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Featured Application: The analyzed technique allows the estimation of parameters of small
objects from SPECT volumes. Data analysis was based on Particle Swarm Optimization that
reduces error between assumed model and measurements. Analysis by Synthesis was used for
the estimation of parameters.

Abstract: The paper introduces a fitting method for Single-Photon Emission Computed Tomography
(SPECT) images of parathyroid glands using generalized Gaussian function for quantitative
assessment of preoperative parathyroid SPECT/CT scintigraphy results in a large patient cohort.
Parathyroid glands are very small for SPECT acquisition and the overlapping of 3D distributions was
observed. The application of multivariate generalized Gaussian function mixture allows modeling,
but results depend on the optimization algorithm. Particle Swarm Optimization (PSO) with global
best, ring, and random neighborhood topologies were compared. The obtained results show benefits
of random neighborhood topology that gives a smaller error for 3D position and the position
estimation was improved by about 3% voxel size, but the most important is the reduction of processing
time to a few minutes, compared to a few hours in relation to the random walk algorithm. Moreover,
the frequency of obtaining low MSE values was more than two times higher for this topology.
The presented method based on random neighborhood topology allows quantifying activity in a
specific voxel in a short time and could be applied it in clinical practice.

Keywords: parathyroid glands; SPECT; volumetric data processing; estimation; Particle Swarm
Optimization
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1. Introduction

Parathyroid glands are located on the posterior surface of both thyroid lobes. They are represented
by two pairs of structures: upper and lower parathyroid glands with oval shape on 2D images or
ellipsoid shape in 3D volume. The size of parathyroid gland varies between 2 and 8 mm in length.
There are four typically located glands in the majority (80–97%) of healthy humans, but there are
various exceptions in number and location [1]. In the literature cases of up to 12 glands per patient
were reported [2].

The main function of parathyroid gland is the maintenance of body’s calcium and phosphate levels
and it is achieved by the production of parathyroid hormones (PTH) [3]. In parathyroid disorders,
depending on etiology, uncontrolled growth of parathyroid gland or hyperplasia of all parathyroid
glands with transition into adenomas is observed [4–6].

Surgery remains the main treatment option, and it is a relatively simple procedure if the location
of parathyroid pathology is previously known. The main challenge is the preoperative localization
of parathyroid pathology. Ultrasonography [7,8], magnetic resonance imaging (MRI) [9], computed
tomography (CT), and scintigraphy [10] are used as preoperative imaging techniques. Modern
imaging approaches use Single-Photon Emission Computed Tomography (SPECT) or Single-Photon
Emission Computed Tomography combined with Computed Tomography (SPECT/CT) [11,12] for
improved localization.

Ultrasonography remains the first-line parathyroid imaging technique due to low cost, good
availability, lack of radiation, quickness of the procedure, and high anatomical detail. However,
the method is operator-dependent. 99mTc-MIBI Planar and SPECT/CT with low dose protocol is usually
the second-line technique. The method is not widely available, more expensive, time-consuming,
and involves radiation exposure. It provides data about the metabolic activity of the hyperactive
parathyroid gland [12]. Combination of SPECT and low dose CT enables the anatomical localization
and good surgery results. According to the literature, sensitivity of 100% was achieved in patient-based
analysis. However, in the analyzed group of patients, the lesions volume was considerably large with
mean 3D volume 1.2± 0.1 cm3 [13]. As a next step to reduce radiation exposure for patients and
staff during SPECT/CT study, there was an attempt of 80% reduction of the administered activity.
In the opinion of authors of the presented paper, phantoms test should be performed to prove the
applicability of the approach [14].

Traditional contrast-assisted CT is rarely used as a single modality. It is very helpful for surgeons
as it provides an excellent anatomical map, yet there are disadvantages such as high radiation exposure.
The data regarding sensitivity are shown in Table 1 [15].

Table 1. Sensitivities of preoperative imaging.

Preoperative Imaging Ultrasonography Planar Scintigraphy SPECT/CT 4D-CT MRI

Sensitivity 80–90% 44–88% 93% 88–92% NA *

* Usefulness of MRI is controversial as motion artifacts may occur from swallowing and respiration as a resut
of long scan times.

Specifity and sensitivity of the SPECT imaging of parathyroid gland depends on scintigraphy
protocol [16–18].

F18–Choline PET/CT is a novel method which might be an alternative for 99mTc-MIBI in view
of better spatial resolution, allowing detection of smaller lesions. To date, the method has not been
widely used because of its cost [19].

SPECT allows metabolic analysis of lesions and CT helps with anatomic localization [20–22].
The tracer used for localization of hyperfunctioning parathyroid gland/glands before the first surgery
is lipophilic cation complex (MIBI: methoxy–isobutyl–isonitrile) labeled with pertechnetate—99mTc
(gamma emitter with a half-life of 6 h, decays by isomeric transition to technetium-99). The factor
determining tumor cell uptake of 99mTc-MIBI is a strong electrostatic attraction between the (+) charged
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MIBI molecule and negatively (−) charged mitochondria [23]. The tracer is actively taken up and
stored in the mitochondria. The accumulation of the tracer is more pronounced and lasts longer in
hyperactive parathyroid tissue than in the surrounding thyroid tissue [10,24]. SPECT enables analysis
of changes in parathyroid gland activity over time (early and delayed phases) [25].

The acquisition parameters of SPECT with gamma camera are INFINIA Hawkeye 4 (GE
Healthcare), collimator: Low Energy High Resolution, number of projections: 60, static scan, matrix:
128× 128, zoom: 2, time per projection: 20 s, pixel sizes: 2.1 mm, 1.6 mm; the low dose CT was used to
create attenuation maps. The image reconstruction parameters of SPECT with usage of the Xeleris,
version 2.17, reconstruction method: OSEM, reconstruction ramp filter: Qurecon Quant, prefilter Hann
(0.9), 3D postfilter Hann (0.9; 10.0), number of iterations: 2, subsets: 10. Patients were examined with
planar and SPECT/CT parathyroid scintigraphy following intravenous administration of 99mTc-MIBI
762± 60.7 (range: 600–850) MBq with “wash-out” technique (dual-phase, single-tracer). The early
phase (EP) started no later than 10 min after administration of the tracer, and the delayed phase (DP)
was performed 127± 28 min later. Exported SPECT volumes used 2.209030 mm pixel spacing for all
3D directions.

Automatic analysis of achieved volumes after the manual preselection of Volume of Interest (VOI)
is possible using numerous computational approaches, but the quality of parameter estimation is the
most important factor. Different criteria could be used for quality analysis. The difference between real
and estimated volume could be analyzed using global parameters such as mean squared error (MSE),
but positions and amplitudes of components after the separation are much more interesting from a
medical analysis point of view. They are related to activities of small scale regions. Our database has
two: EP and DP measurements. The achieved parameters are important for the research purposes
of the project, because the results of mathematical quantification are tailored to the specific medical
context of 332 patients examined with preoperative parathyroid SPECT/CT (“wash-out” technique)
scintigraphy. Apart from SPECT/CT scintigraphy, the collected data set encompasses biochemical
blood results (plasma PTH concentration, ionized calcium and inorganic phosphate concentrations),
blood genotyping results (genotyping the cohort of patients for MDR1 (ABCB1) and MRP1 (ABCC1)
genes, probably responsible for different radiotracer kinetics in two phases of SPECT/CT scintigraphy
in different individuals), results of additional planar parathyroid scintigraphy and ultrasonography of
the neck. The main problem to solve for our project is the influence of genetic factors which may be the
reason for different behavior of 99mTc-MIBI in preoperative scanning [26]. In addition, a quantitative
approach to SPECT uptake was taken into consideration. Finally, 70 patients underwent surgery and
histopathological examination was performed. The exact information about the number of counts
in particular VOIs are used to find the relation between pathology of proven tissue samples and
clinical background.

1.1. Contribution and Content of the Paper

The distribution of parathyroid glands in SPECT volume varies in patients. There are numerous
problems for manual or automatic determination of spatial properties of parathyroid glands:

• SPECT images are very noisy and low-pass filtering leads to blurred images with loss of
some details.

• Planar images are straightforward for analysis, but few details are lost due to single view projection
as detail overlapping occurs.

• Volumetric images are difficult to analyze for a human operator due to small and low
contrast objects.

• Numerous details are recognized after careful examination of SPECT volume, but the automatic
estimation of parameters is necessary.

Available techniques for the improvement of visual inspection of parathyroid glands include:
dedicated extended color palette, small VOI selection using sphere, and background threshold-based
rejection [27]. The most crucial problem is the analysis of cases where parathyroid glands with small
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distances between them are observed. Observed local maxima in the SPECT volume are dispersed as
3D distributions, therefore overlapping occurs. Automated estimation of parameters for distributions
could be valuable for research purposes and further design of a Computer-Assisted Diagnosis system
(CADx). This paper assumes the Analysis by Synthesis approach with the use of a complex model and
determination of unknown parameters by the application of particle swarm optimization (PSO) [28–30].

Real SPECT measurements were used for the determination of model type and approximate value
ranges. In this paper, SPECT patient data was deliberately not used, because the quality of estimation
cannot be calculated this way. An alternative approach that was proposed in [31], which is based on
a comparison of synthetic volume, and achieved from an estimation algorithm (synthesized) is the
only possible method for the proper evaluation of the optimization algorithm. Such an approach with
the use of Monte Carlo sampling allows the determination of estimation quality parameters. This is a
very challenging task since small volumes with significant overlapping are difficult to analyze due to
nonlinearity and large number of local minima. The considered approach allows parallel processing to
achieve a reasonable processing time.

Synthetic data sets used in this work are described in Section 2. The method for the estimation of
parameters is described in Section 3. Comparative results, based on Monte Carlo tests for proposed
PSO are presented in Section 4. The discussion is provided in Section 5. Final conclusions and further
work are presented in Section 6.

1.2. Related Works

The idea of estimation of parameters using a model is a well-known approach used for speech
perception by machines (Analysis by Synthesis, A-by-S) [32] that was proposed in the late 1950s.
The availability of sufficient processing power allows the application of this technique for complex
images [33], like human faces [34].

The approach, proposed in [31], assumes modeling of parathyroid glands using multivariate
generalized Gaussian function mixture. Standard Gaussian function is not feasible for the modeling
because shape control is not available. Generalized Gaussian function (GGD—Generalized Gaussian
Distribution with sharpness control parameter, known also as a version 1 [35]—there is also version 2
with skew control parameter) and an optimization process using random walk were tested [31].

Gaussian mixtures are well known and have numerous applications [36–39]. One of the most
important factors when applying PSO is the selection of topology responsible for sharing information
among neighbors during the optimization [40,41]. Three topologies were tested: global best (gbest) [42],
ring [43], and random [44]. The selection of topology results in convergence and achieved final error
value (quality of estimation).

2. Data

Two types of data were considered: real volume and synthetic volume used in Monte Carlo test.
Exemplary real volume was tested in this paper for illustrative purposes (Figure 1).

Proper 3D view with enhanced contrast and color allows visual inspection of parathyroid glands
and some details of the structures are visible, including local maxima [27]. Maximal Intensity Projection
(MIP) is used for the visualization of SPECT [45–47]. This solution indicates details such as local
maxima of SPECT that are not visible for Average or Composite Intensity Projections [47] and removes
artifacts from distant regions not related to parathyroid glands by the application of spherical region
of interest [27]. Additional threshold for removal voxels with values below specified value improves
visibility of region with parathyroid glands (Figure 1 right) [27]. This volume has complex structure
and shows the importance of multiparameter mixtures for analysis.

Automated analysis is required for the estimation of parameters because the selection of 3D view
parameter is not sufficient and is a time-consuming task. It could lead to human operator induced
error, therefore automated volume analysis is very important for achieving reliability.
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Figure 1. Fusion coronal image of Single-Photon Emission Computed Tomography combined with
Computed Tomography (SPECT/CT)—a lesion with slightly increased uptake in a lower left pole of
thyroid gland corresponds with abnormal parathyroid gland (left). 3D view of parathyroid glands
(right, SPECT only).

Synthetic volumes that are generated from the model are used in this work for the evaluation
of the estimation algorithm and allow testing and validation of estimated properties for different
algorithms [31]. The assumed volume is 32× 32× 32 voxels (cells) in size and was selected based on
observation of real SPECT volumes. Such size (power of two) is also important for code and memory
accesses optimization. The estimation of parameters for three additive distributions (components)
was tested and it was assumed that number of distributions was known. The Monte Carlo approach
was used for the testing of performance using random number generators. There were 15,000 test
cases for global best, ring, and random neighborhood topologies each. There were 32 particles and 500
iterations steps of PSO that were selected arbitrarily after pretests.

Synthetic volumes allow testing of the estimation algorithm quality. Noiseless volume is smooth
and depends on filtering algorithms and parameters during volume reconstruction. Adding noise
to synthetic volume allows testing the algorithm with higher independence on the selection of
filtering algorithms and filtering parameters used in volume reconstruction (acquisition) process.
Low-pass filtering smooths volume, reduces contrast, and blurs edges. Adding noise to synthetic
volume allows extending testing boundaries of the tested algorithm. It improves the testing reliability,
because it reduces dependence on the filter settings.

Separation of left and right parathyroid glands is usually straightforward. The problem is the
overlapping of multiple structures in SPECT images for left or right side. The model-based approach
allows algorithm testing using smooth (ideal, without noise) volumes as well as noised volumes, such
as in the examples shown in Figure 2. Noised volumes are achieved using additive Gaussian noise
with mean zero and unit standard deviation. Testing separation algorithms with noises even higher
then observed typically allows determination of properties and comparison of further selections in
CADx applications.

7 9 11 13 15 17 19 21 23

Figure 2. Exemplary slices from synthetic volume (there are three overlapping additive components).
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3. Method

3.1. Model for Analysis by Synthesis Using Gaussian Mixture Model

This method was chosen because of previous experiments related to true volumes of parathyroid
glands [31]. It was found that the estimation of 3D position, amplitude, orientation, and scale is not
sufficient. The problem is related to slight deviation of shape so Multivariate Generalized Gaussian
Function Mixture was proposed [31]. Generalized Gaussian Distribution (GGD) supports additional
parameters for the control of shape, and GGD version 1 function was selected with single parameter.
It is possible to use three values of shape control, individual for each direction, but a simpler case
was selected. A single function has 11 parameters: 3D position (3 parameters of position vector),
3D orientation (3 parameters of orientation vector), amplitude (1 parameter), 3D directional scale
(3 parameters of covariance vector), and GGD shape (1 parameter). The parameter estimation of
this search process was performed using real values, not integers, particularly for the position vector.
Volumetric data of parathyroid gland are not a single maximum function, therefore 11 parameters
are insufficient. The mixture approach extends the number of parameters and is efficient if particular
components of a mixture describe data in different volume areas.

The single generalized Gaussian function is

f (.) = A exp

(
−
(

1
2

v′Σ−1v
)β
)

. (1)

Amplitude value A consists of amplitude and scaling factor with gamma function. The shape
control is possible by the β parameter. The value is β = 2 for the normal Gaussian function and β = 1
for Laplace function (distribution).

The position is defined as a vector v:

v =

 x−mx

y−my

z−mz

 , (2)

where mx, my, and mz are parameters of the center of this function.
Orientation and scale for 3D function requires a covariance matrix Σ that is 3× 3 in size. The most

convenient solution is the calculation of this matrix using the following formula,

Σ = RSSR−1, (3)

because orientation and scale parameters are available directly in the following matrices,

S =

 sx 0 0
0 sy 0
0 0 sz

 , (4)

Rx =

 1 0 0
0 cos(θx) − sin(θx)

0 sin(θx) cos(θx)

 , (5)

Ry =

 cos(θy) 0 sin(θy)

0 1 0
− sin(θy) 0 cos(θy)

 , (6)
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Rz =

 cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 , (7)

R = RzRyRx, (8)

that are essential for the estimation of parameters for orientation θx, θy, θz and scale sx, sy, sz. Single
function f (x, y, z, pi) allows the synthesis of single 3D function by regular sampling, using x, y, z
sampling position for particular vector of parameters pi:

pi = (mx, my, mz, θx, θy, θz, sx, sy, sz, A, β). (9)

3.2. Dimensionality of Model

Multiple Generalized Gaussian Functions are additive, so the final distribution used during the
synthesis is

f (x, y, z) =
N

∑
i=1

fi(x, y, z, pi), (10)

where N is the number of functions. This parameter is unknown, and could be obtained using
observation of volume by human operator of CADx system or automatically using additional high-level
optimization algorithm. In this work we assumed N = 3 for the evaluation of optimization algorithm.

3.3. Optimization Algorithm and Implementation

The task of optimization is described by the following formula,

P = arg min ∑
x,y,z∈M

(
X (x, y, z) −

N

∑
i=1

fi(x, y, z, pi)

)2

, (11)

where P is the matrix of parameters, pi is the vector of parameters, and fi a set of Multivariate
Generalized Gaussian Function Mixture functions and X is measured volume. MSE (Mean Squared
Error) is reduced using this formula. There are 11 of parameters for single i. There are 33 unknown
parameters for this model (11 · N). A previous work [31] was based on mean absolute error (MAE).

Different optimization algorithms are available and for this project PSO was selected [48], as it is
a derivative-free optimization algorithm. The main task of optimization algorithm is the separation
of maxima.

Random walk based algorithm, proposed in [31], allows the estimation of parameters, but
convergence is slow. Random walk algorithm could be considered as a single particle algorithm.
The application of multiple particles in PSO provides the possibility of testing a volumetric region at
one iteration step with the interactions between particles (swarm behavior), which is promising for
global minimum search.

The optimization process uses a single CPU (Central Processing Unit) core. The matrix algebra
applied for the synthesis of the volume uses Armadillo library [49]. PSO code [50] was modified for the
application of constrained optimization and there are two types of constraints that should be applied
for particular parameters:

• selected by range and
• folded with range.

The considered model requires both approaches, and there are 8 regular range constraints and 3
folded range constraints.

Folded range constraints are related to angles only. The application of regular range constraints
for angles leads to a few times slower convergence due to the problem of orientation switching near
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0 (360) region. Folding allows the smooth transition in 0 (360) degree value region. All ranges are
presented in Table 2.

Table 2. Ranges used for parameters.

Parameters Minimal Value Maximal Value Type

mx, my, mz
1
4 B 3

4 B selected by range

θx, θy, θz 0 360 folded by range

sx, sy, sz 5 10 selected by range

A 5 20 selected by range

β 0.5 1.5 selected by range

Where B is the side of volume (B = 32). Centers of functions are not placed near volume
boundaries, because such cases are related to wrong selection of VOIs. Angles folding could be further
reduced to the 0 to 180 range due to rotational symmetry of ellipsoid. The value range for β prefers
Laplace function and it was intentionally selected, because peak is observed in real measurement.

Random selection of parameters could lead to degenerate cases with two overlapped functions
with i and j indexes, if their position is too close: (mi

x ≈ mj
x) ∧ (mi

y ≈ mj
y) ∧ (mi

z ≈ mj
z). So as to

prevent generation of such cases, as they are are impossible to solve, testing of minimal positional
distance for each pair of functions was performed. The minimal Euclidean distance 3 was obtained by
checking of numerous real SPECT volumes.

Original PSO code uses normalized range values (0–1) and the denormalization of values of p
vector is required according to Table 2 during the volume synthesis.

Three types of topology are supported in PSO implementation: global best, ring, and random
neighborhood [50]. Additional parameters specific to topologies are also available in source code [50].

4. Results

4.1. Exemplary Result for Real Parathyroid Glands

Real parathyroid glands are processed using the proposed approach as an illustrative example
and selected slices are shown (Figure 3). The achieved results are shown for global best ring topology.
The computation time was ~4 min for single test using the AMD Ryzen 7 2700 processor 3.2 GHz
(8-cores), 2133 MHz DDR4 16 GB RAM, Samsung SSD 960 Evo, and Debian 9 Linux distribution.

The proposed approach uses optimization techniques, therefore the question of convergence
arises. Global minimum is not achieved in all cases, which is typical for complex optimization
problems [51,52]. The analysis of convergence is possible with the use of the Monte Carlo test. This test
assumes multiple repetition of optimization for random starting parameters. A histogram of MSE
is shown in Figure 4. The number of iterations is limited, because infinite iterations correspond to
testing all possible cases. Single value of MSE should be achieved if the global minimum is found and
that is indicator of the optimality. Different values that could be depicted in the compact form using
histogram means that there are local minima, so parameter values are not equal. This test allows the
testing of coupling between parameters. Independent parameters lead to simple optimization problem
for random starting point of optimization. Such independence gives quick convergence to identical
final results that is global minimum, because independent parameters are optimized independently.
Histogram for such a case is the single value of error. Dependent parameters introduce complex
relation between them so error space is very complicated with a lot of local minima. Histogram of
optimization after finite number of iterations is multivalued.
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Figure 3. Exemplary slices for a real SPECT measurement with parathyroid glands (top) and estimated
volume for the proposed method (three bottom rows show components of estimated volume).

Figure 4. Mean square error (MSE) histogram of Monte Carlo test for real parathyroid glands.

4.2. Results of Monte Carlo Test

The achieved result for a particular case is a set of parameters: 3 × 11 and MSE value.
The comparison of known and estimated functions requires proper pair assignment. Wrong assignment
leads to the comparison of different functions located in different parts of volume and increased
error. Global optimization with the use of exhaustive search is used as an assignment algorithm
and all variants are tested. There are six possible variants for assignment that are shown in Table 3.
The selection of best assignment is the MSE optimization task related to 3D positions of functions.



Appl. Sci. 2019, 9, 4511 10 of 18

Table 3. Possible assignments (p denotes known parameters of function f ; p̂ denotes estimated
parameters of function f̂ ).

No. 1’st Pair 2’nd Pair 3’th Pair

1 (p1, p̂1) (p2, p̂2) (p3, p̂3)
2 (p1, p̂1) (p2, p̂3) (p3, p̂2)
3 (p1, p̂2) (p2, p̂1) (p3, p̂3)
4 (p1, p̂2) (p2, p̂3) (p3, p̂1)
5 (p1, p̂3) (p2, p̂1) (p3, p̂2)
6 (p1, p̂3) (p2, p̂2) (p3, p̂1)

Mean errors (mean Euclidean error between known and estimated value of 3D distributions)
allow comparative analysis of results of different topologies. Error values are related to Table 2
parameters. Box-and-whiskers plots for different ranges of parameters enable the analysis of stability
of achieved results and help to examine biases introduced by particular topology. Mean value is the
indicator of typical error value (depicted as circle with point inside), and standard deviation shows
information about distribution of error (depicted as bold vertical line). Outliers are also important
in this analysis, and they are depicted using a thin vertical line, so minimum and maximum values
are shown. Particular values are tested for the arbitrary selected ranges. Such approach allows the
analysis of possible biases that are mean shifts and the reference level is zero error value.

The relation of absolute errors, amplitude, and a few selected parameters (position, scale, and β)
are shown in Figures 5–7, respectively.

Figure 5. The relation of absolute mean amplitude error and absolute mean position error.

Figure 6. The relation of absolute mean amplitude error and absolute mean scale error.
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Figure 7. The relation of absolute mean amplitude error and absolute mean β error.

4.3. Analysis of Distributions Related to Errors

A two-sample Kolmogorov–Smirnov test was applied for the analysis of error distributions.
There are three pairs related to the combinations of topologies: (global best and random), (random
and ring), and (global best and ring). For all considered distributions of errors the test rejected
the null hypothesis at the 5% significance level that the data in vector pairs are from the same
continuous distribution.

The test was applied for comparison of errors obtained in cases with noise and without noise.
The results are shown in Table 4.

Table 4. Two-sample Kolmogorov–Smirnov tests: ideal and noised volumes (0—rejection of the
null hypothesis).

Error Type Topology Kolmogorov–Smirnov Test Result

Mean position global best 0
Mean position ring 0
Mean position random 1

Mean amplitude global best 0
Mean amplitude ring 0
Mean amplitude random 1

Mean angle global best 0
Mean angle ring 0
Mean angle random 0

Mean scale global best 0
Mean scale ring 0
Mean scale random 0

Mean β global best 0
Mean β ring 0
Mean β random 0

The obtained distribution could also be compared using the above mentioned test (Table 5).

Table 5. Two-sample Kolmogorov–Smirnov test for comparison distributions (0—rejection of the
null hypothesis).

Error Type Without Noise With Noise

Mean position: global best—ring 1 1
Mean position: global best—random 1 1

Mean position: ring—random 1 1

Mean amplitude: global best—ring 1 1
Mean amplitude: global best—random 1 1

Mean amplitude: ring—random 1 1
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Table 5. Cont.

Error Type Without Noise With Noise

Mean angle: global best—ring 1 1

Mean angle: global best—random 1 1
Mean angle: ring—random 1 1

Mean scale: global best—ring 1 1
Mean scale: global best—random 1 1

Mean scale: ring—random 1 1

Mean β: global best—ring 1 1
Mean β: global best—random 1 1

Mean β: ring—random 1 1

5. Discussion

The analysis of the example with real parathyroid glands shows rather good convergence of the
PSO algorithm (Figure 4). It is not possible to achieve a zero value of MSE because of noise and because
there are differences between the model and measurements of the real biological object. The minimal
value is about 0.4 and 57% cases achieved ≤0.55 MSE values. Sometimes high values such as >2 are
achieved and the solution for the improvement of results is the repetition of the estimation a few times
for random starting parameters and the selection of the best result using minimal MSE value criterion.
Multivalue histogram is an indicator of dependence between parameters and limits possibilities of
reliable visualization of results for particular parameter, due to dependence between them. This is the
reason why MSE values are presented in this paper.

Slices (Figure 3) show the achieved separation of components. Maxima are located in different
positions. The last component is spherical and two components are volumetric ellipsoids.

The Monte Carlo test showed the most important result: the random topology was better in
this application, because the particular distribution was shifted to the left (Figures 8–11 left) and
a higher peak was observed for lower error values (Figure 8 left). The MSE histogram (Figure 12)
demonstrated the advantages of random topology because lower MSE values were achieved more
frequently (approximately two times more often).

Figure 8. Distributions of mean position errors (left) and box-and-whiskers plot of absolute position
errors dependent on true position ranges (right).

The mean shift was ~1 (voxel size) (Figure 8 left), so relative improvement was ~3% for the
assumed size of volume. Global best and ring topologies gave similar results. This result shows
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the importance of the selection of proper topology for further processing of real data. All analyzed
methods introduced some bias for boundary ranges of particular parameters: position, amplitude,
and β (Figures 8, 9, and 11, right). Higher standard deviation was also observed. The exception was
scale (Figure 10) with bias value in the middle of tested ranges. These results show importance of the
assumed analysis of parameters for selected ranges. Without such analysis errors are merged to single
distribution with high standard deviation. Particular distributions of error are with biases but small
standard deviation. Further analysis of biases is important for the analysis of optimization algorithm,
because desired value is zero, even if bias value is relatively very small. Analysis of distribution of
biases is the possible starting point for further improvement of algorithm, because known global
minimum is not achieved. Low values of standard deviation is the indicator of good convergence and
achieving a local minimum near a global minimum.

Figure 9. Distributions of mean amplitude errors (left) and box-and-whiskers plot of absolute
amplitude errors dependent on true amplitude ranges (right).

Figure 10. Distributions of mean scale errors (left) and box-and-whiskers plot of absolute scale errors
dependent on true scale ranges (right).
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Figure 11. Distributions of mean β errors (left) and box-and-whiskers plot of absolute β errors
dependent on true β ranges (right).
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Figure 12. Histogram of MSE.

Achieved distributions are quite smooth for the selected resolution of error value (Figures 8–11
left), so the number of iterations assumed in Monte Carlo test is correct.

The comparisons of absolute errors between amplitude and position, scale, and β are shown
in Figures 5–7. There are significant differences between different topologies in such relations.
Absolute mean amplitude error and scale were not correlated (Figure 6). Small positive correlation (but
nonlinear) was found for absolute mean amplitude error and absolute mean position error (Figure 5).

The analysis of particular parameters due to estimation errors was also important. The selection of
random topology based on MSE was correct, but when it comes to estimation of particular parameters,
quality needs to be checked as well. The hypotheses about similarity of distributions for all topology
pairs were rejected (Table 5). The hypothesis about similarity of distributions cannot be rejected for
most results (Table 4).

The obtained means of position error values (3–6 voxels distance) are satisfactory results (Figure 8),
but the reduction of this error is still an interesting avenue of research. Mean amplitude errors and
mean scale errors are quite similar visually, but the Kolmogorov–Smirnov test rejects such hypothesis.
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Processing time is acceptable, further improvements are desired. Monte Carlo test is possible
using parallel computations, so each core is assigned its own optimization test. OpenMP will be
used for parallel computations in further work for the reduction of computation time for the analysis
of a single case. Parallel processing is possible using all cores as well as using multiple computers
and MPI (Message Passing Interface) [53]. OpenMP processing is another possibility for a single
computer [54]. CUDA (Compute Unified Device Architecture) [55] or OpenCL [56] implementations
could also be used.

One of the open questions is the quality of estimation for real data. Initial research [31] showed the
possibility of applying this model to real data, but very long processing time was the most important
drawback of the previous approach (a few hours, even with CUDA code). Now the processing time
was reduced to a few minutes, opening real possibilities of applying such a model and evaluating its
modified version. The processing time was reduced in this work by the application of PSO, but the
selection of the proper topology is important.

6. Final Conclusions and Further Work

The number of distributions in volume could be unknown in a real case and the determination
of this number is possible by the application of two strategies. The first strategy assumes exhaustive
search with independent processing of one, two, and three expected components of mixture. The results
are based on the achieved error, and the minimal value selects the set of parameters as well as the
number of components. The second strategy assumes single optimization process with dimensionality
switching so that the number of components (dimensions) is variable—components are added or
removed dynamically.

The improvement of computation time is still important, e.g., with the use graphics processing
unit (GPU) or multiple computers, but the achieved results offer the possibility of investigating real
parathyroid glands, a matter that could be investigated in further works.

The described method allows calculating a tracer activity in small lesions. It applies,
mainly, to secondary hyperparathyroidism because the volume of lesions is lower compared
to primary hyperthyroidism. Parathyroid adenomas or hyperplasias, especially in secondary
hyperparathyroidism [8] could be assessed more precisely. There are examples of using the same
approach but on different organs in the literature [57–59]. There have also been first attempts at
quantitative calculation of parathyroid adenoma in SPECT/CT [60]. An alternate method (NM
Quantification Q.Metrix for SPECT/CT Package [61]) has been shown to validate the quantitative
assessment of preoperative parathyroid SPECT/CT scintigraphy results in a new approach with
standard uptake value (SUV). The technique is described as a promising tool to improve diagnostic
accuracy of 99mTc-Sestamibi in localizing/lateralizing the parathyroid adenoma. Incidentally, it can be
quite interesting to compare both methods in future.

The concept of precise or personalized medicine (PM) is currently a subject of considerable
debate. As it is stated in the editorial commentary of the European Journal of Nuclear Medicine
and Molecular Imaging, “the concept of PM, prevention and treatment strategies taking into account
individual variability, might be strictly related to molecular imaging and nuclear medicine, through
understanding the molecular basis of disease and defining molecular changes or markers associated
with disease progression, response to treatment, and relapse” [62]. This statement, though limited
to the diagnostic approach, closely corresponds with the approach presented here. Development of
PM would be hindered without SPECT quantification as is it is a routine approach for PET/CT [63].
We hope that this paper adequately addresses the challenges of PM.
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