get better intrusion detection performance.

3. Proposed Intrusion Detection System

3.1. Definition

IDS multi-classification: It refers to the problem of determining that the current network packet
belongs to one of multiple types including normal, DDoS, Http DoS, brute force SSH, and infiltrating
attacks [23].

Undirected complete graph G(V, E, W): It refers to a collection of vertices (or nodes) V = {v1, . . . , vn},
edges E =

{
eij
}n and weights W =

{
wij
}n [24–26].

Relational graph on packets similarity: It refers to treating each packet as a node vi ∈ V. Calculating
the cosine similarity between network packets

(
vi, vj

)
as the weight wij ∈W. The vector of the network

packet used to calculate the cosine similarity is the original features of the network packet. The detailed
description of the original features of the network packet is in Section 3.3. An undirected complete
graph G is constructed using the above method. In order to reduce the use of memory, the edges
whose weights are lower than the threshold ε are pruned. G after pruning is called relational graph on
packets similarity, expressed as G′(V, E, W).

Pruning threshold: It refers to a value for pruning the edges whose weights are lower than the
threshold ε in the graph G′.

Source network packet(alias name: Source node): It refers to the starting network packet for
random walk.
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Packet embedding: Given a relational graph on packets similarity G′(V, E, W), it refers to a mapping
f : V → Rd. In details, f is the mapping function from node to feature representation.

Automatic preprocessing: It refers to the automatic extraction of features from the original packet and
eliminates manual intervention [6].

K-order proximity: It refers to a kind of feature that captures the k-hop relationship between each pair
of vertices.

First-order proximity: It refers to the local pairwise proximity between two connected vertices,
which captures the direct neighbor relationship between the vertices. For each vertex pair (vi, vj),
if
(
vi, vj

)
∈ E, the first-order proximity between vi and vj is wij; otherwise, the first-order proximity

between vi and vj is 0 [4]. First-order proximity is equivalent to k in the k-order proximity equal to 1.
In a) of Figure 1, nodes v1, v2, v3,v4, v5 are the first-order proximity of vi.

Second-order proximity: It refers to capturing a two-hop relationship between each pair of vertices,
which describes the proximity of the pair’s neighbor structure [5]. Second-order proximity is equivalent
to k in k-order proximity equal to 2. In Figure 1a, nodes v6, v7, v8, v9, v10, v11, v12 are the second-order
proximity of vi.

Low-order proximity: It refers to a kind of feature that captures the k-hop relationship between each
pair of vertices, where k is lower than 3. It contains first-order proximity and second-order proximity.

High-order proximity: It refers to capturing the k-hop relationship between each pair of vertices,
which captures a more global structure [5]. k is greater than or equal to 3. In Figure 1a, nodes
v13,v14, v15, v16, v17 are high-order proximity of vi.

Proximity sampling strategy: It refers to sampling the network packets in the neighbor of the source
network packet vi by random walk [10], expressed as S. In Figure 1b, the proximity sampling strategy
of the existing algorithm [10] is used for sampling to obtain a proximity sampling list of the source
network packet. In Figure 1c, the proximity sampling strategy of the proposed algorithm is used for
sampling to obtain a local proximity sample list of source network packets.

Local proximity sample list: It refers to the result of sampling with the proximity sampling strategy
S in the low-order proximity of the source network packet vi, expressed as Ns (vi). In G′, the closer
the network packet is, the more similar the local neighbor sample list of the network packet
is [10]. Therefore, the local proximity sample list has the ability to accurately describe the similarity
relationships between network packets.

Local proximity features: It refers to optimizing the local proximity sample list Ns (vi) with
Skip-gram [12] to obtain continuous d-dimension features. The local proximity sample list Ns (vi) has
the ability to accurately characterize the similarity between network packets. Therefore, local proximity
features also have the ability to accurately characterize relationships between network packets.
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Figure 1. Proximity and comparison based on graph representation. The proximity sampling strategy
cannot accurately characterize the local proximity features of the network packet with unlimited
proximity. The local proximity sampling strategy has the ability to accurately characterize the local
proximity features of the network packet when the sampling range of the source network packet
is limited to a low-order proximity. Section 3.4 will introduce the detailed algorithm of graph
representation learning for low-order proximity feature extraction. (a) Proximity nodes of source
network packet vi. The red node represents the source network packet vi. (b) A proximity sampling
strategy is used for random walk to obtain a proximity sample list of the source network packet.
The number of the gray arrow indicates the order in which the sampling strategy is used for sampling.
(c) A local proximity sampling strategy is used to perform a random walk of the constraint range to
obtain a local proximity sample list of the source network packet.

3.2. Flowchart

Figure 2 is a flow chart of the algorithm for intrusion detection. Intrusion detection is mainly
divided into three parts. In the first part, the originally collected traffic is split into packets. The second
part is the automatic preprocessing to obtain the features of the network packet. In this part,
we combine the original features of the network packet with the local proximity features of the
network packet obtained by packet2vec preprocessing. In the third part, the features obtained by the
preprocessing are used as the input of the deep Auto-encoder for intrusion detection.

Data preprocessing is the basis for improving the performance of the entire IDS, because the
network packet features obtained by data preprocessing directly affect the final performance of the
IDS [6]. Network packets in the pre-processing of existing unsupervised intrusion detection algorithms
are generally considered to be independent. The existing algorithm ignores the similarity relationship
between the network packets. Therefore, existing algorithms suffer from low intrusion detection
accuracy. The higher the similarity of the network packets, the more similar the local proximity
features sampled by packet2vec in the relational graph of network packet similarity.
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Figure 2. Flowchart of intrusion detection system. Especially, the packet2vec is added to extract
low-order proximity feature of network packets in the step of preprocessing to enhance the performance
of IDS.

3.3. Unsupervised Preprocessing Based on Packet2vec Learning with Graph Representation

As a preparation step for preprocessing of network packets, we convert the original network
traffic into network packet features. Network packets are the basic unit used to determine whether
network traffic flow is intrusive. Therefore, we use SplitCap [6] to group interacting source IPs and
destination IPs in network traffic into the same network packet [6].

The preprocessing steps for network packets are as follows. Constructing a relational graph on
packets similarity G′(V, E, W). The local proximity features in G′ obtained by packet2vec is called
vi_packet2vec. This step will be detailed in Section 3.4. In addition, we also need to extract the original
features vi_original in the network packet. Finally, the feature I describing the network packet is
obtained in combination with vi_original and vi_packet2vec. For example, if the original features of the
network packet are vi_original = [0a 5c], the local proximity features of the network packet obtained
by packet2vec are vi_packet2vec = [de 87]. Then the features of the network packet obtained after
preprocessing are I = vi_original + vi_packet2vec = [0a 5c de 87]. The original features extraction algorithm
of the network packet refers to intercepting the first r bytes of the network packet, and then each byte
within [0, 255] in the r bytes obtained from the network packet corresponds to a feature [6]. As shown
in Figure 3, the originally traffic is split into packets to be truncated into fixed r bytes. This algorithm
of extracting the original features in the network packet is the same as the algorithm of extracting the
features of the network packet in [6,27]. The original features extracted by this algorithm have the
ability to characterize network packets. Experiments have proved that the algorithm in [6,27], as the
original features extraction of this paper, has achieved better results than most of existing algorithms.
Algorithm 1 describes the flow of unsupervised preprocessing based on packet2vec learning with
graph representation
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Figure 3. Splitting the originally traffic into packets. The original traffic is split into packets to be
truncated into fixed length.

Algorithm 1 Unsupervised preprocessing based on packet2vec learning with graph representation

Input: network traffic flow ( fi).
Output: Vec consists of q packets of network traffic, each packet vector (veci1,veci2,· · · ,vecir).

1: Step 1:Split network traffic flow
2: Using splitcap to split the network traffic flow into q packets (p1,p2,· · · ,pq).
3: Step 2:Construct relational graph on packets similarity G′
4: Each network packet is treated as a node vi. Each byte in the r bytes obtained from

the network packet vi corresponding to a feature, then we get vector vi = vi_original =

(vec_originali1, vec_originali2, ..., vec_originalir).
5: Calculating the cosine similarity between any two packets (vi, vj) as the weight wij between the

two packets. Constructing an undirected complete graph G.
6: Pruning the edges with similarities below the threshold ε. The graph G after pruning is called

relational graph on packets similarity, which is denoted as G′(V, E, W).
7: Step 3:Extract the local proximity features by using packet2vec learning
8: Using packet2vec preprocessing to obtain the local proximity feature of each network packet in G′,

called vi_packet2vec. This part will be described in detail in Algorithm 2.
9: Step 4:Construct vector as the input of deep auto-encoder

10: while the information of q packets is not extracted do
11: Combining vi_original and vi_packet2vec to get I. I = vi_original + vi_packet2vec = (veci1, veci2, ..., vecir),

where vi_original is the original feature of the ith network packet, vi_packet2vec is the local proximity

feature of the ith network packet preprocessed by the packet2vec, and I is the feature of the ith

network packet.
12: end while
13: Smoothing.
14: Vec consists of q packets, each packet vector I.
15: return vector Vec.

3.4. Extract the Local Proximity Features by Using Packet2vec Learning

3.4.1. Overview

The proximity sampling strategy S refers to sampling the network packets in the proximity of
the source network packet vi by random walk. We have numbered each network packet. Therefore,
the result of sampling by the proximity sampling strategy S is a list NS of network packet numbers
obtained by random walk. The local proximity sampling list NS (νi) of a source network packet vi
use the strategy S to sample high-similarity packets within the low-order proximity of vi. Therefore,
we want to perform random walks only within the range of low-order proximity of the source network
packet vi, as shown in c) of Figure 1. However, the existing graph representation learning algorithm
has no ability to control the random walk range, which makes it easy to random walk to a high-order
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proximity farther away from the source network packet vi. The random walk of the existing graph
representation learning algorithm is shown in b) of Figure 1. Therefore, existing algorithms suffer from
inaccurate local proximity sampling list NS (νi) of source network packet vi. In detail, the result of the
local proximity sampling list NS (νi) of vi is the basic of the local proximity features of vi. Therefore,
the local proximity features obtained by existing preprocessing algorithms does not have the ability to
accurately describe the similarity relationship between network packets.

In order to control the random walk range of node2vec within the k-order proximity,
we introduced Astar to increase the penalty constraint on the random walk of node2vec. The algorithm
uses the penalty term to constrain the proximity sampling range of the source network packet vi to
ensure that the random walk is within the k-order proximity, where k is a positive integer and k can
be customized. In this paper, the value of k is 2. That is to say, the random walk range of the source
network packet vi is within the low-order proximity. Accordingly, the proposed algorithm that uses
Astar to increase the penalty constraint on the random walk range of node2vec is called the packet2vec
learning algorithm. In detail, the target of the packet2vec learning algorithm is that each network
packet is mapped to the feature f = V → Rd, where d is the dimension of the features obtained by
the mapping, and f is a mapping function. Therefore, we find the mapping function f to map each
network packet to obtain d-dimensional features. As a preliminary step of the packet2vec learning
algorithm, the relational graph on packets similarity G′ is constructed. Each network packet vi ∈ V is
treated as a node. Two basic steps of the packet2vec learning algorithm are as follows.

First of all, using the proximity sampling strategy S to simulate a random walk process with a
length l in the neighbor of vi to obtain a local proximity sample list NS (νi). The specific process to
obtain the local proximity sampling list NS (νi) of the source network packet vi is as follows. (1) The
source network packet is vi ∈ V, and then the proximity sampling strategy S is used to perform
penalty-based random walk in the proximity of the source network packet; (2) At each step of the
penalty-based random walk, the current weight is updated according to the penalty-based weight
update method. The updated weight is the new transition probability nvx; (3) Then select a packet for
next step of the penalty-based random walk, which is equivalent to simulating the Alias sampling with
time complexity O(1) according to the updated transition probability nvx [10]; (4) The above steps (2)
and (3) are continuously repeated until the local proximity sampling list NS (νi) of length l is obtained.
The local proximity sampling list of vi obtained by the above algorithm is NS (νi), also known as
walk. In detail, Ns (vi) ⊂ V, and the sampling range of penalty-based random walk is not limited to
the direct neighbor, but can be sampled by the proximity sampling strategy S within the low-order
proximity of the source network packet vi.

Next, we use Skip-gram [28] to optimize the proximity sample list NS (νi) to obtain continuous
d-dimension features. The specific process is as follows. We seek to optimize the following objective
function, which maximizes the log-probability of observing a network proximity NS (νi) for a network
packet vi conditioned on its feature representation, given by f [10]. The objective function is shown
as (1). In particular, the Skip-gram [12] aims to learn continuous feature representations for source
network packet vi by optimizing a proximity preserving likelihood objective. The network packet
feature representations are learned by optimizing the objective function using SGD with negative
sampling [28]. Finally, we obtain a continuous d-dimensional local proximity feature that accurately
characterizes the similarity between network packets to optimize the local neighbor proximity sample
list NS (νi) motivated by node2vec algorithm in [10].

max
f

∑
u∈V

log Pr (Ns (vi) | f (vi)) , (1)

Pr (Ns (vi) | f (vi)) = ∏
ni∈Ns(vi)

Pr (ni| f (vi)) , (2)

Pr (ni| f (vi)) =
exp ( f (ni) · f (vi))

∑v∈V exp ( f (v) · f (vi))
. (3)
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Figure 4 is a flow chart of the packet2vec learning algorithm. Algorithm 2 describes in detail
the algorithm flow of obtaining the local proximity feature of the source network packet by using
packet2vec preprocessing. A description of several key operations involved in Algorithm 2 is as follows.

Construct G’

All packets are

preprocessed? 

Select 

       

Update weights based 

on penalty

Select a packet for next step 

by using Alias

Random walk 

is completed?

No

iv V

Start random walk

No

Yes

 Optimize walk by  

using skip-gram 

Yes

 Obtain walk by 

using random walk 

Figure 4. Algorithmic flowchart of packet2vec learner based on graph representation with penalty.

Algorithm 2 Packet2vec learning algorithm

Input: Relational graph on packets similarity G′(V, E, W), Walk length of proximity sampling l,

Probability of returning to the previous node p, Probability of moving away from the source node

q, Penalty value η.
Output: Local proximity features of ith network packet vi_packet2vec , which is d dimensional.

1: Initialize walk to Empty.
2: for each node vi ∈ V do
3: walk = packet2vecWalk (G′, vi, η, l).
4: end for
5: featur_embedding = Skip-gram optimization(walk).
6: return feature_embedding vi_packet2vec.

3.4.2. Astar: Penalty-Based Weight Update Method

The traditional method uses BFS random walk to obtain network packets with high similarity
to the source network packets. BFS can’t limit the range of random walks, and it is easy to cause
random walk to high-order proximity, as shown in Figure 1b. Therefore, a penalty-based weight
update method is introduced, which is called A star. This method is equivalent to adding a penalty
constraint on the BFS, so that the range of random walk is within the k-order proximity of the source
network packet. The specific process of the penalty-based weight update method is as follows. First,
we calculate the penalty value η according to the empirical formula, i.e., (the pruning threshold
ε ≈ the mean of weights in G′ − depth′ * penalty value η). In detail, we limit the random walk within
the k-order proximity of the source network packet, then depth′ is equal to k. This article defines the
value of depth′ to be 2 in our experimentation. The mean of the edges is the sum of the weights of
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all edges in the relational graph on packets similarity G′ divided by the total number of edges; Next,
we calculate the penalty term gvx of the edge according to (5) at each step of the random walk; The sum
of the penalty term gvx and the biased weight hvx of the edge is calculated according to (4), which is
called the penalty-based weight nvx. Then updates the weight value of the edge in G′ according to the
penalty-based weight nvx. The graph after the weight update is recorded as G′_cur_weight. Finally,
the penalty-based weights of edge below the threshold ε are pruned. Therefore, this method has the
ability to control the random walk range within the k-order proximity of the source network packet.
Several key operations involved in the penalty-based weight update method are described below.

Biased weight hvx: hvx is a biased weight, and the calculation method is as shown in (6), where wvx is
the weight of the edge, and search bias αpq

(
vpre, x

)
has the ability to roughly control the direction of

random walk. The calculation method of biased weight is same with that of the transition probability
from the current node to the next node in the reference [10].

Search bias αpq
(
vpre, x

)
: αpq

(
vpre, x

)
has the ability to roughly control the direction of random

walks, such as: approximate DFS, approximate BFS. This does allow us to account for the network
structure and guide our search procedure to explore different types of network proximities [10].
This paper mainly samples the local proximity of the source network packet, so the random walk of
the approximate BFS is used in this paper. The calculation method of search bias αpq

(
vpre, x

)
is shown

in (7), where x is the next network packet, vpre is the previous network packet, dvpre,x is the shortest
path between the nodes vpre and x. Therefore, the value of dvpre,x is a value in 0, 1, 2. Figure 5 illustrates
the method of search bias αpq

(
vpre, x

)
roughly control the direction of random walks. αpq

(
vpre, x

)
defines two parameters p and q to guide the direction of random walk. Intuitively, parameters p and q
control how fast the walk explores and leaves the proximity of starting network packet vi [10].

v

2 =1

1=1/ p

3=1/ q

3=1/ q

2v

3v

1v

prev

Figure 5. Searching bias αpq
(
vpre, x

)
. The walk just transitioned from vpre to v is now evaluating its

next step out of node v. And vpre,v1,v2,v3 are the nodes that may be reached from node v in the next
step. Edge labels indicate searching biases α. It is worth noting that v is the current network packet.
vpre is the previous network packet, so searching bias α1 = 1/p. v1 is connected to v and connected to
vpre, so searching bias α1 = 1. v2 and v3 are connected to v, while v2 and v3 are not connected to vpre,
so searching bias α3 = 1/q.

Parameter p: The parameter p controls the possibility of revisiting the previous network packet
immediately during the random walk [10]. This article mainly uses random walk of approximate BFS,
so the value of p is usually (p = max(p, 1)).

Parameter q: The parameter q controls that random walks tend to access network packets farther
away from the network packet vpre. This article mainly uses random walk of approximate BFS, so the
value of q is usually (q = min(q, 1)).

If the p value is too large, the random walk may often return to the previous network packet,
and it is easy to fall into the local loop search; When the p value is too small or the q value is too large,
the random walk is easy to sample to the high-order proximity of the source network packet. From the
above analysis, it can be concluded that the random walk with only the biased weight hvx has no
ability to accurately characterize the local proximity features of the source network packet. Therefore,
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we use the penalty gvx to constrain the range of random walks to obtain local proximity features that
have the ability to accurately characterize the similarity of network packets.

Penalty gvx: gvx is the penalty for the next network packet, and the calculation method is as shown
in (5), where depth′ is the shortest path length from the source network packet to the next network
packet. η is the penalty value, so η <= 0. The role of gvx is to increase the penalty if the next network
packet is far away from the source network packet during random walk. The farther the next network
packet is from the source network packet, the larger the penalty gvx. The penalty gvx has the ability to
control the range of random walk;

Penalty-based weight nvx: nvx is a penalty based weight, also known as the transition probability
from the current network packet to the next network packet. The penalty based weight nvx is calculated
as shown in (4). Considering a random walk that just traversed edge

(
vpre, v

)
and now resides at

network packet v [10]. When a random walk requires the selection of a network packet for the next
step, the penalty-based weight nvx on the edge (v, x) needs to be evaluated. The penalty based weight
nvx is the sum of the penalty gvx and the biased weight hvx, where v is the current network packet.
If the penalty term gvx is 0, the packet2vec leaning algorithm is the node2vec [10] leaning algorithm.

nvx = gvx + hvx, (4)

gvx = depth
′ ∗ η, (5)

hvx = αpq
(
vpre, x

)
· wvx, (6)

αpq
(
vpre, x

)
=


1
p if dvprex = 0,
1 if dvprex = 1,
1
q if dvprex = 2.

(7)

Node2vec based on penalty constraints has the ability to obtain local proximity features of
each network packet more accurately. In the local proximity representation of each network packet,
a random walk is used to capture the relationship between network packets. The relational graph on
packets similarity G′ is transformed into a set of network packet lists by random walk. The frequency
of occurrence of the network packet pairs in the set measures the structural distance between the
network packet pairs [10]. In detail, the closer the network packet is, the higher the similarity of the
network packet. Algorithm 3 details the weight update strategy of the similarity relationship graph.

Algorithm 3 Penalty-based weight update for similarity relation graph (Abbreviated as PBWeight)

Input: Relational graph on packets similarity G′(V, E, W), Probability of returning to the previous

node p, Probability of moving away from the source node q, Penalty value η, Current node cur,

Shortest path length between each pair of nodes dijkstra_path_length , proximity nodes of the

current node vcur, Pruning threshold ε.
Output: Weight after punishment cur_weight, Relational graph of network packet similarity after

punishment G′_cur_weight.
1: G′_cur_weight = Deepcopy(G′).
2: for proximity_node in vcur do
3: g(cur)= dijkstra_path_length[cur][proximity_node] ∗ η
4: h(cur)= W ∗ αpq
5: cur_weight = g(cur) + h(cur)
6: if cur_weight > ε then
7: Update graph G′_cur_weight according to the value of cur_weight
8: end if
9: end for

10: return cur_weight, G′_cur_weight.
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3.4.3. Packet2vecwalk: Random Walk with Penalty for Packet2vec Learning Algorithm

We consider the proximity of the source network packet from the similarity relational graph G′

as a local search problem. We propose a flexible proximity sampling strategy based on penalty for
random walk, which controls the range of random walk. The proposed algorithm uses random walk
similar to BFS.
Random walk: The source network packet is vi, and the length of the random walk we need to
simulate is l. Our goal is to generate a local proximity sample set NS (νi) of the source network
packet vi. Assume that random walks are started from the source network packet c0 = vi, and the
mth network packet in the random walk is cm. In detail, the network packet cm is generated by the
following distribution [10].

P (cm = x|cm−1 = v) =

{
nvx

z if (v, x) ∈ E,
0 otherwise.

(8)

where nvx is the weight based on the penalty. nvx is the weight between the nodes v and x after
the update based on the penalty weight. Z is the normalizing constant [10]. E is a collection of edges.
Algorithm 4 describes the random walk with penalty for packet2vec learning algorithm.

Algorithm 4 Packet2vecWalk: Random walk with penalty for packet2vec learning

Input: Relational graph on packets similarity G′(V, E, W), Start node vi, Penalty value η, Walk length

of proximity sampling l.
Output: Local proximity features of source network packet vi obtained by packet2vec walk.

1: Initialize walk to [vi].
2: dijkstra_path_length = Dijstra(G).
3: for walk_iter = 1 to l do
4: cur_weight , G’_cur_weight = PBWeight (G′, p, q, η, cur, l, dijkstra_path_length, vcur, ε).
5: vcur = GetProximities(cur, G′)
6: s = AliasSample(vcur, cur_weight)
7: Append s to walk
8: end for
9: return walk.

3.5. Auto-Encoder for Intrusion Detection

We use the preprocessed network packet features as input to the deep auto-encoder intrusion
detection. Deep auto-encoder consists of two parts, encoder and decoder. Encoder compresses the raw
data into a low-dimensional representation. Decoder reconstructs the low-dimensional representation
of the encoder compression. Algorithm 5 describes the flow of Auto-encoder based on on packet2vec
learning for intrusion detection

Encoder: X = [x1, x2, · · · , xn]T is the input data vector of encoder, X
′
= [x

′
1, x

′
2, · · · , x

′
m]

T is the
output data vector of encoder. It is worth noting that n is larger than m. Encoder uses tanh as the
activation function.

X′ = f (x) = tanh(WX + b). (9)

where W represents the encoder weight matrix with size m ∗ n and b is a bias vector of dimensionality m.

Decoder: The decoder function maps the hidden representation X′ to a reconstruction
Y = [y1, y2, . . . , yn]. Decoder uses tanh as the activation function.

Y = g
(
x′
)
= tanh

(
W ′X′ + b′

)
. (10)
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where W ′ represents the decoder weight matrix with size n × m and b′ is a bias vector of
dimensionality n.

Object function: The training goal of deep auto-encoder is to minimize the error between input X and
output Y.

L(θ) = ∑
x∈D

L(x, g( f (x))), (11)

L(x, y) = ‖x− y‖2. (12)

In addition, we find the optimal parameter θ through the objective function.

θ =
{

W, W ′, b, b′
}
= argθ min L(x, y). (13)

Algorithm 5 Auto-encoder based-on packet2vec learning for intrusion detection

Input: vector Vec, which contains q network packets in the network traffic, each network packet is a

vector (veci1,veci2,· · · ,vecir).
Output: Evaluate result in test dataset.

1: Step 1:Create auto-encoder model
2: Add the 1st encoder layer of l1 units whose activation function is tanh.
3: Add the 2nd encoder layer of l2 units whose activation function is tanh.
4: Add the 3rd dense layer of l3 units.
5: Add the 4th decoder layer of l4 units whose activation function is tanh.
6: Add the 5th decoder layer of l5 units whose activation function is tanh.
7: Step 3: Train model
8: while early stop condition is not met do
9: while training dataset is not empty do

10: Update weights and bias using adadelta gradient descent optimization algorithm.
11: end while
12: end while
13: Step 4:Test model
14: Test fine-tuned hyper-parameters with test dataset.
15: return Evaluate result in test dataset.

4. Evaluation

In this section, the performance of the network intrusion detection algorithm using packet2vec-AE
is evaluated based on the ISCX 2012 intrusion detection data set. The purpose of the experiment is
as follows.

4.1. Dataset

Most of the existing network intrusion detection data sets are based on manual experience to
extract network packet features [23], such as NSL-KDD [17], KDD CUP 1999 [29], and Kyoto2009 [30].
The datasets of the existing raw network packets are ISCX2012 [27] and DAPAR1998 [31–33].
The attacks in ISCX2012 are relatively new [6]. Therefore, we used the ISCX2012 dataset for experiments.
Table 1 is a description of the ISCX2012 data set. The data set contains 7 days of traffic data, including
normal traffic and four types of attack traffic, such as brute force SSH, DDoS, Http DoS, and infiltrating.
Table 2 shows the statistics of ISCX 2012. It can be seen from Table 2 that ISCX 2012 contains a small
amount of attack data, so the data set is unbalanced. To solve this problem, we resampled [6] the data
set. That is, we undersample [6] the normal type of data, and we oversample [6] the data of the four
types of attacks. Table 3 is the data set after resampling. It can be seen from Table 3 that the data set
after resampling is balanced.
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Table 1. Data Description of the ISCX 2012 Dataset [6].

Date Data Description Data Size

11 June Normal 16.1 GB
12 June Normal, Brute Force SSH 4.22 GB
13 June Normal, Infiltrating 3.95 GB
14 June Normal, HttpDoS 23.4 GB
15 June Normal, DDOS 23.4 GB
16 June Normal 17.6 GB
17 June Normal, Brute Force SSH 12.3 GB

Table 2. ISCX 2012 Dataset [27].

ISCX2012 Train Set Test Set
Count Percentage Count Percentage

Normal 890,726 97.27% 593,811 97.27%
Brute Force SSH 4197 0.46% 2785 0.46%

Infiltrating 6027 0.66% 4017 0.66%
Http DoS 2090 0.23% 1392 0.23%

DDOS 12,673 1.38% 8448 1.38%
Total 915,695 610,453

Table 3. Statistics after ISCX2012 Balanced Processing.

Dataset Train Set Test Set
Count Percentage Count Percentage

Normal 136,653 20.0% 45,564 20.0%
Brute Force SSH 136,653 20.0% 45,564 20.0%

Infiltrating 136,653 20.0% 45,564 20.0%
Http DoS 136,653 20.0% 45,564 20.0%

DDOS 136,653 20.0% 45,564 20.0%
Total 683,265 100.0% 227,820 100.0%

4.2. Evaluation Metrics

This paper uses accuracy (ACC), detection rate (DR), precision(P), and F1 as evaluation
indicators [34]. The accuracy rate is an indicator that describes the correctness of the intrusion
detection algorithm to detect whether there is an intrusion. The detection rate is used to measure
the detection performance of the intrusion detection system. The precision refers to the ratio of the
number of positive samples that are actually predicted to positive samples to the number of positive
samples predicted by the intrusion detection system. The F1 is the harmonic mean of the precision and
detection rates. The formulas are as follows. The meanings of True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN) [35,36] are shown in Table 4.

Accuracy(ACC) =
TP + TN

TP + FP + FN + TN
, (14)

DetectionRate(DR) =
TP

TP + FN
, (15)

Precision(P) =
TP

TP + FP
, (16)

F1 = 2 · P · DR
P + DR

. (17)
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Table 4. Cofusion Matrix.

Actual Class: True Actual Class: False
Predicted Class: True TP FP
Predicted Class: False FN TN

4.3. Two Ways to Preprocess Network Packets

There are two ways to preprocess network packets. In method (a), the original features vi_original
of the ith network packet is combined with the local proximity features vi_node2vec of the ith network
packet obtained by the packet2vec without penalty. In detail, the local proximity features obtained
by packet2vec without penalty, i.e., g(n) = 0 in (2), is equivalent to the local proximity features
obtained by node2vec. The features obtained by preprocessing the ith network packet is I = vi_original +

vi_node2vec; In method (b), the original features vi_original of the ith network packet is combined with
the local proximity features vi_packet2vec of the ith network packet obtained by the packet2vec with
penalty. The features obtained by preprocessing the ith network packet is I = vi_original + vi_packet2vec.
From Table 5, it can be concluded that the optimal accuracy and detection rate of the method (b) are
7.3% and 9.8% higher than the optimal accuracy and detection rate of the method (a), respectively.
As can be seen from Table 5, when the length of the random walk is 1000, the accuracy and detection
rate of the method (a) are greatly reduced, and the accuracy of the method (b) is still as high as
90.1%. One possible explanation is that the lack of penalty constraints for method (a) may result in the
inability to control the random walk range when local proximity sampling. Therefore, the method
(a) causes random walks to high-order proximity that are farther away from the source network
packet. Eventually, the local proximity sampling of the source network packet is inaccurate, and the
features obtained by the preprocessing cannot accurately describe the network packet. Therefore,
in the following we use method (b) for data preprocessing. In addition, it is worth noting that the
comparison and selection of the length of the random walk is detailed in Part E of Section 4.

Table 5. Comparison of IDS performance of Node2vec and Packet2vec preprocessed under different
random walk lengths (%).

Length l
Preprocessing Algorithm

(a) Preprocessed with Node2vec (b) Preprocessed with Packet2vec
ACC DR Precision F1 ACC DR Precision F1

10 73.8 73.7 75.2 74.4 89.8 87.9 88.0 87.9
80 87.4 81.1 87.3 84.1 94.7 90.9 94.3 92.6

1000 65.8 63.5 67.9 65.6 90.1 87.3 88.7 88.0

4.4. The Effectivess of Penalty in Packet2vec Preprocessing by Autoencoder

This section discusses the impact of penalty values η on the performance of IDS in Packet2vec-AE.
Different penalty values η may affect the random walk range of the source network packet, and
ultimately affect the accuracy of the local proximity features of the source network packet. Therefore,
it is necessary to evaluate the impact of different penalty values η in Packet2vec-AE on IDS performance
based on experiments. The IDS performance of the Packet2vec-AE penalty values of −0.01, −0.03,
−0.05, and −0.1 was evaluated. Table 6 is a statistical value of the similarity relationship between
network packets in G′. The statistical value shows that the average of the weights in G′ is 0.93. Table 7
shows the IDS performance with different penalty values in Packet2vec-AE. It can be concluded from
Table 7 that the packet2vec-AE based IDS achieves optimal performance when the penalty value
is −0.03. When the penalty values are −0.01 and −0.1, the performance of the IDS is relatively
poor. Figure 6 shows the Packet2vec-AE visualizational results for different penalty values. It can be
concluded from Figure 6 that the IDS can accurately distinguish DDoS attacks, and it is difficult to
accurately distinguish the other four types of network packets, when the penalty values are −0.01
and −0.1; When the penalty value is −0.05, the IDS has the ability to distinguish the following types
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of network packets more accurately, including normal, Brute Force SSH attacks and DDoS attacks;
When the penalty value is −0.03, the IDS has the ability to distinguish five class of network packets
more accurately.

(a) (b)

(c) (d)

Figure 6. Packet2vec-AE visualizational results with different penalty values. Gray points are normal
network packets; The yellow point is the network packet containing the DDoS attack; The blue point
is the network packet containing the Brute Force SSH attack; The purple point is the network packet
containing the Http DoS attack; The green point is the network packet containing the Infiltrating attack.
(a) Penalty value η = −0.01. (b) Penalty value η = −0.03. (c) Penalty value η = −0.05. (d) Penalty
value η = −0.1.

One possible explanation is that the penalty value η determines the range of local proximity
samples for network packets. Experiment shows that the penalty value calculated by the empirical
formula, i.e., (the pruning threshold ε ≈ the mean of weights in G′ − depth′ * penalty value η),
can achieve the optimal effect. In this experiment, the value of the pruning threshold ε is 0.86.
The random walk range of the source network packet is within the low-order proximity, that is,
the maximum value of depth′ is 2. It uses an empirical formula, i.e., (the pruning threshold ε ≈ the
mean of weights in G′ − depth′ * penalty value η), for approximate calculation. When the penalty
value is −0.03, the Packet2vec-AE algorithm achieves optimal performance. At the same time, the
experimental results in Table 7 and Figure 6 show that the Packet2vec-AE algorithm achieves optimal
performance when the penalty value is −0.03. In addition, when the penalty value is −0.1, the penalty
for the weight is too large, which leads to too much constraint on the local proximity sampling range.
Therefore, an excessive penalty value results in random walk within the first-order proximity of the
source network packet when sampling local proximity features of the network packet. The sampling
range is too small, so the obtained local proximity features have no ability to accurately describe the
similarity relationship between the network packets. When the penalty value is −0.01, the penalty
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for the weight is too small, which leads to insufficient constraint on the sampling range of the local
proximity. When sampling the local proximity features of the network packet, there is a large possibility
of random walk to high-order proximity farther from the source network packet. The sampling range
is too large, so the obtained local proximity features do not have the ability to accurately describe the
similarity relationship between network packets.

Table 6. Statistical value of the weight in the G′.

Weight in G′ Value
Mean 0.93
Max 0.99
Min 0.86

Table 7. Compare the impact of different penalty values on the performance of Packet2vec-AE (%).

Penalty η ACC DR Precision F1
−0.01 89.8 87.9 88.0 87.9
−0.03 94.7 90.9 94.3 92.6
−0.05 93.8 89.2 92.6 90.9
−0.1 90.2 87.3 88.7 88.0

4.5. Influence of Packet2vec-AE Hyper-Parameters

Different penalty values η in the similarity relationship of network packets have different effects
on the performance of IDS. In addition, other parameters have different effects on the performance of
IDS, such as optimizer of auto-encoder, the pruning threshold, the length of random walk. Therefore,
these parameters are also adjustable. Table 8 shows the performance of the auto-encoder (AE) in
packet2vec-AE with different optimizers. From this table, we have found that adadelta as the optimizer
for AE has the ability to obtain better performance of IDS. Table 9 shows the effect of different
random walk lengths of packet2vec on the performance of IDS. From Table 9, we conclude that the
packet2vec-AE algorithm has the ability to achieve optimal performance of IDS when the length of
the random walk is 60 or 80. When the random walk length is 10 or 100, the performance of the
packet2vec-AE algorithm is relatively poor. One possible explanation is that random walks only
sample ten proximity packets of the source network packet when the random walk length is 10.
The number of network packets sampled by random walks is small, so the features obtained by
random walk do not have the ability to accurately describe the local proximity of the source network
packet. Therefore, when the random walk length is 10, the performance of the IDS is not good. When
the random walk length is 100, the proximity features obtained by random walk sampling is too
redundant. Therefore, when the random walk length is 60 or 80, the features of the local proximity
of the source network packet can be accurately characterized. Table 10 shows the architectural
parameters of the auto-encoder in the packet2vec-AE algorithm. Table 11 shows a list of parameters for
packet2vec in packet2vec-AE. Table 12 shows a list of auto-encoder hyper-parameters and its optimizer
in packet2vec-AE. The parameter values given in Tables 11 and 12 are the optimal results obtained by
experiments. The hardware used in the experiments are presented below. The configuration of the
experimental environment is shown in Table 13. In addition, we used a 12 GHz NVIDIA Tesla K40m
GPU as an accelerator.

Table 8. Compare the impact of optimizer on the performance of Packet2vec-AE (%).

Optimizer ACC DR Precision F1
adam 90.5 85.9 88.9 87.4

adadelta 94.7 90.9 94.3 92.6
SGD 92.9 88.3 92.6 90.4
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Table 9. Compare the effects of random walks of different lengths on the performance of Packet2vec-AE (%).

Length l ACC DR Precision F1
10 89.8 87.9 88.0 87.9
60 94.7 90.9 94.3 92.6
80 94.7 90.9 94.3 92.6
100 90.2 87.3 88.7 88.0

Table 10. Architecture Parameters of auto-encoder in the packet2vec-AE algorithm.

Layer Type Filter/Neuron
1 encoder+tanh 160
2 encoder+tanh 64
3 encoder+tanh 32
4 dense 10
5 decoder+tanh 32
6 decoder+tanh 64
7 decoder+tanh 160

Table 11. List of Parameters for Packet2vec in Packet2vec-AE.

Hyper-Parameters Value
probability of returning to the previous node p 2

probability of moving away from the source node q 0.2
penalty values η −0.3

pruning threshold ε 0.86
truncating network packets lengths 100

length of random work l 60

Table 12. List of Auto-encoder Hyper-parameters and Its Optimizer in Packet2vec-AE.

Hyper-Parameters Value
Optimizer adadelta

Learning Rate 0.25
Activation function tanh

Table 13. Experimental Enviroment Configuration.

Item Configuration
Operate System Linux 3.19.0-25-generic #26 14.04.1-Ubuntu

Hardware DELL R720,CPU is 16 core Xeon E5-2680
Configuration 2.7GHz,16GB
Python version Anaconda 2.7

4.6. Comparison with the Latest Techniques

The researchers proposed some unsupervised intrusion detection algorithms such as RBM [7],
PCA [8] and deep auto-encoder [9]. Those algorithms usually ignore the similarity relationship
between network packets when preprocessing network packet extraction features. The lack of
information analyzed by those algorithms results in relatively low accuracy. The experiment compares
the performance of the proposed algorithm with the existing algorithms. Table 14 is a comparison of
the performance of the various algorithms. Deep auto-encoder preforms better than PCA and RBM
in Table 14, so we use deep auto-encoder to implement the proposal for further improvement. It can
be seen from Table 14 that the proposed packet2vec-AE algorithm achieves the best performances
regarding the accuracy exceeding those of the other state-of-the-art algorithms by 11.6%. The proposed
packet2vec-AE algorithm achieves the best performances regarding the precision exceeding those
of the other state-of-the-art algorithms by 11.9%. The detection rate was only worse than that of
the best algorithm and ranks second among all five algorithms. We used the harmonic mean F1 to
comprehensively assess the detection rate and precision. The proposed packet2vec-AE algorithm
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achieves the best performances regarding the F1 exceeding those of the other state-of-the-art algorithms
by 8.7%. The proposed node2vec-AE algorithm achieves the good performances regarding the accuracy,
the precision, and the F1 exceeding those of the other state-of-the-art algorithms by 4.3%, 4.9%,
and 0.2%, respectively. We consider node2vec-AE as packet2vec-AE without penalty, so node2vec-AE
is considered to be the worst case of the packet2vec-AE algorithm. Figure 7 is a visualization of
unsupervised intrusion detection algorithms. It can be seen from Figure 7 that the performance of the
PCA algorithm is the worst. The PCA algorithm does not have the ability to accurately distinguish
between five different types of network packets. Deep auto-encoder has the ability to accurately
distinguish DDoS attacks, but it is difficult to accurately distinguish the other four types of network
packets. The proposed node2vec-AE algorithm has the ability to accurately distinguish between several
types of network packets, including normal, Brute Force SSH attacks and DDoS attacks. The proposed
packet2vec-AE algorithm has the ability to accurately distinguish between five types of network
packets. One possible explanation is that existing unsupervised intrusion detection algorithms only
use the original features of the network packet as input. The features obtained by packet2vec-AE and
node2vec-AE preprocessing include the original features of the network packet, and also include the
local proximity features that characterize the similarity between network packets. Due to the increase
of effective information in the preprocessed data, the accuracy of the proposed algorithm is higher
than the existing three intrusion detection algorithms.

(a) (b)

(c) (d)

Figure 7. Visualization of unsupervised intrusion detection algorithms. (a) PCA algorithm. (b) Deep
Auto-encoder algorithm. (c) Proposed node2vec-AE algorithm. (d) Proposed packet2vec-AE algorithm.

From Table 14 and Figure 7, we can see that the accuracy and detection rate of node2vec-AE
is slightly lower than packet2vec-AE. One possible explanation is that the node2vec-AE algorithm
does not constrain the local proximity sampling range of random walk. Therefore, the node2vec-AE
algorithm has a high probability of random walk to high-order proximity far from the source network
packet. Finally, the proximity sampling of the source network packet does not have the ability to



Appl. Sci. 2019, 9, 4473 21 of 26

accurately characterize the local proximity. However, the accuracy of the node2vec-AE algorithm
is higher than that of RBM, PCA, and deep auto-encoder. This shows that combining the original
features of the network packet with the local proximity features that describe the similarity between
network packets has the ability to achieve better intrusion detection performance. It also proves the
effectiveness of our proposed algorithm.

Table 14 contains some supervised algorithms, such as SVM-IDS 2017 [37], J48-IDS 2017 [38],
and C4.5-IDS 2016 [39]. The performance of the SVM-IDS 2017 [37], J48-IDS 2017 [38], and C4.5-IDS
2016 [39] algorithms is for reference only. The algorithm we propose does not require performance
comparisons with these three algorithms. The algorithm we propose is unsupervised, but the three
algorithms are supervised. So this comparison is unfair. In intrusion detection, labels are difficult to
obtain. The advantage of an unsupervised algorithm is that it can perform intrusion detection on all
network traffic without being restricted by labels.

For training and testing time, all of my experiments were able to run in 24 h under the server
configuration shown in Table 13. The experiment of obtaining the local proximity features of the
network packet using the Packet2vec algorithm can be completed in 16 G memory within 12 h.
The experimental time for intrusion detection using the extracted network packet characteristics as
input to Deep Auto-encoder is within 1 h. The overall operating time is within an acceptable range.
The ISCX 2012 dataset appeared later. Therefore, we could not find enough literature on training,
testing time, and memory size, and we were not able to evaluate it [6].

Table 14. Comparison with Other Published Algorithms (%).

Algorithm Accuracy DR Precision F1

Supervised
SVM-IDS 2017 [37] NA 60 59.2 59.28
J48-IDS 2017 [38] NA 90.64 86.4 88.14

algorithms C4.5-IDS 2016 [38] NA 76.4 78.1 NA

Unsupervised

PCA-IDS 2007 [8] 81.1 78.7 78.9 78.8
RBM-IDS 2017 [7] 78.6 96.0 70.9 81.6

Deep AE-IDS 2018 [9] 83.1 85.4 82.4 83.9
algorithms Node2vec -AE (proposal) 87.4 81.1 87.3 84.1

Packet2vec -AE (proposal) 94.7 90.9 94.3 92.6

5. Discussion

In this paper, the packet2vec leaning algorithm is used to obtain the local proximity features that
accurately describe the similarity relationship of network packets. Next, the features extracted by the
packet2vec leaning algorithm are combined with the original features of the network packet to be used
as input of the deep auto-encoder for intrusion detection.

This article focuses on the impact of similarity relationships between network packets on intrusion
detection performance. Future work will further explore the features of network packets obtained by
preprocessing. Network packets will be analyzed from multiple dimensions such as timing [40–42]
and protocol type [43–45].

This paper only uses the network packet in the train set to construct a relational graph on packet
similarity G′. When extracting local proximity features of the network packet in the test set, it is not
necessary to add the network packet in the test set as a node to G′. It is only necessary to calculate
the similarity between the current network packet and each network packet in G′. Then the proposed
packet2vec leaning algorithm is used to extract the local proximity features of the current network
packet. When this algorithm is used to detect a new network packet, there is no need to update G′

or re-train. In other words, network packets in the test set do not have to be added to G′. Therefore,
the algorithm can save time and memory. In addition, our proposed algorithm has generalization
effectiveness for network packets outside the train set, increasing the scalability of the proposed model
to the number of test set samples.
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In this paper, we use penalty terms to limit the range of random walks, which causes random walks
to sample only network packets in the k-order proximity of the source network packet. The advantage
of the above method is that we can customize the value of k according to the needs.The empirical
formula, i.e., the pruning threshold ε ≈ the mean of weights in G′ − depth′ * penalty value η, is designed
to calculate the approximately optimal penalty value. The maximum value that depth′ can be taken
in this empirical formula is k. In addition, we use (depth′ * penalty value η) for weight penalty in
the empirical formula. In the weight penalty, the closer the source network packet is, the smaller the
penalty for the network packet. That is to say, the method has a high probability of preferentially
sampling network packets with high similarity to the source network packet.

In addition, the local proximity sample list of the source network packets obtained by random
walk has the ability to capture the structural relationship and distance relationship between network
packets. The source network packet local proximity sample list can measure the distance between
network packet pairs based on the frequency of network packet pairs [10]. If the local neighbor sample
list of the source network packet is obtained in other ways (for example, all first-order proximity
nodes and second-order proximity nodes of the source network packet are directly used to form a
local proximity list), the method does not have the ability to obtain structure and distance information
between the network packets. Therefore, it is very meaningful to capture the local proximity nodes of
the source network packets in a random walk.

In addition, this article focuses on the relationship between network packets and extracts the
features of network packets. In the future work, network flows and network packets will be analyzed
hierarchically [46–49].

We analyzed the sensitivity of the proposed algorithm. From Table 14, we can draw the following
conclusions. In the best case, the accuracy, the detection rate, the precision, and the F1 of packet2vec-AE
are up to 94.7%, 90.9%, 94.3%, and 92.6%, respectively. In the worst case, the accuracy, the detection
rate, the precision, and the F1 of packet2vec-AE reached 87.4%, 81.1%, 87.3%, and 84.1%, respectively.
In the worst case, the proposed algorithm achieves the good performances regarding the accuracy, the
precision, and the F1 exceeding those of the other state-of-the-art algorithms. Therefore, the proposed
algorithm is still superior to the latest algorithms available even if the selected parameters are not
suitable. From the experimental results of Tables 8 and 9, it can be concluded that fluctuation range of
the accuracy, the detection rate, the precision, and the F1 is not large regardless of how these parameters
are changed. In other words, the experimental results are not sensitive to the parameters. Therefore,
we have reason to believe that the proposed algorithm has the potential to be extended to other data
sets. In future work, we will apply this algorithm to other data sets.

In order to highlight the novelty and contribution of this paper, we compare the similarities and
differences between our algorithm and existing algorithms in Tables 15 and 16. Table 15 compares the
similarities and differences between the latest three unsupervised IDS algorithms and our proposed
algorithms. Most existing studies on unsupervised IDS preprocessing ignore the relationship among
packets. As a result, the performance of existing unsupervised IDS is not high. According to homophily
hypothesis, the local proximity structure in the similarity relational graph has similar embedding after
preprocessing. Our proposed algorithm pre-processing combines the local proximity feature of the
network packet with the original features of the network packet as input to the Deep Auto-Encoder.
Our proposed algorithm is equivalent to the use of local proximity features of network packets to
enhance the original features of network packets. From Table 15, we can conclude that the performance
of the existing PCA-IDS 2017 [8] and RBM-IDS 2017 [7] depends on the features of manual experience
extraction. Our proposed algorithm uses graph representation learning for automatic preprocessing.
Therefore, our proposed algorithm is suitable for raw network traffic data. Table 16 compares the
latest graph representation of the similarities and differences between the learning algorithm and
our proposed algorithm. Deepwalk [20] and Node2vec [10] are easy to sample into the higher-order
proximity range, which make it impossible to accurately describe the low proximity features of the
current node; LINE [21] does not have the ability to simultaneously sample first-order proximity and
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second-order proximity, so the algorithm has limitations; Our proposed algorithm has the ability to
extract first-order proximity, second-order proximity, and low-order proximity. This is the first time in
the intrusion detection to extract features using the graph representation leaning algorithm.

We have increased the analysis of the effect of random walk length on the running time cost of
the algorithm. Intuitively, the length of the random walk is proportional to the runtime overhead of
the proposed algorithm. The length of a random walk is the number of times the next node needs to
be selected during a random walk. The transition probability needs to be calculated each time the next
node is selected during a random walk.

Future research work mainly considers two aspects, including intrusion detection [50,51] with
a small number of network packet labels [52–54] and intrusion detection for unknown malicious
traffic [55]. The purpose of intrusion detection with only a small number of network packet labels is
to build a security baseline based on the full use of existing small amounts of label data. Intrusion
detection of unknown malicious traffic is very important in practical applications. We will continue to
research the application of deep neural networks in the IDS field with the hope of further improving
the IDS performance.

Table 15. Comparison with Other Published Unsupervised Intrusion Detection Algorithms (%).

Algorithms Raw Traffic
Adoptation

Relational Features
after Preprocessing

Automatic
Feature Extraction

Manual Experience
to Extract Features

PCA-IDS 2007 [8] X
RBM-IDS 2017 [7] X X

Deep AE-IDS 2018 [9] X
Node2vec -AE (proposal) X X X
Packet2vec -AE (proposal) X X X

Table 16. Comparison with Other Published Graph Representation Learning Algorithms (%).

Algorithms First-Order
Proximity

Second-Order
Proximity

Low-Order
Proximity

Usability
for IDS

Usability for
Network Packet

Feature Extraction
Deepwalk [20] X

LINE [21] X X
Node2vec [10] X

Node2vec-AE (proposal) X X X
Packet2vec-AE (proposal) X X X X X

6. Conclusions

In this paper, packet2vec learning algorithm is used to preprocess the network packet to obtain
local proximity features that describe the similarity relationship between network packets. The local
proximity features of the network packets are combined with the original features as the input of
the deep auto-encoder for intrusion detection. The experiment proves that our proposed algorithms
achieve higher accuracy than three of the state-of-the-art algorithms. In addition, it can be concluded
from the experiment that the empirical formula, i.e., the pruning threshold ε ≈ the mean of weights
in G′ − depth′ * penalty value η, can be used to calculate the approximately optimal penalty value
η. The optimal penalty value η is used to constrain the random walk range to extract features that
accurately describe the local proximity of the network packet. Finally, these features are used to achieve
optimal performance of IDS. In the best case, the accuracy, the detection rate, the precision, and the
F1 of packet2vec-AE are up to 94.7%, 90.9%, 94.3%, and 92.6%, respectively. In the worst case, the
accuracy, the detection rate, the precision, and the F1 of packet2vec-AE reached 87.4%, 81.1%, 87.3%
and 84.1%, respectively. In the worst case, the proposed algorithm still achieves higher accuracy than
three of the state-of-the-art algorithms.
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