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Abstract: AutoDock and Vina are two of the most widely used protein–ligand docking programs.
The fact that these programs are free and available under an open source license, also makes
them a very popular first choice for many users and a common starting point for many virtual
screening campaigns, particularly in academia. Here, we evaluated the performance of AutoDock
and Vina against an unbiased dataset containing 102 protein targets, 22,432 active compounds and
1,380,513 decoy molecules. In general, the results showed that the overall performance of Vina and
AutoDock was comparable in discriminating between actives and decoys. However, the results varied
significantly with the type of target. AutoDock was better in discriminating ligands and decoys in
more hydrophobic, poorly polar and poorly charged pockets, while Vina tended to give better results
for polar and charged binding pockets. For the type of ligand, the tendency was the same for both
Vina and AutoDock. Bigger and more flexible ligands still presented a bigger challenge for these
docking programs. A set of guidelines was formulated, based on the strengths and weaknesses of
both docking program and their limits of validation.

Keywords: AutoDock 4; AutoDock Vina; molecular docking; CADD; virtual screening; computational
chemistry

1. Introduction

The use of computational methods is a crucial part of the drug discovery, development, and
optimization process. Protein–ligand docking and virtual screening are two of the most used techniques
in this field that continue to show promise in hit identification and subsequent optimization [1]. They
are also helpful tools for drug repositioning [2–4]. These methods are effective and fast, and allow
researchers to evaluate large virtual databases of molecular compounds as a first attempt to guide the
selection of more limited sets of compounds for experimental testing. They do, however, possess few
limitations [5,6].

Protein–ligand docking is a computational technique that predicts the conformation and orientation
(pose) of a ligand when it is bound to a given protein [1,7–12]. With this method, the ligand-target
interactions are modeled to achieve an optimal complementarity of steric and physicochemical
properties [13]. This methodology has made possible the visualization of the potential interactions
between a ligand and its target [14].

Docking, however, still faces difficulties, particularly regarding the correct modeling of ligand
and protein flexibility [15–18] and of water-mediated interactions [18,19]. It is widely used for
small molecules, but its use for small peptides and other larger biomolecules has only been under
development in the last decade [20–22].

Typically, the docking software is an interplay between the search algorithm, which explores and
generates different poses of the ligand, and the scoring function, which estimates the binding affinities
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of the poses previously created, discriminating between the best and not so good alternatives [1,5].
This estimate, which in some cases is a prediction of the free energy of binding, must be able to
discriminate between molecules that bind to the target and those that do not [23]. When looking at the
two enantiomers, for example, it is still not possible to identify the most active form with most of the
scoring functions used by the most common docking software [24].

Even with all the significant improvements in computational power and docking software,
considering all interactions that happen when a ligand binds to its target is an extremely challenging
task. In order to be rigorous, the scoring functions would have to be much more complex, involve
quantum calculations and, thus, these assays would turn out to be considerably expensive and
time-consuming. When applying a virtual screening protocol, one wishes to screen very large
databases of compounds in a relatively small period of time and, therefore, scoring functions are often
simplified to improve the speed and cost of the computational screenings [6]. These simplifications
come with a cost in accuracy, which might not be problematic for one ligand-target situation but takes
a much more challenging scope when talking about virtual screening of thousands or millions of
compounds [5].

The goal of virtual screening (VS) is to guide the selection of molecules for experimental testing.
In these assays, millions of compounds are docked into one specific target and only a selection of
the top scores proceeds for experimental testing. If a scoring functions fails to identify a potential
strong binder, then, it remains hidden among those million compounds, despite their pharmacological
potential. In fact, that is one of the main problems in VS, the false negatives, or molecules that the
docking fails to identify as strong ligands. False positives are also a problem, that is, molecules that
are incorrectly identified as strong binders. These molecules, however, are easily discarded in the
preliminary experimental assays [25].

It is, however, difficult to compare the performance of different docking alternatives because each
software handles the target and ligand in different manners. Additionally, it has been shown that
the docking and VS results vary according to the type of target and ligand molecule [26–30]. In this
study, two of the most commonly used docking tools—AutoDock (version 4.2.6) and Vina (AutoDock
Vina)—were evaluated for different types of targets and ligands, using an unbiased reference validation
set—Directory of Useful Decoys–Enhanced (DUD–E) [31]. Both docking programs are widely used to
this day, for a large diversity of targets and problems [32–39].

AutoDock 4 is a well-known docking program developed by Morris and co-workers [40–43] at the
Scripps Research Institute. Its free availability to academic users, together with the good accuracy and
high versatility shown, had made it a very popular first choice for new users and have contributed to
a widespread use of AutoDock, well portrayed in its impressively high number of citations. AutoDock
4 offers a variety of search algorithms and a scoring function that is based on a linear regression analysis,
the Assisted Model Building with Energy Refinement (AMBER) force field, and a large set of diverse
protein–ligand complexes with known inhibition constants. The program could be used with a visual
interface called AutoDock Tools (ADT) which ensures an efficient analysis of the docking results.

AutoDock Vina [44–46] is a docking program developed by Trott and Olson also at the Scripps
Research Institute, La Jolla, California, following the success of previous AutoDock versions. Vina is
freely accessible to a large number of users, as it is open source. AutoDock Vina inherits some of
the ideas and approaches of AutoDock 4, but it is designed in a conceptually different way. It offers
significant improvements in the average accuracy of the binding mode predictions, while also being
up to two orders of magnitude faster than AutoDock 4. It also features new search algorithm and
a hybrid scoring function, combining empirical and knowledge-based scoring function. Its multi-core
capability, high performance and enhanced accuracy, ease-of-use and free availability have contributed
to an extremely fast dissemination through the docking community, well-portrayed in the high number
of citations of the original paper. Its high computational efficiency and ability to use multiple CPUs or
CPU cores also makes this program a competitive alternative for virtual screening.
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The Directory of Useful Decoys–Enhanced (DUD–E) [31] holds a collection of decoys and ligands
for benchmarking virtual screening, containing 22,432 active compounds and their affinities against
102 targets set by Huang et al. For each of the active compounds (i.e., the ligands), this database
contains a set of 50 “decoys”, i.e., molecules with similar 1-D physico-chemical properties to remove
bias (e.g., molecular weight, calculated LogP), but dissimilar 2-D topology to be likely non-binders,
i.e., inactives. These characteristics make DUD–E a challenging dataset to test scoring functions
and protein–ligand docking algorithms. Ideally, the perfect scoring function would rank the active
molecules higher than the decoys, but that is not often the case.

2. Materials and Methods

The performance of AutoDock 4 and Vina was measured using the Directory of Useful
Decoys–Enhanced (DUD–E). DUD–E contains a large collection of decoys and ligands that can
be used for benchmarking ligand/decoys discrimination in virtual screening tests. The DUD–E dataset
has been widely used to validate data from other open source such as Dock [47,48] and commercial
programs such as Gold, Glide, Surflex, and FlexX [48]. It is also frequently used to validate the
development of new consensus scoring functions [38,49–54].

An overview of the 102 protein-targets in DUD–E can be found in Figure 1, and Table 1 specifies
the types of protein targets and the number of ligands and decoys in the dataset. DUD–E contains
a wide variety of protein target types, including 26 kinases, 15 proteases, 11 nuclear receptors,
5 G protein-coupled receptor (GPCR), 2 ion channels, 2 cytochrome P450s, 36 other enzymes, and
5 miscellaneous proteins. About 18 of these proteins contain metal atoms, while the other 84 do not.
Proteases, kinases, and metalloenzymes are the largest groups present in the DUD–E dataset and
are the ones that were emphasized on in the discussion. We also included GPCRs, since this large
class of proteins was structurally very similar and was the focus of many other studies. The results
presented in this study here might guide the selection of the most adequate docking software for these
specific families.
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Table 1. Protein targets evaluated in this study as part of DUD–E with indication of the different classes
of targets considered.

Target Class DUD–E
Code

PDB
Code Protein Name Ligands Decoys Metal

cytochrome P450 CP2C9 1R9O Cytochrome P450 2C9 120 7446
CP3A4 3NXU Cytochrome P450 3A4 170 11,796

G protein-coupled
receptor AA2AR 3EML Adenosine A2a receptor 482 31,498

ADRB1 2VT4 Beta-1 adrenergic receptor 247 15,843
ADRB2 3NY8 Beta-2 adrenergic receptor 231 14,994
CXCR4 3ODU C-X-C chemokine receptor type 4 40 3406
DRD3 3PBL Dopamine D3 receptor 480 34,022

Ion channel GRIA2 3KGC glutamate receptor ionotropic AMPA2 158 11,832
GRIK1 1VSO glutamate receptor ionotropic kainate 1 101 6547

Kinases ABL1 2HZI Tyrosine-protein kinase ABL 182 10,750
AKT1 3CQW Serine/threonine-protein kinase AKT 293 16,426 Mn2+

AKT2 3D0E Serine/threonine-protein kinase AKT2 117 6893
BRAF 3D4Q Serine/threonine-protein kinase B-raf 152 9942
CDK2 1H00 Cyclin-dependent kinase 2 474 27,830

CSF1R 3KRJ Macrophage colony stimulating factor
receptor 166 12,144

EGFR 2RGP Epidermal growth factor receptor
erbB1 545 35,020

FAK1 3BZ3 Focal adhesion kinase 1 100 5350
IGF1R 2OJ9 Insulin-like growth factor I receptor 148 9291
JAK2 3LPB Tyrosine-protein kinase JAK2 107 6495
KIT 3G0E Stem cell growth factor receptor 166 10,447

KITH 2B8T Thymidine kinase 57 2850
KPCB 2I0E Protein kinase C beta 135 8692
LCK 2OF2 Tyrosine-protein kinase LCK 420 27,374

MAPK2 3M2W MAP kinase-activated protein kinase 2 101 6147
MET 3LQ8 Hepatocyte growth factor receptor 166 11,240

MK01 2OJG MAP kinase ERK2 79 4548
MK10 2ZDT c-Jun N-terminal kinase 3 104 6599
MK14 2QD9 MAP kinase p38 alpha 578 35,810

MP2K1 3EQH Dual specificity mitogen-activated
protein kinase 1 121 8147 Mg2+

PLK1 2OWB Serine/threonine-protein kinase 107 6797 Zn2+

ROCK1 2ETR Rho-associated protein kinase 1 100 6297
SRC 3EL8 tyrosine-protein kinase SRC 524 34,454

TGFR1 3HMM TGF-beta receptor type I 133 8498

VGFR2 2P2I Vascular endothelial growth factor
receptor 2 409 24,927

WEE1 3BIZ Serine/threonine-protein kinase 102 6148

Nuclear receptor ANDR 2AM9 Androgen Receptor 269 14,344
ESR1 1SJ0 Estrogen receptor alpha 383 20,663
ESR2 2FSZ Estrogen receptor beta 367 20,182
GCR 3BQD glucocorticoid receptor 258 14,987
MCR 2AA2 Mineralocorticoid receptor 94 5146

PPARA 2P54 Peroxisome proliferator-activated
receptor alpha 373 19,356

PPARD 2ZNP Peroxisome proliferator-activated
receptor delta 240 12,223

PPARG 2GTK Peroxisome proliferator-activated
receptor gamma 484 25,256

PRGR 3KBA Progesterone receptor 293 15,642
RXRA 1MV9 retinoid X receptor alpha 131 6935
THB 1Q4X Thyroid hormone receptor beta-I 103 7441
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Table 1. Cont.

Target Class DUD–E
Code

PDB
Code Protein Name Ligands Decoys Metal

Proteases ACE 3BKL Angiotensin-converting enzyme 282 16,864 Zn2+

ADA17 2OI0 protease 532 35,809 Zn2+

BACE1 3L5D Beta-secretase 1 283 18,082
CASP3 2CNK Caspase-3 199 10,692
DPP4 2I78 Dipeptidyl peptidase IV 533 40,916
FA10 3Kl6 Coagulation factor X 537 20,023
FA7 1W7X Coagulation factor VII 114 6245

HIVPR 1XL2 human immunodeficiency virus type 1
protease 536 35,688

LKHA4 3CHP Leukotriene A4 hydrolase 171 9448 Zn2+

MMP13 830C Matrix metalloproteinase 13 572 37,126 Zn2+

RENI 3G6Z Renin 104 6956
THRB 1YPE Thrombin 461 26,948
TRY1 2AYW Trypsin I 449 25,914

TRYB1 2ZEC Tryptase beta-I 148 7643
UROK 1SQT Urokinase-type plasminogen activator 162 9841

Miscellaneous AMPC 1L2S Beta-lactamase 48 2832

HIVRT 3NF7 human immunodeficiency virus type 1
integrase 100 6644

KIF11 3CJO Kinesin-like protein 1 116 6848 Mg2+

Other ACES 1_e66 Acetylcholinesterase 453 26,234
ADA 2E1W Adenosine deaminase 93 5449 Zn2+

ALDR 2HV5 Aldose reductase 159 8995
AOFB 1S3B Monoamine oxidase B 122 6900
CAH2 1BCD Carbonic anhydrase II 492 31,132 Zn2+

COMT 3BWM Catechol O-methyltransferase 41 3848 Mg2+

DEF 1LRU Peptide deformylase 102 5696 Zn2+

DHI1 3FRJ 11-beta-hydroxysteroid
dehydrogenase 1 330 19,340

FGFR1 3C4F Fibroblast growth factor receptor 1 139 4206
DYR 3NXO Dihydrofolate reductase 231 17,170

FABP4 2NNQ Fatty acid binding protein adipocyte 47 2749
FKB1A 1J4H FK506-binding protein 1A 111 5800

FNTA 3E37 protein farnesyltransferase/geranyl
genaryltransferase type I alpha subunit 592 51,430 Zn2+

FPPS 1ZW5 Farnesyl diphosphate synthase 85 8822 Mg2+

GLCM 2VF3 beta glucocerebrosidade 54 3799
HDAC2 3MAX histone deacetylase 2 185 10,300 Zn2+

HDAC8 3F07 histone deacetylase 8 170 10,448 Zn2+

HIVINT 3NF7 human immunodeficiency virus type 1
integrase 100 6644

HMDH 3CCW HMG-CoA reductase 170 8743
HS90A 1UYG heat shock protein HSP 90-alpha 88 4848
HXK4 3F0M hexokinase type IV 92 4696
INHA 2H7L Enoyl-[acyl-carrier-protein] reductase 44 2300

ITAL 2ICA Leukocyte adhesion glycoprotein
LFA-1 alpha 138 8487

NOS1 1QW6 Nitric-oxide synthase, brain 100 8050 Zn2+

NRAM 1B9V Neuraminidase 98 6199
PA2GA 1KVO Phospholipase A2 group IIA 99 5146
PARP1 3L3M Poly [ADP-ribose] polymerase-1 508 30,035
PDE5A 1UDT Phosphodiesterase 5A 398 27,521
PGH1 2OYU Cyclooxygenase-1 195 10,797
PGH2 3LN1 Cyclooxygenase-2 435 23,135
PNPH 3BGS Purine nucleoside phosphorylase 103 6950
PTN1 2AZR Protein-tyrosine phosphatase 1B 130 7243
PUR2 1NJS GAR transformylase 50 2694

PYGM 1C8K Muscle glycogen phosphorylase 77 3940
PYRD 1D3G Dihydroorotate dehydrogenase 111 6446
SAHH 1LI4 adenosylhomocysteinase 63 3450
TYSY 1SYN Thymidylate synthase 109 6738
XIAP 3HL5 Inhibitor of apoptosis protein 3 100 5145 Zn2+
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Table 1. Cont.

Target Class DUD–E
Code

PDB
Code Protein Name Ligands Decoys Metal

Metallo-enzymes MP2K1 3EQH Dual specificity mitogen-activated
protein kinase 1 121 8147 Mg2+

ACE 3BKL Angiotensin-converting enzyme 282 16,864 Zn2+

AKT1 3CQW Serine/threonine-protein kinase AKT 293 16,426 Mn2+

ADA17 2OI0 protease 532 35,809 Zn2+

MMP13 830C Matrix metalloproteinase 13 572 37,126 Zn2+

PLK1 2OWB Serine/threonine-protein kinase 107 6797 Zn2+

CAH2 1BCD Carbonic anhydrase II 492 31,132 Zn2+

LKHA4 3CHP Leukotriene A4 hydrolase 171 9448 Zn2+

FNTA 3_e37 protein farnesyltransferase/geranyl
genaryltransferase type I alpha subunit 592 51,430 Zn2+

KIF11 3CJO Kinesin-like protein 1 116 6848 Mg2+

ADA 2E1W Adenosine deaminase 93 5449 Zn2+

COMT 3BWM Catechol O-methyltransferase 41 3848 Mg2+

NOS1 1QW6 Nitric-oxide synthase, brain 100 8050 Zn2+

DEF 1LRU Peptide deformylase 102 5696 Zn2+

FPPS 1ZW5 Farnesyl diphosphate synthase 85 8822 Mg2+

HDAC2 3MAX histone deacetylase 2 185 10,300 Zn2+

HDAC8 3F07 histone deacetylase 8 170 10,448 Zn2+

XIAP 3HL5 Inhibitor of apoptosis protein 3 100 5145 Zn2+

Using the DUD–E dataset, the performance of a scoring function in virtual screening could be
expressed through a graphical representation of the true positive rate versus the false positive rate in
terms of receiver operating characteristic (ROC) plots. In ROC plots, the true positive rate (TPR = TP/P)
was plotted against the false positive rate (FPR = FP/N), where TP is the number of true positives, P is
the total number of positives (actives), FP is the number of false positives, and N is the total number of
negatives (decoys). A useful measure is the area under the curve (AUC). The higher the AUC value in
a ROC curve, the better the discrimination between the true positive and the false positive poses.

As previously mentioned, a successful scoring function for virtual screening should rank active
compounds very early on a large score list, so metrics that emphasize early recognition of ligands are
normally used. One of such measures is the enrichment factor at 1% (abbreviated EF1%). This value
measures the number of active ligands recovered at 1% of the ligand/decoy database, over the number
of active ligands that should be expected at the same fraction of the database with random selection.
Other values such as the EF20% were also used sometimes.

After an initial analysis of all the DUD–E targets, there was one (FGFR pdb:3C4F) that did not
have the 1/50 proportion for active/decoys, so it was decided to exclude it from this test.

For each target in the DUD–E dataset, an initial analysis of the PDB file associated was performed.
The binding pocket was studied and evaluated. Similar PDB structures with co-crystallized ligands
were also inspected. Re-docking of the ligands for which there was a ligand-target structure available
was performed with AutoDock and with Vina. The docking protocol for both programs was adjusted
so as to reproduce the known experimental binding poses for each target, a standard protocol, when
validating a docking program/protocol for a specific target [24], as presented in Figure 2. Parameters
adjusted in this process with Vina included in the box size and position, number of generated binding
modes and exhaustiveness. In AutoDock, the parameters optimized also included the box size and
position, number of grid points and spacing, number of genetic algorithm (GA) runs, population
size, maximum number of energy evaluations, and maximum number of generations. After the first
optimization stage performed for each target, the box dimensions and center coordinates used for both
AutoDock and Vina were the same. The exhaustiveness value used for Vina was 8. As for AutoDock,
the grid spacing was set to 0.375 Å and the number of GA runs was set to 10. All this information is
provided in Table S1 in the Supplementary Materials.



Appl. Sci. 2019, 9, 4538 7 of 18

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 20 

 
Figure 2. Comparison between the crystallographic (green) and “docked” (purple) poses of (a) 
glucocorticoid receptor (GCR) Autodock, (a1) GCR Vina, (b) CAH2 AutoDock, (b1) CAH2 Vina, 
(c) TYSY AutoDock, and (c1) TYSY Vina. 

At the end of this stage an optimized docking protocol was selected for each target with each 
docking program. These protocols were used for the corresponding 101 protein targets to dock the 
associated ligands and decoys. For each target, ranked lists of ligands and decoys were prepared with 
AutoDock and Vina, based on the corresponding scores. These lists were used to determine the values 
of AUCs, EF 1% and EF 20%, allowing a comparison of the performance of the two docking programs 
in discriminating between ligands and decoys for each target. Average AUC, EF 1% and EF 20% were 
determined for the different families of protein targets and for the full 101 targets. 

All protein targets were characterized in terms of the number of the total amino acid residues 
and molecular weight. The corresponding binding pockets were evaluated in terms of their 
percentage of hydrophobic, polar, and charged amino acid residues. Average AUC, EF 1% and EF 

Figure 2. Comparison between the crystallographic (green) and “docked” (purple) poses of
(a) glucocorticoid receptor (GCR) Autodock, (a1) GCR Vina, (b) CAH2 AutoDock, (b1) CAH2 Vina,
(c) TYSY AutoDock, and (c1) TYSY Vina.

With the current protocol, the computational time for the virtual screening of the complete DUD–E
dataset for Vina was of approximately 60 days in 24 CPUs. Calculations in AutoDock took on average
100 times more.

At the end of this stage an optimized docking protocol was selected for each target with each
docking program. These protocols were used for the corresponding 101 protein targets to dock the
associated ligands and decoys. For each target, ranked lists of ligands and decoys were prepared with
AutoDock and Vina, based on the corresponding scores. These lists were used to determine the values
of AUCs, EF1% and EF20%, allowing a comparison of the performance of the two docking programs
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in discriminating between ligands and decoys for each target. Average AUC, EF1% and EF20% were
determined for the different families of protein targets and for the full 101 targets.

All protein targets were characterized in terms of the number of the total amino acid residues and
molecular weight. The corresponding binding pockets were evaluated in terms of their percentage
of hydrophobic, polar, and charged amino acid residues. Average AUC, EF1% and EF20% were
determined for different classes of protein targets based on the protein’s size and type of residues at
the binding pocket.

The Molecular Operating Environment (MOE) [55] program was used to calculate the chemical
and structural properties for all ligands tested. Some of these properties were analyzed in more detail.
Examples include the ligand’s molecular weight, volume, area, fraction of rotatable bonds, fraction
of hydrophobic accessible surface area (FASA_H), fraction of polar accessible surface area (FASA_P),
and fraction of positive and negative accessible surface areas (FASA+ and FASA−). Average AUC,
EF(1%) and EF(20%) were also determined for the different classes of ligands based on the ligand’s
size, fraction of rotatable bonds and electrostatic nature.

3. Results

3.1. Evaluation of the Performance of AutoDock and Vina

The chemical and structural properties of different proteins and enzymes can vary quite
significantly, in features that include the nature, type, and range of interactions around the binding
pocket, the pocket size and shape, and the exposure to solvent. Therefore, the challenges that such
systems offer to docking and to virtual screening can also be quite different. Some programs and
scoring functions are better able to capture some of these characteristics, while other show improved
performance in targets with other features.

Table 2 compares the performance of AutoDock and Vina across the different classes of targets.
The average results obtained for the set of 101 target showed that AutoDock and Vina exhibit a similar
average performance in discriminating between ligands and decoys. In fact, the average EF1% values
obtained were 7.6 and 8.9 for Vina and AutoDock, respectively (AUCs of 68.0 and 66.4). The EF1%
values calculated for this extended data set show that these programs are able to rank in the top 1% of
the total ligands (active and decoys) docked against each target, 7.6- and 8.9-times more active ligands
than what would be expected from random selection, considering the relative percentage of actives
and decoys available for each target.

However, the discrimination ability across different target classes could vary significantly.
For GPCRs, for example, AutoDock exhibited superior discrimination ability, with an average
EF1% of 16.6 against only 2.8 with VINA. AutoDock also demonstrated improved performance over
Vina for Nuclear Receptors (EF1% of 18.4 versus 15.0). However, for kinases and metalloproteins the
discrimination ability of Vina is on average better than that of AutoDock.

Figure 3, shows the average AUC values, calculated for the different target families. As previously
mentioned, the higher the AUC, the better the discrimination ability between actives and decoys.
AutoDock provided better results for GPCRs, ion channels, and nuclear receptors. Vina worked better
for all the other families.

However, across large families of proteins there could be significant variations in the docking
results, when looking into individual proteins. In the case of metalloenzymes, for example, Vina
provided better results, on average. Analyzing each target in particular (Figure 4) it could be seen that
for some targets the AutoDock performed significantly better. This might be explained by the fact that
in this family there is a large variability of types of proteins as this group includes kinases, proteases,
and others.
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Table 2. Performance of Vina and AutoDock in the discrimination between ligands and decoys for different classes of targets.

Vina AutoDock

Target Class Targets Actives Decoys EF1% EF20% AUC EF1% EF20% AUC

cytochrome P450 2 290 19,242 3.1 ± 0.8 1.4 ± 0.3 57.6 ± 0.6 2.9 ± 1.8 1.0 ± 0.1 50.4 ± 0.4
G protein-coupled receptor 5 1480 99,763 2.8 ± 2.8 1.9 ± 0.9 64.9 ± 6.6 16.6 ± 13.7 3.2 ± 1.3 78.5 ± 15.4

ion channel 2 259 18,379 4.2 ± 3.1 2.6 ± 0.9 66.7 ± 10.3 4.7 ± 3.1 2.8 ± 0.1 75.3 ± 4.4
kinases 23 5065 317,746 13.3 ± 12.0 2.8 ± 0.8 75.2 ± 9.6 5.7 ± 10.2 1.7 ± 0.8 62.1 ± 13.0

nuclear receptor 11 2995 162,175 15.0 ± 8.6 3.0 ± 0.7 73.5 ± 10.4 18.4 ± 13.1 3.3 ± 0.8 79.0 ± 8.8
Proteases 11 3526 208,948 5.3 ± 4.9 2.6 ± 0.7 72.1 ± 8.8 6.9 ± 7.3 1.7 ± 0.9 59.6 ± 10.0

other 29 4663 276,475 9.3 ± 8.9 2.3 ± 1.0 69.6 ± 12.9 6.8 ± 8.3 2.1 ± 1.2 65.1 ± 16.0
metalloenzymes 18 4154 277,785 8.2 ± 10.1 2.2 ± 1.1 64.6 ± 15.1 8.8 ± 10.7 2.2 ± 1.3 61.2 ± 21.9

non-metalloenzymes 83 18,278 1,102,728 10.0 ± 9.6 2.6 ± 0.9 71.4 ± 10.9 8.51 ± 10.5 2.2 ± 1.1 66.1 ± 14.7

Total/Average 101 22,432 1,380,513 7.6 ± 4.7 2.4 ± 0.5 68.0 ± 5.8 8.9 ± 5.6 2.3 ± 0.8 66.4 ± 10.2
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Table 3 analyzes the performance of AutoDock and VINA taking into consideration the number of
amino acid residues that constitute the target. For smaller targets, the driving force for ligand-binding
tends to be more concentrated in a smaller number of key specific residues. Additionally, the binding
pockets tended to be smaller, or often more exposed to the solvent. On the other hand, in larger
protein-targets, the range of interactions involved in ligand-binding tended to be larger and more
diffused. In addition, the extra number of amino acid residues present in the larger targets could confer
a more controlled environment to the corresponding binding pockets, shielding the interactions formed
from the effect of the solvent. The non-specific protein environment could play a more important role
for ligand-binding in these targets. Therefore, the number of amino acid residues that constituted the
different targets could offer different trials for docking and virtual screening.

Table 3. Performance of Vina and AutoDock in the discrimination between ligands and decoys for the
targets of different sizes based on the number of amino acid residues of each target (number of aa).

Target Size (Number of aa)
Vina AutoDock

EF1% AUC EF1% AUC

Small (0–250 aa) 8.6 ± 10.1 70.7 ± 11.0 9.4 ± 12.3 66.6 ± 16.0
Medium (250–400 aa) 11.5 ± 10.0 71.8 ± 12.5 7.9 ± 9.7 64.3 ± 15.8

Large (>400 aa) 6.1 ± 7.0 65.4 ± 11.0 8.9 ± 10.6 65.8 ± 18.2
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The results from Table 3 show that Vina was, on average, better in discriminating ligands from
decoys in medium-sized targets, with 250 to 400 amino acid residues (average EF1% of 11.5, AUC 71.8).
For targets with more than 400 amino acid residues, the performance of Vina was significantly lower
(average EF1% of only 6.1, AUC of 65.4)

AutoDock exhibited a more uniform behavior, with average EF1% values in the range 7.9–9.4 for
small (less than 250 aa) and large targets (more than 400 aa), resulting in an improved performance
over Vina for the small targets (<250 aa) and the large targets (>400 aa).

Another important aspect regarding the nature of the target protein concerns the type of amino
acid residues that constitute each binding pocket. For this analysis, all amino acid residues defining
each binding pocket were grouped into polar, charged (negative and positive), and hydrophobic amino
acid residues. Binding pockets were characterized based on the relative percentage of each of these
types of residues. Average EF1% and AUC values were calculated with AutoDock and Vina for each
category. The results are presented in Table 4.

Table 4. Performance of Vina and AutoDock in the discrimination between ligands and decoys for
targets with binding pockets with different percentages of polar, charged, and hydrophobic amino
acid residues.

Vina AutoDock

Polarity Number of Targets EF1% AUC EF1% AUC
Poorly Polar (0–25%) 25 9.9 ± 8.86 68.1 ± 12.9 11.7 ± 12.5 68.7 ± 15.7

Moderately Polar (25–35%) 36 10.7 ± 9.32 71.7 ± 11.7 8.0 ± 9.5 63.7 ± 16.4
Very Polar (>35%) 40 8.6 ± 10.6 70.0 ± 13.1 7.0 ± 9.8 64.2 ± 16.5

Hydrophobicity
Poorly Hydrophobic (0–30%) 38 11.1 ± 11.5 72.4 ± 13.4 8.5 ± 10.1 66.7 ± 17.2

Moderately Hydrophobic (30–40%) 25 8.3 ± 8.5 68.4 ± 13.3 8.2 ± 13.3 62.9 ± 18.1
Very Hydrophobic (>40%) 38 9.1 ± 8.4 69.0 ± 9.3 8.8 ± 9.3 65.0 ± 14.2

Charge
Poorly Charged (0–15%) 40 9.9 ± 9.1 69.2 ± 11.4 10.2 ± 10.9 68.8 ± 15.5

Moderately Charged (15–20%) 24 7.7 ± 8.6 68.2 ± 11.9 5.8 ± 8.7 55.1 ± 17.5
Very Charged (>20%) 37 10.7 ± 10.9 72.4 ± 12.7 8.5 ± 10.9 67.5 ± 13.8

Positive Charge
Poorly Positive (0–5%) 24 10.2 ± 8.5 67.9 ± 11.6 12.6 ± 11.6 68.8 ± 15.6

Moderately Positive (5–10%) 34 8.5 ± 10.8 69.6 ± 14.2 6.9 ± 11.1 62.1 ± 17.5
Very Positive (>10%) 43 10.5 ± 9.4 72.6 ± 9.7 7.9 ± 8.8 65.4 ± 15.3

Negative Charge
Poorly Negative (0–5%) 22 11.0 ± 9.5 70.8 ± 9.8 11.7 ± 10.7 73.5 ± 11.9

Moderately Negative (5–10%) 44 8.1 ± 8.3 70.2 ± 11.8 7.2 ± 10.2 62.2 ± 17.4
Very Negative (>10%) 35 10.9 ± 11.2 69.7 ± 13.8 8.2 ± 10.7 63.5 ± 10.7

The results presented in Table 4 showed that for poorly polar binding pockets (less than 25% of
polar residues) AutoDock was on average better than Vina in discriminating between ligands and
decoys, particularly among the top 1% of ranked solutions. For moderately polar and very polar
binding pockets, Vina exhibited a better performance than AutoDock. The results also showed that
both programs had more difficulty in discriminating ligands and decoys for very polar binding pockets
(>35% of polar amino acid residues).

In terms of the percentage of hydrophobic residues, the results showed that Vina was significantly
better than AutoDock in ligand/decoy discrimination for poorly hydrophobic binding pockets. As the
percentage of hydrophobic residues at the binding pocket increased, the performance of Vina and
AutoDock became increasingly similar, both in terms of EC1% and in terms of AUC values.

In terms of charge, the results showed that AutoDock was better in discriminating ligands and
decoys in poorly charged binding pockets (<15%) than in moderate or highly charged ones. Vina,
on the other hand, gave best results in highly charged binding pockets. These general tendencies
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concerning the presence of a charge at the binding pocket were also observed when particularly looking
into positively charged residues or into negatively charged residues.

In general, these results showed that AutoDock was better in discriminating ligands and decoys
in more hydrophobic, poorly polar, and poorly charged pockets, while Vina exhibited early recognition
metrics that did not vary so significantly with the type of amino acid residues at the binding pocket.
Vina tended to give better results for polar and charged binding pockets, which was particularly
interesting, taking into consideration that the scoring function of Vina did not explicitly include charges,
while that of AutoDock had an explicit electrostatic term.

3.2. Substrates

The type of molecule to be evaluated and its physico-chemical characteristics also offer different
challenges for virtual screening, in terms of docking and its ability to discriminate between actives and
decoys. For each specific target, the decoys included in the DUD–E were generated by having similar
1-D physico-chemical properties to the actives from which they originated, to remove bias [32]. Hence,
to analyze how the different substrate properties affected the discriminating ability of each target,
the physical properties of all actives identified in the ligands ranked as the top 1% were evaluated and
compared with the other actives that were ranked the worst.

In this study, four fundamental properties of the ligands were analyzed—the size of the ligands,
polarity, charge, and the number of rotatable bonds.

Figures 5 and 6 present heat maps of the correlation between the substrate properties and
their position in the ranking according to the type of target family (proteases and metalloenzymes,
respectively). Darker red (+1) yield perfect positive correlation while darker blue (−1), yield perfect
negative correlation. From Figure 5, it is clear that polarity and number of rotational bonds is important
for both Vina and is even more distinct for AutoDock, since it presents a positive correlation, that
is, as the ranking number increases, the polarity and number of rotational bonds also increase. This
means that the molecules with more rotatable bonds and which are more polar, are ranked worst in
the list. This leads to the conclusion that more polar and more flexible molecules present a bigger
challenge for AutoDock, in particular. For metalloenzymes, the correlation profile is a little bit different
from proteases. It is not easy to find a clear tendency because while some targets present a positive
correlation for some property, others have a negative correlation for the same property. This could
again be explained by the large variability of protein types in this particular family.
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Figure 5. Heat map correlation for proteases between Vina and AutoDock scores and ligand properties,
such as fraction of hydrophobic accessible surface area (FASA_H), fraction of polar accessible surface
area (FASA_P), fraction of positive and negative accessible surface areas (FASA+ and FASA−), molecular
weight (MW), and number of rotational bonds (Rot. B.).
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Figure 6. Heat map correlation for metalloenzymes between Vina and AutoDock scores and ligand
properties, such as fraction of hydrophobic accessible surface area (FASA_H), fraction of polar accessible
surface area (FASA_P), fraction of positive and negative accessible surface areas (FASA+ and FASA−),
molecular weight (MW), and number of rotational bonds (Rot. B.).

3.2.1. Influence of Molecular Weight

Figure 7 summarizes the variability of all molecules present in the DUD–E dataset, taking into
account the molecular weight. The results showed that from the total of 22,321 active ligands considered
for all 101 DUD–E targets, 7990 have a molecular weight below 400 Da, while 8833 have a molecular
weight in the range of 400–500 Da, with 5498 with a molecular weight over 500 Da. The distribution
of decoys across these ranges was the same, as they were generated automatically from the known
ligands included.
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Figure 7. Molecular weight of all active molecules present in the DUD–E database.

Table 5 decomposes the number of ligands identified in the top 1% of compounds ranked,
according to the molecular weight. AutoDock identified a total of 1935 actives in the top 1% of ligands,
while in Vina, this number was of 2002. The results showed that Vina was, on average, better than
AutoDock in identifying actives in the top 1% of small ligands (<400 MW) (536 versus 395 actives)
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and for large-sized ligands (>500 MW) (581 versus 497 actives). However, AutoDock was able to rank
more medium-sized actives (400–500 MW) among the top 1% of the results (1043 versus 885).

Table 5. Influence of the molecular weight for actives found in the top 1% of the database.

Vina AutoDock

No. of Ligands within Top 1% No. of Ligands within Top 1%

Total 2002 (8.9%) 1935 (8.6%)
<400 Da 536 (2.4%) 395 (1.8%)

400–500 Da 885 (3.9%) 1043 (4.7%)
>500 Da 581 (2.6%) 497 (2.2%)

Regarding each family of proteins, all exhibited the same tendency—smaller ligands were more
difficult to discriminate and appeared at worst ranking positions for both Vina and AutoDock.

Figure 8 shows the influence of molecular weight on the average ranking distribution of the
molecules within the full-ranked list determined for each protein target. The results showed that
there was a similar tendency for both GPCR and kinase protein families, where the smaller ligands
were ranked worst and the medium ligands were ranked better. For both GPCRs and kinases,
AutoDock could rank smaller ligands better than Vina, even though their ranking position was
relatively high. As for the medium-sized active molecules (300–400), these two families exhibited
opposite results—while Vina provided better recognition for kinases, AutoDock was more effective in
discriminating actives and decoys for GPCRs.
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3.2.2. Influence of the Number of Rotational Bonds

Figure 9 presents the relative distribution of all active ligands in the DUD–E dataset taking into
consideration the number of rotational bonds present. There is a higher prevalence in molecules with 4
to 7, and 8 to 11 rotational bonds, representing 73% of the dataset. The remaining 27% corresponds to
molecules with 0 to 3 and higher than 12 rotational bonds.

Ligands with more rotatable bonds presented a higher challenge for docking because they could
adopt a larger number of possible conformations. Discriminating actives with many rotatable bonds
from decoys with many rotatable bonds hence became more difficult, because correctly identifying
the real pose of the ligand was more challenging. Hence, ligands with a higher number of rotational
bonds were placed at the worst position in the database, when comparing with the ligands with fewer
rotatable bonds. In this study, this was observed for all studied families.

In Figure 10, the data for nuclear receptors and GPCRs are presented. For both families, AutoDock
was able to rank more ligands early on. While in GPCRs there was a clear difference in the discrimination
ability between Vina and AutoDock, for nuclear receptors, there was a similar behavior between
both alternatives (exception—compounds with 4 rotatable bonds in nuclear receptors). According to
our study, molecules with 5 to 10 rotational bonds ensured a better prediction with both AutoDock
and Vina.
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4. Discussion

AutoDock and Vina are efficient software alternatives for virtual screening, exhibiting on average
similar performance when evaluating the ligand/decoy discriminating ability, across a large number of
proteins. In spite of the similar average performance exhibited, both docking programs can present
a marked difference when studying a particular protein target, or even when looking into proteins or
enzymes from specific families, or for different types of ligands. Hence, for the common user wishing
to embark in a virtual screening study, it is not easy to select a priori the alternative that should be used.

The goal of this study was to guide the selection of the docking software according to the type and
characteristics of the target and its substrates. As demonstrated, the type of target, and specially the
characteristics of the binding pocket could influence the outcome of the docking software. The results
showed that AutoDock was clearly better in discriminating ligands and decoys in smaller targets, with
more hydrophobic, poorly polar, and poorly charged pockets, while Vina tended to give better results
for bigger targets with polar and charged binding pockets. According to the results presented, Vina
provided better metrics for kinases, proteases, and cytochrome P450. On the other hand, ligand/decoy
discrimination for GPCR, ion channels, and nuclear receptors was improved with AutoDock.

For the substrates, however, this analysis across 22,432 active compounds and 1,380,513 decoy
molecules showed that AutoDock and Vina exhibited comparable trends with the ligands size, charge,
and the number of rotatable bonds. Bigger, more flexible, and more polar ligands were more difficult
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to discriminate from decoys for both docking programs but the performance of Vina and AutoDock
was quite similar.

5. Conclusions

While the present study offered useful guidelines that could help researchers to choose between
AutoDock or Vina before starting a new virtual screening, according to the characteristics of their
specific target, it also highlighted another important aspect. The performance of both programs
could in some cases vary significantly, even for very similar proteins. Therefore, for very specific
systems, it is recommended that researchers test both alternatives wisely, before starting a large virtual
screening study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/21/4538/s1.
Table S1: Docking parameters used for Vina and AutoDock; Figure S2: Comparison between the crystallographic
(green) and “docked” (purple) poses for Vina and AutoDock to evaluate the influence of the number of rotational
bonds in pose prediction. (a) Ligands with the lowest number of rotational bonds. (a1) Ligands with the highest
number of rotational bonds.
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