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Featured Application: Vision-based truck load counting in earthmoving operations, civil engineering
management, and intelligent engineering.

Abstract: Earthmoving is an integral civil engineering operation of significance, and tracking its
productivity requires the statistics of loads moved by dump trucks. Since current truck loads’
statistics methods are laborious, costly, and limited in application, this paper presents the framework
of a novel, automated, non-contact field earthmoving quantity statistics (FEQS) for projects with
large earthmoving demands that use uniform and uncovered trucks. The proposed FEQS framework
utilizes field surveillance systems and adopts vision-based deep learning for full/empty-load truck
classification as the core work. Since convolutional neural network (CNN) and its transfer learning
(TL) forms are popular vision-based deep learning models and numerous in type, a comparison study
is conducted to test the framework’s core work feasibility and evaluate the performance of different
deep learning models in implementation. The comparison study involved 12 CNN or CNN-TL
models in full/empty-load truck classification, and the results revealed that while several provided
satisfactory performance, the VGG16-FineTune provided the optimal performance. This proved the
core work feasibility of the proposed FEQS framework. Further discussion provides model choice
suggestions that CNN-TL models are more feasible than CNN prototypes, and models that adopt
different TL methods have advantages in either working accuracy or speed for different tasks.

Keywords: vision-based deep learning; earthmoving operation; dump truck; model comparing;
convolutional neural network; transfer learning

1. Introduction

Earthmoving is a ubiquitous operation in construction projects and comprises a significant portion
of the project cost and time, especially in the case of heavy civil and linear projects [1–3]. Within
earthmoving operations, dump trucks are the major equipment typically used for the conveyance
of material [4]. Thus, keeping track of dump truck operations, especially by counting or weighing
working trucks, provides important information in the form of field earthmoving quantity statistics
(FEQS). FEQS is defined as the statistical basis for the quantification of material moved in terms of quarry
shipment, project site earthwork loading, or engineering waste earthwork disposal. FEQS data thus

Appl. Sci. 2019, 9, 4871; doi:10.3390/app9224871 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0941-8767
https://orcid.org/0000-0003-1182-1712
http://www.mdpi.com/2076-3417/9/22/4871?type=check_update&version=1
http://dx.doi.org/10.3390/app9224871
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 4871 2 of 20

contributes to field material management and is the primary information for financial settlement
with earthmoving contractors. Thus, conducting FEQS is a very important and necessary aspect
of managing earthmoving operations that can help avoid practical civil engineering management
problems, like earthwork smuggling, financial settlement errors, and erroneous quantity estimation.

Current methods of updating FEQS rely on either manually counting the overall number of truck
loads moved or on weighing trucks at load weigh stations. Both methods suffer from numerous
disadvantages due to the manual nature of the former, and the high cost and disruption to operation
caused in the latter, as described in the related work section. Moreover, current FEQS can be error prone
or lack traceable data records, thus reducing validity. Incorrect tracking of truck counts and truck loads
leads to numerous issues on construction projects between stakeholders that cause significant troubles for
successful project completion. Aside from the problems of reporting inaccurate data, these issues can
cause litigious situations between various stakeholders and derail the project management. On the other
hand, the advent of advanced computational and artificial intelligence methods provides the possibility
of automatically and objectively collecting FEQS data from site surveillance cameras, and informationized
approaches make FEQS data cyber-recordable and easy to trace.

This paper thus presents the framework of a novel automated, non-contact, and vision-based
FEQS, with the goal of reducing manual effort, costs, and errors to collect truck load information.
The core work in the FEQS framework is the full/empty-load classification of earthmoving trucks
as counting full-load trucks is an effective statistics strategy under a certain scenario. Vision-based
deep learning is applied in the proposed FEQS as the core work solution, and because the potential
usable deep learning models are numerous, testing and selection among them is needed. Hence,
a comparison study to test the deep learning models’ feasibility in full/empty-load truck classification
and identify in the FEQS application is developed. Through the deep learning model comparison,
the core work feasibility of the proposed framework can be assessed and a practical model choice for
FEQS implementation can be suggested.

Thus, the main contributions of the paper can be summarized as: (1) The framework of an
automated, non-contact FEQS applying vision-based deep learning is presented, which has advantages
toward existed FEQS methods in terms of manual effort, costs, and errors; (2) the core work of the
framework, i.e., the classification of full/empty-load trucks in earthmoving operations, is assessed
in terms of feasibility through a comparison study that involves multiple deep learning models;
and (3) the comparison study results are further discussed to give model choice suggestions for future
implementation of the proposed FEQS.

The rest of the paper is as follows: Related work of the current state of art and practice in the
domain of earthmoving FEQS and vison-based deep learning is first reviewed to identify the gaps
in knowledge and thus to explain the proposed FEQS framework and the authors’ research. Then,
the methodology is described, followed by the comparison study results and discussion. Finally,
the conclusions of this study are provided in terms of its contributions to knowledge and practice,
along with limitations and future work of the study.

2. Related Work

Current FEQS methods in the civil engineering industry can be divided into two categories
according to the statistical logic employed, i.e., truck counting or truck weighing. Both methods
are reviewed to identify their limitations in this section, which stem from the manual effort or cost
involved therein. The proposed solution to overcome these limitations is vision-based deep learning,
which is also reviewed in this section along with its application in similar domains to highlight the
gaps in research that will be targeted by this paper.
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2.1. State-of-the-Art FEQS Methods

2.1.1. Counting FEQS

Counting FEQS counts the number of loaded trucks to keep track of the amount of material moved.
It is applicable to scenarios that have a large quantity of overall transportation, low unit load price,
and uniform trucks. Thus, the counting FEQS is suitable for civil engineering projects with a huge
earthmoving demand and without precise single truck load weighing requirements, like hydropower,
airport, large-scale landscape transformation [5] etc. In these larger projects, the trucks are generally
uniform in capacity and truck loading is managed in a standardized manner [2]. Therefore, full-load
trucks are assumed to reach a standard loading quantity, and for FEQS, checking whether a truck is full
or empty and counting them is required. Moreover, compared to the large overall quantity, the quantity
error of a single truck loading is minor, and this error can be shared and fixed by the overall statistics.

Currently, counting FEQS is mostly dependent on manual recognition of trucks’ full/empty state
and accounting. Automated solutions have been proposed to aid with keeping count of trucks, such as
the use of computer aids to reduce the burden of manual work and human error rate. Tools, like the
global positioning system (GPS) and radio frequency identification (RFID), have been applied for
vehicle tracking or trip counting [6–9]. However, these tools can only be used to assist manual or
achieve vehicle trip counting, and are unable to solve judgmental problems, like checking if a truck
is full or empty. Hence, human labor is still required with these tools, and the related human error,
high labor cost, and application limitations cannot be fully overcome. In detail, manual accounting
applications are limited under harsh conditions, like high altitude, steep mountains, extreme cold,
or hot areas, as labor safety may be threatened [10,11]; and there is also potential health damages as
workers must suffer noise and vibration caused by trucks moving for a long time [12].

2.1.2. Weighing FEQS

As opposed to the imprecise method of counting trucks, weighing FEQS is a way of collecting
statistics regarding the precise weight of material moved by the truck. This information is obtained
from contact weighing tools, like the truck scale [13]. Weighing FEQS can obtain relatively accurate
truck loading quantities and is applicable to scenarios that have a small amount of total transportation,
multi-party contracting, or high unit load price, like earthmoving of small construction projects or
highway freight charge [14,15]. In these scenarios, the truck model, load types, and values can be
complex. Also, managing different subcontractors requires separate financial settlements, resulting
in the need for more precise statistics toward single truck transportation.

The major class of limitations of weighing FEQS are problems imposed by the need for truck
scale—a single truck scale costs between $35,000 to $100,000, has limited durability, and needs to be
replaced after a given operating period [16], resulting in high deployment and maintenance costs.
These scales also require trucks to first stop and then conduct the weighing, and can thus be a bottleneck
that causes traffic jams during peak times [14], thus disturbing the truck flow and lowering overall
transport efficiency [17].

2.2. Needs for Vision-Based FEQS Method

In current FEQS methods, problems have been exposed, such as high labor and economic
costs, limited application environment, continuous maintenance requirement, and transportation
interruption. Thus, it is of practical significance to develop a better FEQS system that is free of human
labor, low cost, and well-adapted to the operating environment. Currently, there is no suitable solution
for non-contact truck weighing; although devices that are more advanced than scales have been
developed, contact with vehicles and laborious installation are still required [18,19]. Thus, high cost
and limited application is unavoidable in weighing FEQS. However, for counting FEQS, as long as
problems that need human judgment can be solved by unmanned and low-cost approaches, the goal
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of developing a better means of FEQS is possible. Hence, in this paper, the research focus is placed on
counting FEQS.

Counting FEQS is applicable for civil engineering projects, like hydropower, airport, large-scale
landscape transformation, etc., as they have huge earthmoving demands and do not require precise
truck load weighing. For these projects, their sites are generally located in open fields and can be
equipped with surveillance camera systems for construction management and safety. Also, for these
projects, earthmoving trucks normally are uniform and have just two states of full or empty when
in working order, because project investment is adequate, contracting relationships are simple, and the
truck loading processes are well-organized to guarantee the earthmoving quality of each time (a partially
loaded truck is considered as a fault when working). Moreover, unlike transportation on city roads
that strictly forbids dust spreading, in the open field, buckets of trucks do not need to be covered as no
residents will be disturbed by dust due to earthmoving. Under this earthmoving operation scenario,
through the surveillance camera systems, the truck loading conditions of full or empty can be directly
viewed without occlusions, as uncovered trucks have an obvious characteristic difference between
full/empty-load conditions, as Figure 1 shows. Thus, by judging the truck loading condition, i.e., the
binary classification problem of full/empty-load trucks, the core work of the FEQS framework can be
achieved. Also, as machine vision [20] can replace human eyes for truck loading condition judgment
with little cost from the collection of video information and is free of human labor, a fully-automated,
non-contact full/empty-load classification of earthmoving trucks can be implemented. Hence, a novel
vision-based FEQS of truck counting can be proposed, and proper vison-based truck image classification
approaches are needed.
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Figure 1. Earthmoving trucks in surveillance videos: (a) Full-load truck samples; (b) empty-load
truck samples.

2.3. Vison-Based Deep Learning in Related Areas

Machine vision is one branch of artificial intelligence [21] that pertains to the use of machines,
including computers and related instruments, to replace human eyes to make observations and
judgements about real-world scenes [20]. Currently, the industry adopts deep learning models,
like convolutional neural networks (CNN), deep Boltzmann machines, deep belief networks etc.,
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to achieve machine vision [22]. Among them, CNN [23] and its improved form, the transfer learning
(TL) form [24], are the most popular approaches [25–28].

The deep learning models of CNN or CNN-TL have a wide range of applications, including medical
science [29], agriculture [30], geology [31], manufacturing [32], transportation [33], civil engineering [34],
and construction safety [35,36]. Studies are also abundant in specific aspects of vehicle management
and earthmoving operations. Deep learning CNN and image-collecting tools, like surveillance
cameras, have been combined and used for vehicle classification or real-time traffic monitoring [37–40].
CNN model improvements, like adopting the layer skipping strategy for better vehicle classification [41],
or using CNN-TL to achieve both detection and classification of vehicles that include dump trucks, cars,
and buses [42–44], have been performed. Apart from vehicle classification or detection, CNN is also able
to recognize the working or idle state of earthwork machines, like excavators or trucks [45], and CNN-TL
can benefit earthmoving operations or related construction management [27,46]. Other non-CNN
machine vision methods also have applications in related areas, like vehicle collision prediction
or construction machine detection, [47–50]. It can be seen that current vision-based deep learning
researches mainly focus on the vehicle classification or state identification of earthwork machinery,
and CNN and CNN-TL are widely applied.

Hence, CNN-related deep learning has the potential to replace human judgement for truck
classification. Since CNN has numerous types and there are more than one TL methods, testing and
selection among different models in truck image classification is necessary, which is merely studied
at present.

3. Proposed FEQS Framework and Research Conception

In view of the suitability between the counting FEQS scenario of huge earthmoving demands,
uniform uncovered trucks, equipped camera system, and vision-based deep learning, the authors posit
that deep learning models of CNN or CNN-TL can achieve full/empty-load truck classification and
contribute to unmanned and non-contact FEQS in earthmoving operations. Thus, the FEQS framework
of this vision-based conception is proposed and is shown in Figure 2.
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The framework first acquires vision information from the surveillance system and establishes
data sets for deep learning by manual labeling. It then applies deep learning CNN-related models for
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full/empty-load truck classification judgment. Finally, it combines the necessary information about
trucks, truck identification, and the earthmoving project with the truck classification results and adopts
automated counting to implement the automated non-contact FEQS. Under this framework, a partially
loaded truck will be detected by the deep learning as it is not visually similar to full-load trucks
and will be considered as empty as partially loaded does not qualify for counting as one instance
of earthmoving work.

As vision-based judgement of the truck load condition is the core work of the proposed FEQS
framework, this paper thus seeks to first verify the feasibility of CNN and CNN-TL models in solving
full/empty-load-truck classification, and then evaluate the efficiency and ability of different models
and identify the well performing learning models among the tested models for application suggestions.
These are the premises of feasible and better implementation of the proposed FEQS. Hence, a comparison
study is performed wherein multiple open-source CNN models and their TL forms are evaluated
in a suitable counting FEQS scenario. The comparison study is the important research part of this
paper, which provides a reference and support for the FEQS framework application. Three main works
are performed in the comparison study: (i) Collecting empty-load and full-load truck images from
a surveillance video source to form the training, validation, and testing data sets for deep learning;
(ii) adopting 4 classical CNN models and 2 TL methods to construct 12 deep learning models for the
comparison study; and (iii) testing the full/empty-load truck classification effect of each deep learning
model, and further discussing the results.

4. Methodology

The methodology section consists of three phases, including the introduction of the CNN and the
choice of four typical CNN models, the introduction of the TL and two main TL methods, and the
determination of the deep learning models of the CNN prototypes or CNN TL forms to be tested.

4.1. Convolutional Neural Network

Convolutional neural network (CNN) is a type of feedforward neural network inspired by the
biological visual cognitive mechanism [51]. It is one of the most popular deep learning approaches
in the field of graphic processing as CNN performs well in image processing and directly deals with
raw images. CNN extracts image features and compresses the data volume by operations, such as
convolution, pooling, etc. The model is trained through gradient descent and back propagation
algorithms [23], so that it can achieve functions like image classification. Generally, five layers
constitute the main architecture of CNN: The input layer, convolution layer, activation layer, pooling
layer, and fully connected layer. The operation procedure of CNNs is shown in Figure 3, and related
descriptions are as follows:

1. Input Layer. This is the entrance for raw image data. In this layer, images can be preprocessed
using operations, including normalization, principal component analysis, and whitening.
Preprocessing makes images normative, which helps to speed up the training of network
models and thus elevates model performance.

2. Convolution Layer. This is the main layer of a CNN, which performs convolution on inputted
images to extract image features. Generally, a convolution layer contains multiple convolution
kernels as filters so that it can obtain multiple image feature results.

3. Activation Layer. This layer is used for the nonlinear mapping of convolution results so that
the multi-layer network can be nonlinear and has a better expression ability. Commonly used
activation functions are the Relu function and the Sigmoid function.

4. Pooling Layer. This is also known as the down-sampling layer, and is the part that conducts
dimensionality reduction for extracted feature and data compression, so that overfitting can be
reduced and fault tolerance of the model can be improved. Pooling methods include MaxPooling
and AveragePooling, and MaxPooling is commonly used now.
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5. Fully Connected Layer. This is the result output layer that achieves the object classification
function. This layer integrates the feature information from every neuron in the upper
layer and classifies images according to the objective. There are generally two kinds
of classification functions, the Sigmoid function for binary classification and the Softmax function
for multiple classification.

Advantages of CNN in image recognition are revealed on a yearly basis in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [52]. The ImageNet dataset contains more than 13 million
pictures from 20,000 categories, and ILSVRC randomly draws a subset with 1000 image categories
from ImageNet for recognition contests (top-five error rate as the elevation index). In view of the
guiding significance of ILSVRC in CNN-based image recognition, this paper selected four classical
CNN models that relate to ILSVRC as the research basis, including:

• VGGNet [53] is a deep learning CNN model developed by Oxford University and Google
DeepMind. It is based on the AlexNet [54], which increases the number of neural network layers
from 8 to 16 or 19, and uses the small convolution kernel (3 × 3) to replace the big convolution
kernel (11 × 11). In ILSVRC 2014, VGGNet won second place in the overall event and was
champion in the positioning event; its top-five error rate is 7.50%.

• Inception [55] was developed by Szegedy et al., who changed the straight up and straight down
“serial” network into the “parallel” sparse connection network with multiple convolution modes,
and used the global average pooling layer to replace the full connected layer. InceptionV1 won
champion of ILSVRC 2014, and its top-five error rate is 6.67%.

• Xception [56] is the improvement of Inception in 2017, which is a kind of extreme inception
and uses the depthwise separable convolution layer to replace the convolution layer within
InceptionV3. Its ILSVRC top-five error rate is 5.50%.

• ResNet [57] can solve the problem of over-fitting caused by too many neural network layers by
introducing a residual network, and its network layers are deepened into 152 layers. ResNet won
the champion of ILSVRC 2015, and its top-five error rate is 3.57%, which is better than the average
ability of humans (5%).
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Figure 1. Scheme of the experimental procedure.

The prepared electrodes were analyzed by scanning electron microscopy (SEM) (Quanta 250 FEG,
Thermo Fisher Scientific, Waltham, MA, USA) at an accelerating voltage of 5 kV and a probe current of
100 pA.

A portion of the electrode material was used for the estimation of the specific surface area (SSA)
and pore size distribution (PSD) according to the Brunauer–Emmett–Teller (BET) equation. SSA was
estimated using the accelerated surface area and porosimetry system ASAP 2020 (Micromeritics
Instrument Co., Norcross, GA, USA). Degassing of the investigated samples was performed for 24 h at
50 ◦C under vacuum. Gas adsorption was carried out at −196 ◦C with N2 as the adsorbate.

Swagelok cells were assembled in a glove box (UNILab 1200/780, M. Braun Inertgas-Systeme
GmbH, Garching, Germany) with an oxygen and water level below 1 ppm to determine the capacitance
value. Electrodes with the same diameter and similar masses were placed in a Swagelok cell.
Both electrodes were separated by a porous glass fiber separator (GF/A, Whatman, Darmstadt, Germany,
thickness 270 µm), and then electrolyte, one molar solution of tetraethylammonium tetrafluoroborate
dissolved in acetonitrile (1 mol L−1 TEBF4 in ACN, 250 µL), was introduced into the system. A VMP3
potentiostat/galvanostat (Bio-Logic, France) was used for electrochemical testing. The techniques
included galvanostatic cycling with potential limitation (GCPL) with a current density up to 50 A g−1

(the value was based on the total weight of the electrode material) in the voltage range from 0 to 2.5 V
and electrochemical impedance spectroscopy (EIS) in the frequency range from 100 kHz to 10 mHz
with an amplitude of 5 mV.

A VMP3 potentiostat/galvanostat (Bio-Logic Science Instruments, Seyssinet-Pariset, France) was
used for electrochemical testing. GCPL was performed with a current density of C/20 and C/2 in the
potential range from 10 mV to 1.5 V vs. Li0/Li+ (where C corresponds to the theoretical capacity of
graphite, i.e., 372 mAh g−1).

3. Results and Discussion

The gas adsorption analysis data presented in Figure 2 shows that the highest SSA was
observed for the starch-based electrode material (1781 m2 g−1, solid green line) compared to that of
polytetrafluoroethylene (PTFE) (1651 m2 g−1, dashed orange line), and the lowest value was detected
for the CMC (1463 m2 g−1, dotted red line) bound electrode material. Based on the PSD data (Figure 2b),
it seems that starch does not block micropores to the same extent as the PTFE or CMC binders.
The starch-based electrode shows a cumulative micropore volume of Vmicro < 2 nm = 0.688, while
that for the PTFE-bound electrode material is smaller, with a total micropore volume of Vmicro < 2 nm
= 0.505; the value is even smaller for the electrode material with CMC (Vmicro < 2 nm = 0.453). The
blockage of pores in AC materials by CMC has been reported by Richner et al., supporting the findings
of this study [59]. Pristine AC powder (Kuraray YP80F) (dashed-dotted black line) has been added to
Figure 2 as a reference.

Figure 3. Operation procedure of Convolutional Neural Networks.

In this paper, all four CNN models adopted their classical mode, which are VGG16, InceptionV3,
Xception, and Resnet50.

4.2. Transfer Learning Methods

Transfer learning (TL) is an improvement for CNN, which transfers the pre-trained experience from
the source domain to the target domain so that the CNN model can possess a better image recognition
ability or deal with a new objective that has few labeled images [28,58,59]. It has been proven that
TL forms of CNN have good generalization, and compared to the result of prototypes, CNN-TL
models have a stronger image feature extraction ability outside the range of the training data [53,60,61].
However, as TL needs pre-trained experience transfer, CNN-TL models have a different working
process and different efficiencies in training and testing compared to their prototypes. Neither CNN nor
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CNN-TL have been tested in full/empty-load truck classification before. Thus, it is necessary to compare
CNN-TL and CNN models to determine their relation within the context of the comparison study.

Currently, for TL, the source domain direct adopts the ImageNet data set, and the main TL
methods include the bottleneck feature (BF) and fine tune (FT) [26,62,63]. Hence, in this paper, CNN-TL
models refer to the classical CNN models that adopt TL methods of BF or FT. The schematics of the two
TL methods are shown in Figure 4 and the related explanations are as follows. Here, the expression
of the convolution block (CB) refers to the combination of one convolution layer, one activation layer,
and one pooling layer; the abbreviation of FC refers to the fully connected layer.

• Bottleneck Feature: When a CNN model adopts the TL method of BF, all its CBs should be
frozen, while all its FCs are kept as trainable and can be costumed according to the classification
demand. The operational process of BF is shown in (a): (i) Transferring the pertained network
weights from the source domain (ImageNet in this case) to the whole CNN model; (ii) obtaining
the bottleneck feature with training data and through frozen BCs according to the recognition
objective; (iii)–(v) applying the bottleneck feature to the trainable FCs and training all FCs, so that
BF weights, including weights for both BCs and FCs, are obtained; (vi) applying the BF weights
to the origin CNN model, then its TL form of the CNN-BF model can be generated. Notably,
during the BF training process, the weights of all BCs are kept unchanged as the pretrained
weights from the source domain, because all BCs are frozen, while the weights of all FCs are
trained and updated.

• Fine Tune: Fine tune (FT) is based on BF, i.e., the secondary TL after obtaining the BF weights.
Before the processing of FT, part of the rear BCs should be unfrozen, i.e., allowing some BCs
to participate in the model training. The operational process of FT is shown in (b): (i) Applying
the BF weights to the whole CNN model as the pertained weights; (ii)–(iii) training the trainable
prat with training data according to the recognition objective, thus the FT weights are obtained;
(iv) applying the FT weights to the original CNN model, then its TL form of the CNN-FT model
can be generated. Notably, during the training process of FT, the weights of frozen BCs are kept
unchanged while the weights of unfrozen BCs and FCs are trained and updated.
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4.3. Models to Be Tested

In this paper, the deep learning models to be tested included four classical CNN models and their
eight TL forms that apply BF or FT. Hence, 12 models in total were involved (Table 1).

Table 1. Deep learning models to be tested.

CNNs TL Methods Models to be Tested

VGG16
None VGG16

BF VGG16-BF
FT VGG16-FT

InceptionV3
None InceptionV3

BF InceptionV3-BF
FT InceptionV3-FT

Xception
None Xception

BF Xception-BF
FT Xception-FT

Resnet50
None Resnet50

BF Resnet50-BF
FT Resnet50-FT

5. Results

The results section involves the preliminary assessment and results of the comparison study.
Both the training results (time; convergence; accuracy) and testing results (speed; accuracy) of models
are compared in this section. The testing results of speed and accuracy are the primary model selection
reference, because testing results correspond to the working effectiveness in an actual application.

Details about the deep learning model comparison study are shown in Figure 5.
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5.1. Preliminary

The comparison study was based on a large-scale landscape transformation project, which adopts
the counting FEQS logic, and thus requires the full/empty-load judgment for earthmoving trucks.
The project site was located in an open field that is quarantined from the public, and thus no interference
from external vehicles existed. All earthmoving trucks were uniform in models and loading capacity,
and truck buckets were uncovered. The surveillance camera system was deployed on the route of truck
transportation. Hence, the surveillance video was used as the data source.

Before the model comparison, enough truck images were collected to form the data sets for
training, validation, and testing. The principles of image collecting in this study were:

• Number: Over 500 images for each full-load or empty-load truck state should be collected.
• Labeling: Truck images are taken from the surveillance video by a screenshot, and are manually

labeled to guarantee their correctness.
• Size: Truck images should be uniform in size; in this case, the size should be around 350 × 250 pixels,

and the truck should be in the middle of the image and occupying about one third to one half
of the frame.

• Visibility: The truck bucket should be visible so that the full-load and empty-load condition can
be distinguished, and the truck in the image should be distinguishable from the background,
i.e., the image should be collected and become usable data only if its truck loading condition can
be distinguished by human eyes.

In practice, 2454 images were taken and included as the data for the deep learning study following
the above principles, thus they were uniform in size, manually labeled, and have good distinguishability
by visual sight. The image collecting spanned three months (July to September) under different lighting
or weather conditions. Among 2454 images, 1588 were full-load truck images and 866 were empty-load
truck images. On the basis of fully utilizing the image data, all collected images were randomly divided
into three sets according to the ratio of training set:validation set:testing set = 6:3:1. For the three
sets: (i) The training set included labeled images of full/empty-load trucks and was used to train deep
learning models; (ii) the validation set included labeled images of full/empty-load trucks, which did
not participate in the model training but was used to test the training performance of models at the
end of each training epoch; (iii) the testing set included unlabeled images of trucks, which was used
to test the generalization ability of trained models, i.e., the actual working performance. Details of the
three data sets are shown in Table A1 (in Appendix A).

Based on the three data sets, the 12 deep learning models were trained, validated, and tested.
The training set was first uploaded to train deep learning models. During the training, images in the
training or validation sets were used to test the model training performance. Finally, after finishing all
training epochs, the trained model was tested by the testing set in full/empty-load trucks classification
and working performance of models can be revealed. Notably, classification errors in the test results were
manually obtained. Training/testing results of the 12 models can be seen in Table A2 (in the Appendix A).



Appl. Sci. 2019, 9, 4871 11 of 20

Since the data sets of training and validation here were disproportional in image numbers of the
full-load and empty-load state, a contrast that adopts proportional data sets was attached to show the
possible effect of disproportions. Hence, the number of full-load truck images in the original training
and validation sets were reduced to the equal number of empty-load truck images, and the 12 deep
learning models were trained and tested again under the reduced but proportional data sets. Details
of these proportional data sets and training/testing results of this new round are shown in Tables A3
and A4 (in Appendix A). The contrast between Tables A2 and A4 shows that disproportions can cause
value changes in the training/testing results of deep learning models, whereas these changes are slight
and do not affect the ranking among deep learning models. Hence, the effect of disproportions can
be considered as acceptable, and this paper adopted the original disproportional data sets for the
comparison study as they can fully utilized the collected images.

The hardware environment used in this study included the following: Intel Core i7-8700 CPU,
NVIDIA GTX 1070 Ti GPU, and 32 GB RAM. The software environment includes: Windows10 OS,
Python3.6, Keras2.2.4, and Tensorflow-gpu1.12.0. The training setting included the epoch was set as
100, batch size was set as 10, training images were resized into 224 × 224 pixels, optimizer adopted the
SGD, learning rate was set as 0.0001, and momentum was set as 0.9. Furthermore, all CNN-FT models
only unfroze the last CB.

5.2. Study Results

Comparison study results were determined as:

• Training time costing: The time costing of 100 epochs of each model are shown in Figure 6.
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Figure 6. Training time costing results.

It can be seen that among 12 models, the VGG16-BF was the fastest (113 s) and the Xception was
the slowest (3604 s).

• Accuracy change during training: Generally, in the training process of deep learning models,
with the constant updating of neuron parameters, the accuracy of the model in truck classification is
elevated. To reflect the accuracy changes during training, two accuracy curves based on the training
set itself and the validation set, respectively, were adopted for each model, and by analyzing
the two accuracy curves, the model training performance can be evaluated. Generally, models
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with a smaller curve fluctuation during accuracy elevation have better training convergence, and
models with two closer accuracy curves of the training set and the validation set and higher
accuracy have a better training performance. The accuracy curves of each model in the training
process are shown in Figure 7. Here, the front mark of NTL refers to not adopting TL, while BF or
FT refers to the corresponding TL; the rear mark of _Train refers to the accuracy curve basing on
the training set, while _Validation refers to the accuracy curve based on the validation set.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 19 
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It can be seen that, among the 12 models, the VGG16-FT in (a) had the best convergence and
training performance. For VGG16-FT, both its accuracy curves based on the training set and validation
set had small fluctuation (only about 2% after the 20th epoch), thus its convergence can be considered
as good. Meanwhile, its two accuracy curves were the closest by contrast, and at the later stage
of training, its accuracy based on the training set approached 100% while its accuracy based on the
validation set approached 98% (the highest among the 12 models), thus its training performance can
also be considered as the best. Other relatively good deep learning models include the VGG16-BF,
the InceptionV3-BF, and the Xception-BF in (a), (b), and (c). The VGG16, in (a), was the worst
in training outcomes compared to the other models, as both its accuracy curves had a low accuracy
of 68% before the 78th epoch, and did not break through the 90% accuracy at the end of the training.
The InceptionV3-FT, in (b), and the Resnet50-FT, in (d), both had poor training convergence, as their
accuracy curves based on the validation set had large fluctuation (over 20% and 40%, respectively),
and the differences between their two curves were also large.

• Testing results of trained models: As deep learning models are trained, the testing set can be
used to test the models’ usability and working performance. Here, testing accuracy and speed
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are the main indicators for evaluating a model, and to reach a satisfactory application, the truck
classification accuracy should be over 95% to be seen as qualified, and the working speed should
be as fast as possible. The testing accuracy and testing speed results are shown in Figures 8 and 9.
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Figure 9. Testing speed result.

It can be seen that, among 12 models, the VGG16-FT had the highest accuracy of full/empty-load
truck classification (98%), and its test speed was also the fastest (41.1 images/s). VGG16-BF, InceptionV3-BF,
and Xception-BF all reached the qualified level of testing accuracy (over 95%) but had slower testing
speeds than the VGG16-FT. The Xception had the lowest testing accuracy of the full/empty-load truck
classification (40.6%). The InceptionV3-BF had the slowest testing speed (1.1 images/s).

Evidently, the vision-based deep learning was able to replace human eyes for full/empty-load
truck classification in counting FEQS as the VGG16-FT showed a good performance that exceeded
the accuracy goal, and three CNN-BF models just reached the accuracy goal. Hence, the core work
feasibility of the proposed FEQS framework was proven.
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6. Discussion

Based on the results of the comparison study, further discussion is provided to reveal more useful
information for the implementation of proposed FEQS.

6.1. In the Aspect of Model Training Time

As Figure 6 shows, the training time costings of different forms of the four classical CNNs showed
a similar tendency, i.e., for a CNN, its prototype model had the longest training time, its TL form of the
CNN-FT model had the second longest training time, while its TL form of the CNN-BF model was
significantly faster than the other two forms. The reasons for this tendency can be concluded as: (i) The
CNN prototypes have the most trainable parameters as the whole neural network participates in the
model training, hence their training time is the longest; (ii) TL forms freeze some CBs, hence they
have a shorter training time than prototypes; and (iii) CNN-BF models freeze all CBs while CNN-FT
models only freeze part of CBs, hence CNN-BF models have the shortest time costing. In summing up,
adopting CNN-BF can evidently shorten the model training time.

Since deep learning models are generally trained in high-performance workstations and then
migrate to terminal devices for field practice, the training time advantage only reduces deployment
time but does not provide a better application effect. Hence, in this paper, the training time costing is
not considered as a main indicator for identifying the optimal model but a model selection reference.

6.2. In the Aspect of Model Training Performance

As Figure 7 shows, during the training process, TL forms of CNN generally have advantages
to their prototypes in the training accuracy, but this advantage was not absolute. Detailed speaking,
for model training accuracy after 100 epochs: VGG16-BF and VGG16-FT were all better than the
VGG16, in (a); the InceptionV3-BF was better than the InceptionV3, and the Xception-BF was better
than the Xception, in (b) and (c); and, however, for the Resnet50, its prototype was better than all its TL
forms, in (d). For training convergence, though the VGG16-FT had the best convergence among the
12 models, other CNN-FT models just had worse convergence than their prototypes, and CNN-BF
models generally had better convergence than their prototypes. Since two accuracy curves of CNN-BF
models were generally good in fluctuation control and closeness, CNN-FT models, other than the
VGG16-FT, had very drastic fluctuation in the validation set-based accuracy curves and large differences
between the two accuracy curves.

To summarize, besides the VGG16-FT, CNN-BF models generally had better overall training
performance than the prototypes and CNN-FT models, and special attention should be paid to the
Resnet50 as its prototype had better training accuracy than its TL forms. The training performance
reflects the stability of the deep learning model and should be considered in model selection.

6.3. In the Aspect of Model Testing Performance

As Figures 8 and 9 show, all CNN prototypes had poor testing accuracy that was lower than their TL
forms, and the highest accuracy among prototypes was just 81% for the VGG16. The VGG16-FT achieved
the best accuracy of 98%, and the other three models of the VGG16-BF, InceptionV3-BF, and Xception-BF
all had good accuracy of over 95%. For testing speed comparison, CNN-FT models were slightly
faster than the prototypes while CNN-BF models were evidently slower than both the prototypes and
CNN-FT models. The VGG16-FT also had the fastest testing speed of 41.1 images/s, thus just besides
the prototype of VGG16, the VGG16-FT had a significant speed advantage (nearly double the speed
of other models). Summing up, this comparison study showed that TL forms of CNN have advantages
in testing accuracy, and CNN-FT models have advantages in testing speed.

Summing up, it can be concluded that the VGG16-FT was optimal on the whole, as it had
the highest accuracy, fastest operation speed, and best training convergence. Hence, based on this
comparison study, the VGG16-FT is recommended as the most suitable model for the proposed
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vision-based FEQS method. Meanwhile, it can be seen from the discussion of results that for the
full/empty-load truck binary classification problems, TL forms of CNN have advantages to CNN
prototypes because CNN-BF models are generally better in model training and both CNN-BF and
CNN-FT models are better in model testing than prototypes. As the testing accuracy results of CNN
prototypes all are lower than 85%, adopting CNN prototypes in actual application needs consideration,
because poor accuracy fails to reach the working goal. For TL forms of CNN, CNN-BF models have
advantages in both training and testing accuracy, CNN-FT models have advantages in testing speed
and are also good in testing accuracy.

Hence, model choice suggestion in applications can be provided: The adopted model should be
chosen according to the working demands and conditions, i.e., when the working accuracy is of first
priority, CNN-BF models can be recommended as they are better in accuracy; when real-time working
is required, CNN-FT models can be recommended as their fast operation speed can reduce the working
time delay.

7. Conclusions

This paper presented the framework of a novel, automated field earthmoving quantity statistics
(FEQS) that mainly applies vision-based deep learning for full/empty-load truck classification as the
core work and counts full-load trucks (Figure 2). The proposed FEQS contributes to relieving current
problems in FEQS of manual, laborious, high cost, truck traffic interference, continuous maintenance
demands, and application limitations, because it utilizes the field-equipped surveillance video system
and deep learning CNN-related image recognition models to achieve unmanned and non-contact truck
load condition judgement.

As deep learning CNN-related models (prototypes and TL forms) are numerous, the authors
introduced a comparison study to test and evaluate CNN-related models’ performance in full/empty-load
earthmoving truck classification. Thus, the core work of the proposed FEQS framework can be assessed
in terms of feasibility, and well-performed models can be identified for model choice suggestions in future
FEQS implementation.

The comparison study involved 12 deep learning models constructed by four classical CNNs
of VGG16, InceptionV3, Xception, and Resnet50 and two popular TL methods of BF and FT. Based on
a proper earthmoving project scenario, the training and testing results of the 12 models were obtained.
The study results showed that, on the whole, the VGG16-FT was the optimal model among the
12 models, as it had the highest working accuracy of 98% and the fastest truck image classification
speed of 41.1 images/s. In addition, the VGG16-BF, InceptionV3-BF, and Xception-BF all reached
the satisfactory goal of a working accuracy of over 95%, and showed advantages in model training,
but their working speeds were not as fast. Hence, the VGG16-FT was able to achieve full/empty truck
classification in the application level, and other three CNN-BF models also had further application
potential. It can be concluded that, through the comparison study, the core work of the proposed
vision-based FEQS framework was proven as theoretically feasible.

Further discussion showed that compared to CNN prototypes, their TL forms generally have
a better working accuracy and training performance in full/empty truck classification, and the four
classical CNN prototypes all have relatively lower working accuracy than their TL forms. For CNN-TL
models, generally, CNN-BF models have the advantage in working accuracy, while CNN-FT models
have the advantage in working speed. Hence, in industrial applications, TL forms of CNN are
recommended to replace their prototypes, and the specific choice of CNN-TL models depends on the
working demand. Model choice suggestions are CNN-BF models are more suitable for tasks with
a high accuracy demand, while CNN-FT models are more suitable for real-time tasks.

This paper provides a reference and support for the application of vision-based deep learning CNN and
CNN-TL models in earthmoving operations, civil engineering management, and intelligent engineering.

Limitations about the current study lie on the fact that the proposed vision-based FEQS requires
quarantined projects in an open field that use uniform and uncovered trucks. However, the requirement
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for non-occluded scenes is a common limitation of vision-based methods, and the other constraints are
fulfilled in a large number of infrastructure projects as indicated in the literature review. Nevertheless,
future work will involve applying vehicle recognition before performing full/empty classification
to exclude unwanted vehicles and to extract truck information in advance. Moreover, using machine
vision to recognize the load weight of covered trucks will also be studied in the future to replace
current weighing methods with a non-contact method.
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Appendix A

Table A1. Classification of applied data sets.

Data Sets Training Set Validation Set Testing Set

Full-Load Trucks 950 images 480 images 244 images
Empty-Load Trucks 520 images 260 images

Objective For model training For model validation during training For model performance testing

Table A2. Results of the deep learning model comparison.

Models Training Time (s) Testing Speed
(Images/s) Testing Accuracy (%)

VGG16 2004 38.7 80.7
VGG16-BF 113 14.9 95.9
VGG16-FT 1911 41.1 98.0

InceptionV3 2103 10.9 68.0
InceptionV3-BF 214 1.1 96.3
InceptionV3-FT 1727 12.7 88.5

Xception 3604 18.0 40.6
Xception-BF 410 2.3 96.3
Xception-FT 1713 20.7 91.0

Resnet50 2706 15.3 66.4
Resnet50-BF 412 1.8 92.2
Resnet50-FT 1705 17.6 91.8

Table A3. Classification of reduced but proportional data sets.

Data Sets Training Set Validation Set Testing Set

Full-Load Trucks 520 images 260 images 244 images
Empty-Load Trucks 520 images 260 images

Objective For model training For model validation during training For model performance testing
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Table A4. Results of the deep learning model using proportional data sets.

Models Training Time (s) Testing Speed
(Images/s) Testing Accuracy (%)

VGG16 1703 40.1 90.2
VGG16-BF 110 14.8 98.8
VGG16-FT 1169 42.5 99.6

InceptionV3 1509 10.5 35.7
InceptionV3-BF 113 1.0 97.1
InceptionV3-FT 1109 12.6 91.0

Xception 2431 18.9 35.0
Xception-BF 213 2.3 97.5
Xception-FT 1104 21.2 94.7

Resnet50 1806 16.0 64.3
Resnet50-BF 213 1.8 92.6
Resnet50-FT 1104 19.3 91.8
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