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Featured Application: This paper proposes a deep-learning-based vehicle detection technique
that can achieve effective detection performance under extreme illumination conditions.
The technique can be used in on-road driver assistance tools and autonomous vehicles.

Abstract: Most object detection models cannot achieve satisfactory performance under nighttime
and other insufficient illumination conditions, which may be due to the collection of data sets and
typical labeling conventions. Public data sets collected for object detection are usually photographed
with sufficient ambient lighting. However, their labeling conventions typically focus on clear
objects and ignore blurry and occluded objects. Consequently, the detection performance levels of
traditional vehicle detection techniques are limited in nighttime environments without sufficient
illumination. When objects occupy a small number of pixels and the existence of crucial features is
infrequent, traditional convolutional neural networks (CNNs) may suffer from serious information
loss due to the fixed number of convolutional operations. This study presents solutions for data
collection and the labeling convention of nighttime data to handle various types of situations,
including in-vehicle detection. Moreover, the study proposes a specifically optimized system based
on the Faster region-based CNN model. The system has a processing speed of 16 frames per second for
500 × 375-pixel images, and it achieved a mean average precision (mAP) of 0.8497 in our validation
segment involving urban nighttime and extremely inadequate lighting conditions. The experimental
results demonstrated that our proposed methods can achieve high detection performance in
various nighttime environments, such as urban nighttime conditions with insufficient illumination,
and extremely dark conditions with nearly no lighting. The proposed system outperforms original
methods that have an mAP value of approximately 0.2.

Keywords: vehicle detection; deep learning; nighttime surveillance; convolutional neural networks;
insufficient lighting; ambient illumination; real-time detection; residual architecture

1. Introduction

Neural networks, convolutional neural networks (CNNs), and deep CNNs (DCNNs) have led
to diverse successes in machine learning. One notable class of successes is the breakthroughs in
computer vision, including image classification and object detection. Numerous CNN variants such
as VGG16 [1] and ResNet101 [2] have been developed and have achieved distinctive performance
in several object detection contests. Scholars have demonstrated real-time vehicle detection with
object-proposal-related algorithms [3–5] based on CNNs. However, few studies have been published
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regarding CNN performance levels under different levels of illumination. We tested models trained
with PASCAL VOC 2007 [6], the Faster region-based CNN (R-CNN) [5] model with VGG16 [1],
and ResNet101 [2] for feature extraction in low-light environments, and were unsatisfied with the
performance levels.

Because the defined classes of PASCAL VOC 2007 [6] are different from our predefined classes,
we could not directly compare the performance levels under the condition of insufficient lighting.
We selected several images containing objects defined in PASCAL VOC 2007 [6], such as pedestrians,
bicycles, and cars in urban nighttime environments and extremely dark situations. We defined the
images of urban nighttime as everyday city views taken at night with rational ambient lighting.
We defined extremely dark conditions as views that lacked illumination from typical sources, such as
the headlights or taillights of vehicles.

Figure 1 illustrates some urban nighttime images processed by the Faster R-CNN [5] with VGG16 [1]
trained using PASCAL VOC 2007 examples [6]. The bounding boxes of purple, red, and blue are for
bicycles, cars, and pedestrians, respectively. This approach cannot appropriately detect occluded
objects and blurry objects. The blurry outlines of objects may prevent easy identification of object
features, especially at night, as mentioned in previous studies [7,8]. Figure 2 illustrates urban nighttime
images processed by the Faster R-CNN [5] with ResNet101 [2] trained using the same portion of the
data sets. Figure 1; Figure 2 indicate that ResNet101 [2] provides better performance than VGG16 in
detecting partially shown objects. Some objects occupying a few pixels can be observed in Figure 2.
However, the abilities to deal with blurry and occluded objects are still weak.
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As displayed in Figure 4, a system with ResNet101 [2] trained with PASCAL VOC 2007 [6] incorrectly 
considers an entire row of motorbikes to be a single motorbike. Both original models trained with 
PASCAL VOC 2007 [6] are incapable of detecting the cars located on the left-hand side under the 
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Figure 1. Urban nighttime images processed by the Faster R-CNN [5] with VGG16 [1] trained using
PASCAL VOC 2007 [6].



Appl. Sci. 2019, 9, 4769 3 of 27

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 26 

 
Figure 2. Urban nighttime images processed by the Faster R-CNN [5] with ResNet101 [2] trained 
using PASCAL VOC 2007 [6]. 

 
Figure 3. Extremely dark images processed by the Faster R-CNN [5] with VGG16 [1]. Upper row: 
Trained with PASCAL VOC 2007 [6]. Lower row: Trained with our nighttime data. 

Our predefined classes included bikes (bicycles), buses, cars, motorbikes, pedestrians, vans, and 
trucks. To maximize the fairness of the comparison, both our collected nighttime data classes and the 
PASCAL VOC 2007 classes [6] included bikes (bicycles), buses, cars, motorbikes, and pedestrians. 
The two selected models were the Faster R-CNN [5] with VGG16 [1] and the Faster R-CNN with 
ResNet101 [2]. These models were trained with PASCAL VOC 2007 [6] and tested using our collected 
nighttime data for the classes they had in common. Because the two data sets had different 
distributions and objectives, we could not directly justify the models’ performance on our nighttime 
data. However, from Table 1, we can still obtain intuitions regarding the unsatisfactory performance 
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Figure 2. Urban nighttime images processed by the Faster R-CNN [5] with ResNet101 [2] trained using
PASCAL VOC 2007 [6].

Figures 3 and 4 illustrate the results of running extremely dark images through VGG16 and
ResNet101 variants of the Faster R-CNN. The Faster R-CNN [5] with VGG16 [1] and ResNet101 [2]
trained using PASCAL VOC 2007 [6] are unable to detect the vehicles well, whereas the optimized
model trained with our nighttime images can detect them. As depicted in Figure 3, the original
VGG16 [1] trained with PASCAL VOC 2007 [6] cannot recognize any objects in the row of motorbikes.
As displayed in Figure 4, a system with ResNet101 [2] trained with PASCAL VOC 2007 [6] incorrectly
considers an entire row of motorbikes to be a single motorbike. Both original models trained with
PASCAL VOC 2007 [6] are incapable of detecting the cars located on the left-hand side under the
balcony in the left image. In the present study, we aimed to address these deficiencies.
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Figure 4. Extremely dark images processed by the Faster R-CNN [5] with ResNet101 [2]. Upper row:
Trained with PASCAL VOC 2007 [6]. Lower row: Trained with our nighttime data.

Our predefined classes included bikes (bicycles), buses, cars, motorbikes, pedestrians, vans, and
trucks. To maximize the fairness of the comparison, both our collected nighttime data classes and
the PASCAL VOC 2007 classes [6] included bikes (bicycles), buses, cars, motorbikes, and pedestrians.
The two selected models were the Faster R-CNN [5] with VGG16 [1] and the Faster R-CNN with
ResNet101 [2]. These models were trained with PASCAL VOC 2007 [6] and tested using our
collected nighttime data for the classes they had in common. Because the two data sets had different
distributions and objectives, we could not directly justify the models’ performance on our nighttime
data. However, from Table 1, we can still obtain intuitions regarding the unsatisfactory performance
levels of the models on nighttime images in the context of the effects shown in Figures 1–4. After testing
the two models with two metric calculation methods, the 11-point interpolation (TRECVID) used in
PASCAL VOC 2007 [6] and the method used in PASCAL VOC 2010 [9] provided a mean average
precision of approximately 0.2. The model with ResNet101 [2] marginally outperformed the one
with VGG16 [1]. The models are expected to perform better if the training data are collected during
nighttime with enhanced labeling convention and fine adjustment aiming at feature extraction and the
recognition of blurry objects.

Table 1. Performance of common classes inferred by the models trained with PASCAL VOC 2007 [6]
for our nighttime data.

Classes
Average Precision (AP)

VGG16
VOC2007 | VOC2010

ResNet101
VOC2007 | VOC2010

Bicycle (Bike) 0.1643 | 0.1330 0.1915 | 0.1570
Bus 0.1924 | 0.1642 0.2716 | 0.2442
Car 0.3787 | 0.3670 0.4251 | 0.4150

Motorbike 0.1343 | 0.1005 0.1477 | 0.1246
Pedestrian 0.1618 | 0.1131 0.1698 | 0.1244

Mean 0.2063 | 0.1756 0.2412 | 0.2130
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To overcome the aforementioned difficulties in nighttime vehicle detection, this study proposes
solutions for data collection, the labeling convention of nighttime image data, and a specifically
optimized system based on the Faster R-CNN model [5]. As indicated by the experimental results,
we obtained a mean average precision (mAP) value of approximately 0.8497. Regarding the solutions
of data collection, the original models and the data sets used to train those models were incapable
of achieving decent performance levels because of the characteristics of the data sets, as well as the
improvements and optimizations of models, specifically for urban nighttime conditions. For extremely
dark conditions, the performance levels obtained by the current models trained with the current widely
used data sets were unsatisfactory. We labeled the collected data with reference to the horizontal
images of size 500 × 375 pixels in PASCAL VOC 2007 [6]. In addition, to deal with the special exigencies
of nighttime situations, several arrangements were made regarding occluded objects, blurry objects,
and small objects. We conducted as much labeling as possible for occluded objects (such as rows
of motorbikes). This labeling was intended to provide our model with the capability of detecting
occluded objects. We labeled blurry objects as much as possible; however, we discarded a few severely
unclear or invisible objects. We treated the labeling of blurry objects as a mission-critical task because
our system may be deployed in vehicles, in which case, blurry or shaky images are inevitable. We
provided small objects with clear definitions that related to the pixels but not the relative size. Because
of the fixed behavior of convolutional operations, objects consisting of a small number of pixels may
suffer from loss of features after processing in several convolutional layers. We tested and explained
how feature extractors with shortcut linkages were useful for these small objects, because residual
networks maintained features [2]. These data were collected from urban nighttime environments
and extremely dark conditions, which allowed our system to obtain satisfactory performance in both
environments, as indicated by the mAP records and subjective visual comparisons. With regard to the
optimized system, we tested the ability of transfer learning for nighttime data with the Faster R-CNN [5],
and selected hyperparameters by referencing the experimental results and several published studies.

In Section 2, we present several studies on object detection, traditional nighttime detection
techniques, the modern method of using CNNs in nighttime detection, the treatment of the Faster
R-CNN [5] for vehicle detection, data collection and labeling, and transfer learning techniques,
which have relevance to our proposed methods. In Section 3, we present our proposed methods
with regard to our specifically optimized system and our data collection and labeling techniques for
nighttime data. In Section 4, we present our experimental results regarding how the amount of data
used can affect performance, the performance with mAP records and visual comparisons in urban
nighttime and extremely dark conditions, the computational efficiency, and the performance levels of
different feature extractors. Finally, we present our conclusion for our entire study and contributions
to nighttime vehicle detection in Section 5.

2. Related Work

Object detection is a popular research area in the field of deep learning. Scholars have presented
various new object detection structures. Among the structures related to regions, the R-CNN family is
popular [3–5]. R-CNN [3] uses selective search, which is a clustering algorithm for region proposal,
to obtain candidates that may be predefined objects. After using selective search, R-CNN [3] uses
CNNs to perform feature extraction on the selected object candidates. After the feature maps have
been extracted from the previous CNNs, they are sent to the support vector machine (SVM) for
classification. Although the initial bounding boxes are inaccurate, R-CNN performs regression for
refining the bounding boxes so that the final bounding boxes are relatively accurate. The Fast R-CNN [4]
was proposed to improve the computational efficiency of R-CNN [3]. The Fast R-CNN introduced
region of interest (ROI) pooling, which provides the feature maps and the matrices representing all
ROIs. ROI pooling involves the projection of ROIs to feature maps according to the imputed image.
Then, the projected area is divided into sections of equal size. After ROI pooling has been conducted,
the resultant maps are sent to fully connected layers for classification and bounding box regression.
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The Faster R-CNN [5] is an end-to-end architecture. It dramatically improves the computational
efficiency by completing the entire computational process with graphics processing unit (GPU) resources.
The input images are sent to CNNs for feature extraction. Then, region proposal networks (RPNs),
which are convolutional sliding windows with anchor boxes, are used to select the object candidates.
The resultant maps selected from the RPNs are subjected to ROI pooling with the corresponding
feature maps. After ROI pooling, the results are sent to fully connected layers for classification and
bounding box regression. The CNNs used for feature selection are shared with RPNs to reduce the
computational time.

CNNs are state-of-the-art structures for image recognition. VGG16 [1] is an excellent baseline CNN
that performs well in several image recognition contests. Many object detection systems use VGG16 [1]
for feature extraction. VGG16 can use regular 3 × 3 kernels to achieve satisfactory performance levels
in image recognition. The receptive field of several 3 × 3 kernels can replace the receptive field of larger
kernels. VGG16 [1] uses two sets of two 3 × 3 kernels and the following max pooling layer, as well as
two sets of three 3 × 3 kernels and the following max pooling layer for convolutional feature extraction
subsystems. In the object detection model, these convolutional subsystems are used as the feature
extractor for later detection and the classification architecture.

Some systems use VGG16 [1]. Residual network families (ResNet) [2] are new baseline CNN
models for image recognition. They use residual blocks, which are the shortcut linkages between
layers, to reduce the effect of the degradation problem in deep neural networks. The residual blocks
introduce a batch of identity projection that can allow the raw information to be processed through the
deep layers. However, several 1 × 1 components exist that can increase the nonlinearity and perform
dimensionality reduction and increment throughout the entire feature extraction process. ResNet101 [2]
performed well in various image recognition contests, which proved that shortcut linkages are essential
for increasing the depth in DCNNs. In our nighttime vehicle detection system, we must address some
objects that occupy only a few pixels, as well as some blurry objects. Such challenges are inevitable in
crucial situations, such as embedded systems used in moving cars. We believe that shortcut linkages can
be used for dealing with small and gloomy objects after many convolutional operations, even though
these convolutional operations may cause feature loss. The convolutional part of ResNet101 [2] was
used as the feature extractor in our nighttime vehicle detection system.

A study [10] investigated the detailed behavior of the Faster R-CNN [5] for vehicle detection.
The study indicated that the detection accuracy of the Faster R-CNN [5] increases with the size of the
training images. This phenomenon occurs mainly because larger images display the main features
and outlines of vehicles more clearly. In addition, the detection performance for testing images
varies when an inconsistency exists between training and testing image sizes. This implies that the
localization performance improves when the number of bounding boxes retained throughout the
detection process is increased; however, increasing the number of bounding boxes may affect the
precision. Consequently, reasonable settings for image input sizes, labeling methods, and training
processes are crucial to achieve a suitable overall model performance.

Apart from the input size, labeling method, and process of training, the transfer learning technique
is the most common method for training a model with relatively limited training data. In our study,
we collected and labeled images by ourselves. This project did not require a large-scale collection
and labeling campaign. Therefore, we used transfer learning, which initializes the model parameters
with those trained in the large-scale image recognition contest. The most common transfer learning
parameter is ILSVRC-2012-CLS [11], which contains millions of training data. When using their trained
parameters for initialization, we must fix a certain number of neural network layers and free the rest
so that the model can adapt to our collected and labeled nighttime data. For the selection of the
input size and labeling method, PASCAL VOC Challenge [12] is one of the most popular methods
for treating the image data. In the training and testing phases, most of the horizontal images had
a size of 500 × 375 pixels. Images of this size can clearly display the crucial features and outlines of
vehicles without excessively increasing the processing time. The labeling convention from this study
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also indicates how we should label the data for detection purposes. We followed their approach and
altered labels according to the behavior of nighttime images.

The traditional methods of nighttime vehicle detection applications use sensors [8] or algorithms
that heavily rely on vehicles’ headlights and taillights [7,13]. The authors of [7] stated that the methods
based only on images depend on the headlights and taillights of the target vehicles. The algorithm is
mostly suitable for the urban or city nighttime environments. Thus, a certain degree of ambient lighting,
such as the street lights, is required. The method in [13] first applied traditional image preprocessing on
the input frames and performed bright component information process. After that, they distinguished
different cars in different lane and perform taillight clustering. Consequently, they compared current
frames with previous frames in order to perform the tracking operation. Their proposed method is
capable of dealing with urban and general nighttime vehicle detection; however, it is impracticable
under extremely dark conditions. The technique proposed in [14] performed a global rule-based
vehicle detection which contained three major steps: Bright spot segmentation, candidate taillight
extraction, and candidate taillight pairing. They used an improved Otsu thresholding method,
which can solve the problem of small portion of pixels of those taillights. After that, they performed
the connected-component extraction in order to locate the bright spots with the optimal threshold.
Then, the headlights could be paired to locate possible vehicles. However, headlight pairing may
encounter a problem which it may be frustrated by two parallel motorbikes. The traditional method
does not work well in extremely dark conditions with no headlights and taillights.

There are more approaches based on machine learning techniques. In [8], a satisfactory nighttime
detection performance was achieved when integrating sensors and SVMs. However, multiple cues are
required from vehicle lights and bodies. When the degree of illumination is poor, such as under rainy
and dusky conditions, the performance may be affected. The method in [15] trained AdaBoost classifier
for headlight detection in order to reduce the false detection raised by reflections; headlight pairing
was also conducted, and then the paired headlights were tracked. This method was heavily relyiant
on detection results of vehicles’ headlights. Although using machine learning technique is a modern
way to perform vehicle detection, especially in nighttime conditions, it may not obtain satisfactory
detection performance under extremely dark conditions.

The modern methods of performing nighttime detection involve the use of CNNs. A study [16]
on nighttime human detection with CNNs indicated that the images captured by visible-light cameras
can cope well with CNNs because the neural network model can adapt to the marginal difference
in the nighttime images to filter and capture the features of the object. The study used feature
engineering, such as histogram equalization, to maximize the difference between the desired object and
the background. However, frequently using histogram equalization may increase the processing time
and we may be obliged to seek an end-to-end parallelizable algorithm that can be embedded inside
vehicles with changing non-model-related configurations. Another study [17] used a visible-light
camera and the Faster R-CNN [5] to deal with nighttime face detection. The study used histogram
equalization before passing the images to the Faster R-CNN [5]. Because the human face is difficult to
capture, one instance of the Faster R-CNN [5] was first used to detect the human body, followed by
cropping of the upper body areas. Each cropped part was passed to another instance of the Faster
R-CNN [5] to perform face detection. An acceptable processing speed could be reached because
end-to-end models were used. To overcome the aforementioned limitations, the proposed system
integrates several optimized models based on the Faster R-CNN [5], as well as an efficient data labeling
scheme to achieve satisfactory performance in nighttime vehicle detection.
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3. Proposed Method

3.1. Nighttime Vehicle Detection System

3.1.1. Object Detection and Feature Extractor

The Faster R-CNN [5] was selected as the fundamental objection detection algorithm for our
nighttime vehicle detection system. Different pretrained CNN architectures were also used as feature
extractors in the Faster R-CNN [5]. The hyperparameters were carefully selected according to a deep
analysis [10] of the Faster R-CNN [5] and optimized training process. A typical Faster R-CNN [5] was
used in our system. Feature extraction was performed with a CNN; objects were proposed by RPNs;
ROI pooling was performed with images of different sizes; and classification was performed by fully
connected layers.

We had approximately 9003 labeled nighttime images, which were insufficient for training the
entire system. The system included numerous parameters that had to be trained with a large amount
of data to handle the model’s capacity. By using the transfer learning technique, which is a widely
used method of image recognition and object detection, we could train the model without using
an excessively large data set. Therefore, we used VGG16 [1] and ResNet101 [2] with parameters
pretrained on ILSVRC-2012-CLS [11] to deal with the problem of an insufficient amount of training data.
As shown in Figure 5, for VGG16 [1], we fixed the parameters of the first four convolutional layers
with the following max pooling layers (represented in the brown part) and freed the other parts of the
neural networks (as denoted in the blue part). For ResNet101 [2], we fixed the parameters of the first
convolutional layer with its corresponding max pooling layers and the following single residual block
(three sets of bottleneck structures), as displayed in the brown part of Figure 5. The other parameters
were freed for training, as denoted in the blue part of Figure 5.
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Although the ROI pooling in the Faster R-CNN [5] can cope with different sizes of feature maps,
we fixed the input size to 500 × 375 pixels for training and inference. If the input size was larger than
500 × 375 pixels, we performed scaling. The reason for performing scaling but not allowing free size
input is stated in the experimental results and discussion part. The reason is related to the challenge of
objects that occupy only a few pixels. We set the number of proposed boxes before and after non-max
suppression [5] during inference phase to be 2500 and 250, respectively, because a reasonably high
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number of proposed boxes can help increase the recall of the system [10]. Although the accuracy is
diminished when increasing the number of proposals [10], localization is vital in our nighttime vehicle
detection task.

3.1.2. Lightweight Model for Embedded Systems

The aforementioned complete model requires a long time when it runs on an embedded system
with low processing capability. The exact running time is stated in the experimental results and
discussion. The model with ResNet101 [2] as the feature extractor required twice the running time
compared with the model with VGG16 [1] for an input size of 500× 375 pixels. Reducing the complexity
of the model should increase the computational efficiency. However, it is recommended to suitably
reduce the size of inputted images rather than the complexity of the model. Because our task did not
require notably distinctive precision but recall, reducing the size of inputted images often affected the
precision only.

However, certain alternative arrangements can also be made to enhance the computational
efficiency of embedded systems. Considering that we do not care about the training time and
only focus on the computational efficiency when generating inferences, we can reduce the number
of top-scoring boxes maintained before and after the non-max suppression of RPN proposals [5].
To address concerns regarding the training time, apart from reducing the number of top-scoring
boxes before and after applying non-max suppression to RPN proposals [5], the fixing of additional
parameters is also a suitable strategy. However, this strategy may result in marginally lower precision
and recall. For instance, we can fix one additional residual block as the feature extractor in the model
when using ResNet101 [2]. When using VGG16 [1] as the feature extractor, we may fix one or two
pretrained layers so that the parameters are not updated during the training phase.

3.2. Training Strategies

3.2.1. Data Set Collection Scheme and Labeling Conventions

We collected 9003 nighttime images, including images with urban nighttime and extremely
dark views. These images were labeled with reference to the labeling style of the PASCAL VOC
Challenge [12]. Our predefined classes included bikes, buses, cars, motorbikes, pedestrians, vans,
and trucks. The real traffic data sets were collected from Taipei City, Taiwan, during nighttime.
Some images were taken under slightly bright conditions or relatively dark conditions. Some images
were collected with forward- and backward-driving recorders so that we could obtain both the front
and back images of vehicles. For the right and left sides of vehicles, we collected data through static
photo shooting. All the images were scaled from their original sizes to 500 × 375 pixels.

Figure 6 illustrates two labeling samples. The left image is a sample of nighttime data collected
under somewhat bright conditions in an urban area, whereas the right image was collected under
insufficient ambient illumination in a remote area. These two samples reveal our labeling convention
in general cases, where pedestrians, motorbikes, cars, bikes, and buses are labeled using purple,
red, sky-blue, deep-blue, and green boxes, respectively. Nevertheless, we still use certain special
definitions for specific cases.
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Figure 6. Two labeling samples. Left: Brighter nighttime image. Right: Darker nighttime image.

Some objects, such as a row of motorbikes parked along the roadside, are occluded. They should
be labeled if their major features are distinguishable. For example, if their major parts and outlines
are recognizable, then they should be labeled. We mostly did not label objects when they were
blocked or covered by other objects in front of them (i.e., when the crucial features were invisible).
Although many occluded objects are present in Figure 7; Figure 8, their major features and outlines are
visible. They should be labeled because the instances can be distinguished. Figure 9 depicts an example
of an object blocked by another object in the foreground. Although we knew that two people were
riding a motorbike, we still labeled the object as one person on a motorbike because the driver’s major
features and outlines were blocked by the passenger. Such labeling under relatively bright images is
crucial during the labeling of extremely dark images, because even the human eye finds it extremely
difficult to distinguish the number of objects. Our labeling conventions focus on the visibility of major
features and outlines instead of inferring whether an object is present.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 26 
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Figure 9. Example of the major features and outlines blocked by the front objects.

Some objects occupy only a few pixels. We usually call them small objects. However, we must
clearly define the term “small object” in our labeling conventions, especially in nighttime object
detection. The major difficulty of nighttime detection is that the environments are lacking ambient
illumination. If we include the challenges of blurry objects and occluded objects, the difficulty of
nighttime detection increases. We do not call them “small objects” because, in the case of object
detection, the word “small” should refer to the pixels occupied by the object. For example, an object may
occupy 100 × 100 pixels in an image with a size of 1920 × 1080 pixels. We may call this object a small
object. Nevertheless, it occupies a sufficient number of pixels for several convolutional operations.
Therefore, we must consider the actual pixels occupied by the objects but not the sizes relative to other
objects or the image sizes.

The detection performance is also related to whether the features are diminished after a certain
number of traditional convolutional operations, such as VGG16 [1]. A “small” object can still be
classified by a model if that object occupies a sufficient number of pixels. However, if the model
involves very deep convolutional and pooling operations, a loss of crucial features and information
may occur. To determine the optimal type of architecture for nighttime detection, we tested two
architectures, namely VGG16 [1] and ResNet101 [2]. The related experiments are described in the
sections on experimental results and discussion.
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In Figure 10, the feature within the red ellipse occupies very few pixels. Thus, its noteworthy
features may disappear after several downsampling operations, such as convolution and pooling.
Therefore, we may not consider labeling this feature. However, the feature within the blue ellipse is
more likely to be labeled.
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Figure 10. Example of objects occupying only a few pixels.

After any group of images has been collected, one may find that some images are blurry. To decide
whether we should discard the images or use them for the training process, we must consider the
severity of blur. Directly discarding all blurry images is not a suitable method to deal with the problem
of blur, because our system may be deployed inside a moving vehicle. In Figure 11, the motorbike
within the orange bounding box should not be labeled because it is extremely blurry. Humans
can recognize it because we know this is a photo taken on the road. However, the model only
processes the area of the object (Figure 12), which is so vague that the critical features and outlines
are indistinguishable.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 26 
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3.2.2. Hyperparameter Adjustments and Optimized Training Process

Many adjustments were made and various hyperparameters were carefully selected during
the development and fine-tuning of the model. A suitable training process is the key to achieving
a superior nighttime vehicle detection performance.

After several experiments, we selected the initial learning rate to be 0.001, which decayed to
0.0001 after 200,000 iterations for ResNet101 [2] and 50,000 iterations for VGG16 [1]. The double
learning rate was used for updating biases throughout the entire training process. This practice follows
recent convention instead of the traditional standard training process. Apart from the parameters
that were initialized by pretrained models, other parameters were initialized by the truncated normal
distribution. The testing speed of convergence was acceptable and reasonable in our nighttime data set
of real traffic conditions.

For the hyperparameters of the Faster R-CNN [5], we selected the usual setting for ROIs. The
overlap threshold for an ROI was set to be 0.5 for considering the foreground. The overlap threshold
for an ROI and the ground-truth box to be used as a bounding regression box was set to as 0.5.
With regard to the RPN, we selected 0.7 as the intersection over union (IOU) threshold to indicate a
positive example, and a threshold of 0.3 to indicate a negative example. The threshold of non-max
suppression used on RPN proposals [5] was also set as 0.7. A significant number of top-scoring boxes
were maintained before and after non-max suppression was applied to RPN proposals [5]. With
reference to the deeper analysis [10] of the Faster R-CNN [5], we considered localization as a more
crucial task than classification for nighttime vehicle detection system because finding the possible
predefined objects was more important than perfectly classifying the objects. We selected 48,000
top-scoring boxes that had to be maintained before the application of non-max suppression to RPN
proposals [5], and 8000 boxes after the application.

Because we disabled the RPN during testing as per the usual convention, we had to select the
hyperparameters, especially the thresholds, very carefully. The overlap threshold used for non-max
suppression was 0.3, and boxes with IOU values greater than or equal to the threshold were suppressed.
The non-max suppression threshold used on RPN proposals was set as 0.7. The number of top-scoring
boxes maintained before applying non-max suppression to RPN proposals was 2500, whereas the
number maintained after applying non-max suppression was 250.

The aforementioned selection of hyperparameters was determined with reference to studies of
the Faster R-CNN, especially for vehicle detection [10], and our experimental results. In our nighttime
vehicle detection condition, localization takes priority, especially in the extremely dark conditions.
Consequently, we focused on maintaining a higher number of bounding boxes than the thresholds
before and after certain operations. Taking this as a general method of adjusting hyperparameters,
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we conducted numerous experiments for searching reasonable hyperparameters to obtain satisfactory
detection performance.

We evaluated different fixed parameters for transfer learning by using pretrained models of
VGG16 [1] and ResNet101 [2]. We found that fixing the first residual block was a suitable strategy for
our nighttime data set, because the distribution and target of data between our training nighttime data
set and the data used for pretraining were quite different, which implied that the training process
required more free parameters for training to achieve a superior detection performance.

4. Experimental Results and Discussion

Various experiments were conducted in this study, including the observation of the changes in the
performance by models fed with different amounts of data, the searching of suitable hyperparameters,
the study of the performance of the model with our collected and labeled data, some visual comparisons
between the different training data sets and modes used, and the study of the model performance
under extremely dark conditions.

Our real traffic nighttime data sets were collected in Taipei, Taiwan, under various road and
weather conditions, including normally moving traffic, congested traffic, rainy weather, and foggy
days. The illumination degree of the collected data can be classified into two categories: Urban
city illumination and extremely dark conditions. For the case of urban city illumination, the data
were collected at night under usual illumination, such as under street light, headlight, and taillight
illumination. For the case of extremely dark conditions, the data were collected at night under extremely
weak illumination. Only few lighting effects existed in these data; some of these effects could not even
be distinguished by human eyes.

We collected our data sets by recording street views from dashboard cameras within the first half
of the year, spanning spring and summer. After the collection of videos, we sampled the view videos
with an interval of 30 seconds. Next, we viewed the sampled images and deleted images that were
similar or seriously unclear before labeling them. We collected 9003 samples of data, which we labeled
according to our seven predefined classes: Bikes (bicycles), buses, cars, motorbikes, pedestrians, vans,
and trucks. The definition of the labels is provided in Section 3.2.1.

4.1. Different Amounts of Data Used

We recorded the changes in the mAP when models were fed with different amounts of data. In the
field of deep learning, usually, the more the deep learning model is trained with training data with the
right distribution for the same task, the higher is the model performance. Nevertheless, in our study
related to nighttime detection, we found that this type of correlation was not explicit.

Figure 13 illustrates no explicit increase in performance despite the use of additional training
data. VGG16 [1] may lack capacity of modeling the nighttime data because its performance dropped
a little when additional data were used, which is an ordinary and reasonable result in this kind of
convolutional neural network with the traditional architecture. The expanded data sets produced
no significant increase in performance, possibly because of the high similarity of gloomy nighttime
images, which is expected for the data collected under nighttime conditions. However, the capability
of localizing objects can be enhanced if additional training data are used but the localizing capability
cannot be reflected by the measurement of the mAP.
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Figure 14; Figure 15 illustrate the performance of the Faster R-CNN [5] with VGG16 [1] and
ResNet101 [2] trained using different amounts of data (500, 5500, 7659, and 9003). The model trained
with 500 randomly selected nighttime images had a lower capability of localizing objects than the one
trained with 9003 nighttime images. Although the performance of mAP in Figure 13 shows a stable and
non-increasing trend, the visual comparisons in Figure 14; Figure 15 show the increase of the amount
of our nighttime data can boost the ability of localization, which is related to the recall and cannot be
measured by the mAP. Directly evaluating the model with recall as a metric is an unsuitable method
because of the complex behavior required for object detection. Determining whether a bounding box is
actually capturing one single predefined object is difficult. For example, determining the performance
is difficult when two bounding boxes are lying on different parts of a single object, which should be
bounded by one large bounding box. Knowing an object’s existence and approximating the areas takes
priority over inserting an exact number of bounding boxes in an image, especially for the tasks of
autonomous driving and traffic surveillance.

A new metric related to recall and the IOU is required for our specific model of nighttime
vehicle detection systems. This metric will be published in one of our future works. For this study,
judging the ability of localization and capturing objects directly through visualization is a suitable
strategy (Figure 14; Figure 15).
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4.2. Performance of Different Feature Extractors

VGG16 [1] and ResNet101 [2] were used as feature extractors for the Faster R-CNN [5]. In this
section, we present the mAP measurements, training and validation loss, and visual comparisons for
these two architectures.

As presented in Table 2, the mAP values of the models with VGG16 [1] and ResNet101 [2] as
feature extractors were 0.7535 and 0.8497, respectively. The mAP values in the brackets of Table 2 are the
performance values from Table 1, which are presented for clear and easy comparison. The performance
levels were compact. No classes were predicted with extremely high or low mAP. For our nighttime
case, an mAP value of approximately 0.85 was achieved. This noteworthy achievement was only
possible because we labeled objects meticulously, as described in the labeling conventions (Section 3.2.1).
We usually obtained a lower mAP for the class “Pedestrian” than for the other classes because of the
difficulty of distinguishing a pedestrian’s features with insufficient lighting background. Nevertheless,
pedestrians were still labeled in our study.
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Table 2. Performance of our nighttime validation data obtained using models trained with our nighttime
training data.

Classes
Average Precision (AP)

VGG16
VOC2007 | VOC2010

ResNet101
VOC2007 | VOC2010

Bike 0.6626 [0.1643] | 0.6815 [0.1330] 0.8099 [0.1915] | 0.8120 [0.1570]
Bus 0.8090 [0.1924] | 0.8271 [0.1642] 0.9083 [0.2716] | 0.9257 [0.2442]
Car 0.8034 [0.3787] | 0.8209 [0.3670] 0.8169 [0.4251] | 0.8625 [0.4150]

Motorbike 0.7064 [0.1343] | 0.7250 [0.1005] 0.7250 [0.1477] | 0.7857 [0.1246]
Pedestrian 0.5824 [0.1618] | 0.5799 [0.1131] 0.6714 [0.1698] | 0.6807 [0.1244]

Truck 0.7301 | 0.7726 0.9091 | 0.9356
Van 0.8329 | 0.8677 0.9091 | 0.9459

Mean 0.7324 | 0.7535 0.8214 | 0.8497

The settings of iterations for training the two aforementioned models were different because the
model with ResNet101 [2] as the feature extractor required more iterations for convergence than the
model with VGG16 [1] as the feature extractor. Therefore, we set 300,000 iterations for the ResNet101
model and 100,000 iterations for the VGG16 model. The models converged, as depicted in Figure 16;
Figure 17.
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The reader can subjectively and visually compare outputs from ordinary models trained with
PASCAL VOC 2007 [6] and outputs from our proposed systems trained with our nighttime data.
The evidence indicates that our proposed system could detect objects under insufficient lighting
conditions, as depicted in Figures 18–21. Models trained with our nighttime data can detect distant
and blurry objects, especially the Faster R-CNN [5] with ResNet101 [2] trained using our nighttime
data. This model exhibits satisfactory performance of localization and classification (lower row of
Figure 20). The models trained with our nighttime data can also deal with occluded objects and objects
that appear partially, such as a row of bikes or a motorbike with only half of its body in the image.
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Figure 21. Outputs from two variants of the Faster R-CNN [5] with ResNet101 [2]. Upper row:
Ordinary model trained with PASCAL VOC 2007 [6]. Lower row: Proposed system trained with our
nighttime data.

4.3. Computational Efficiency

The system has a different processing time when processing different sizes of images with different
architectures of the feature extractor. Generally, more time is required for image processing when large
images or a complex feature extractor, such as ResNet101 [2], is used. Therefore, we must scale the
input size of images.

Table 3 presents the running time for different image sizes and feature extractors. The system ran
on a computer with an Intel Core i7-7700K 4.20-GHz CPU, an NVIDIA GeForce GTX 1080 Ti GPU,
and 24 GB of DDR4 RAM. The operating system was Ubuntu 16.04.4 LTS 64 bit. The model was built
using TensorFlow 1.6 with CUDA 9.0, cuDNN 7.0, and Python 2.7. The drawing of bounding boxes
and image processing parts was achieved using OpenCV 3.4.1. For an image size of 500 × 375 pixels,
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which was our predefined input size, the system with VGG16 [1] as the feature extractor could run
approximately 31 FPS and the system with ResNet101 could run approximately 16 FPS [2].

Table 3. Processing time of a GeForce GTX 1080 Ti graphic card for different image sizes and
feature extractors.

Size of Images
Processing Time

VGG16 ResNet101

500 × 375 0.032 s 0.064 s
1000 × 750 0.079 s 0.107 s
1920 × 1080 0.151 s 0.168 s

4.4. Performance of Different Sizes of Inputted Images

The difference in the model performance for different image sizes is depicted in Figure 22; Figure 23.
The depicted performance is not related to the ability to detect objects or the behavior of the models,
but to the number of pixels occupied by objects. Because our models were trained with nighttime
images with a size of 500 × 375 pixels, they were designed to make predictions about the usual size
of objects in general 500 × 375-pixel nighttime images. Thus, the number of pixels occupied by an
object in a nighttime image with a size of 500 × 375 pixels is less than that occupied by the same object
in a nighttime image with a size of 1920 × 1080 pixels. Consequently, the output distribution when
a large image is sent to the convolutional layers is different from that when a small image is sent to the
convolutional layers, because all images are manipulated by convolutional operations with the same
capacity. Therefore, the models trained with our 500 × 375-pixel nighttime images may not perform
well for a large image size.

Our systems focus on the balance between the detection performance and the efficiency. If large
images are used during training, the convolutional parameters are trained to deal with objects occupying
a relatively large number of pixels. For example, a motorbike in a large image of 1920 × 1080 pixels may
consist of 200 × 600 pixels; however, it consists of only 50 × 150 pixels in an image of 500 × 375 pixels.
Because of the behavior of convolutional operations (not adapted to every size), the parameters
trained with large images can only recognize an object with a pixel configuration similar to that of
the training images. Any inconsistency in the training size and inference size leads to unsatisfactory
performance because the convolutional layers are trained using objects with relatively large amounts
of pixels. A small image depicting comparable objects may suffer from loss of features. Our method
is intended for use in automobiles. Thus, our study focuses on the efficiency of in-car detection.
Therefore, we referred to PASCAL VOC [6] and selected 500 × 375 pixels as the configuration for
our system.
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4.5. Performance in Extremely Dark Conditions

We measured detection performance levels for systems that processed images from extremely
dark conditions under severely insufficient lighting. By using these measurements, we compared
the model trained with PASCAL VOC 2007 [6] and the system trained with our nighttime data. An
efficient nighttime vehicle detection system should provide satisfactory results under dark conditions.
The system should detect a relevant object, even if the features of the object cannot be extracted
precisely and easily. Data can be used for improving the architecture of the feature extractor and
developing systems with superior performance in extremely dark conditions. The data used to train
the model are an important consideration in this study.

As displayed in Figure 24; Figure 25, the proposed system trained with our nighttime data can
detect relevant objects under severely insufficient lighting even if those objects (such as the row of
motorbikes shown in the aforementioned figures) are typically difficult to recognize. Our system’s
performance levels differed from those of the models trained with the PASCAL VOC 2007 data set [6]
(Figure 3; Figure 4), which may provide unfavorable localization performance. Because the photos in
the PASCAL VOC 2007 data set were usually taken under sufficient lighting, the model trained with
this data set could not ideally localize objects under dark conditions.
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5. Conclusions and Future Works

In our study, we examined the nighttime detection-related behaviors of our system. Our
system can tolerate severely blurred objects in images taken under urban nighttime lighting.
However, for extremely dark conditions with no vehicle headlights or taillights illuminating the
scene, the system can recognize the outlines of objects only if the objects are clear. Our labeling
conventions pertain to occluded objects, blurry objects, and objects occupying small numbers of pixels.
The results indicate that in extremely dark conditions, our innovative approach to feature extraction
outperforms traditional methods [7,8], which rely heavily on the illumination from vehicles’ headlights
and taillights.

We also discovered that networks with shortcuts, such as ResNet101 [2], have a suitable nighttime
detection performance. ResNet101 was used in our system as a feature extractor. Systems containing
networks with shortcuts as feature extractors can accurately detect partially visible objects and relatively
small objects during nighttime. Nevertheless, for images with a size of 500 × 375 pixels, the system with
ResNet101 [2] required nearly twice the processing time of the system with VGG16 [1]. For embedded
systems, the image size should be reduced to achieve real-time detection with a machine having
relatively limited computational ability.

Our study presents labeling methods and systems optimized for occluded objects, small objects,
and blurry objects, especially in extremely dark conditions. We obtained considerable improvements
and optimization in terms of the performance levels. The experimental results indicate that the models
trained with our nighttime data sets, which were labeled according to our conventions, could detect
obscure, occluded, and small objects during nighttime or under insufficient illumination. In extremely
dark conditions with nearly no illumination or extremely weak lighting, our methods provided
satisfactory detection performance levels. The detection performance of the proposed methods was
higher than that of the original methods. The mAP values increased from approximately 0.2 to 0.8497
with a speed of 16 FPS when processing images with a size of 500 × 375 pixels. This result was
visually and subjectively confirmed through visual comparison of the output images. Our proposed
method can effectively detect vehicles in various urban nighttime environments and under extremely
dark conditions.

In our future work, we plan to improve the performance of our system by using alternative
normalization methods. We plan to focus on the images taken under extreme illumination conditions.
We plan to develop suitable metrics to appropriately measure the model performance for localizing
objects, specifically for our nighttime data.
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