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Abstract: In this article, we probe the multiple-slip effects on magnetohydrodynamic unsteady
Casson nano-fluid flow over a penetrable stretching sheet, sheet entrenched in a porous medium
with thermo-diffusion effect, and injection/suction in the presence of heat source. The flow is
engendered due to the unsteady time-dependent stretching sheet retained inside the porous medium.
The leading non-linear partial differential equations are transmuted in the system of coupled nonlinear
ordinary differential equations by using appropriate transformations, then the transformed equations
are solved by using the variational finite element method numerically. The velocity, temperature,
solutal concentration, and nano-particles concentration, as well as the rate of heat transfer, the skin
friction coefficient, and Sherwood number for solutal concentration, are presented for several physical
parameters. Next, the effects of these various physical parameters are conferred with graphs and
tables. The exact values of flow velocity, skin friction, and Nusselt number are compared with
a numerical solution acquired with the finite element method (FEM), and also with numerical results
accessible in literature. In the end, we rationalize the convergence of the finite element numerical
solution, and the calculations are carried out by reducing the mesh size.

Keywords: MHD; FEM; Casson nano-fluid; heat source; multiple slip; porous medium

1. Introduction

The basic idea of the non-slip condition is concerned with the Navier Stokes theory. To study the
temperature and velocity, numerous authors have found both the analytical and numerical solution by
the implementation of non-slip boundary conditions. The utmost significance of slip-conditions in
nano-channels has stimulated, to a great extent, interest in the study of vibrating values [1]. Now it is
not unknown that if fluid contains concentrated suspensions, in that case the slip could be stirring.
Soltani and Yilmazer [2] have performed by parallel disk rheometer with prominence on the wall
slip phenomena on the rheological characterization of extremely filled suspensions consisting of
Newtonian matrix and diverse with two different power sizes of aluminum and two different sizes
of bed glass. In the articulations of fluid-like as suspension, emulsion foams, and polymer solution,

Appl. Sci. 2019, 9, 5217; doi:10.3390/app9235217 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0002-5501-4181
http://dx.doi.org/10.3390/app9235217
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/23/5217?type=check_update&version=2


Appl. Sci. 2019, 9, 5217 2 of 21

partial velocity slip can occur on the stretching boundary. In an assortment of industry procedures,
the influences of slip can crop-up at the boundary of pipes, surfaces, and walls. The Navier Stoke
velocity slip conditions are customary to approach in the study of slip phenomenon.

There are hundreds of applications in industries and engineering, and magneto-hydrodynamic
fluid flows through stretching sheet have achieved much importance in recent days, according to
Mabbod et al. [3]. Applications as well as the liquid coating on the photographic films, boundary layers
throughout the liquid film in the concentration procedure, and the aerodynamic excrescence of plastic
sheets exist. With this, the extensive range of applications of magnetohydrodynamic flow that can
be found in copious fields like in electronic cooling process, in boilers, heat lagging, and metal
extrusion, geothermal system, nuclear process, micro-magnetohydrodynamic pumps, underground
water system, in energy storage units, biological conveyance, and in the thermal energy procedure has
played a very important role. Unsteady flow due to the stretching sheet has been scrutinized by Pop
and Na [4]. Afterward, Sheridan et al. [5] investigated the significance of variable wall temperature
and variable heat flux in the boundary layer flow over the unsteady stretching surface with similarity
transformation. An unsteady stagnation point flow of the viscous fluid caused by a stretching sheet
under the influence of slip condition has been reported by Bhattacharyya et al. [6]. The impact of
the magnetic field on the two-dimensional flow of nano-fluid with and without slip condition was
conferred by Khan et al. [7] and Mohyud-Din et al. [8,9], correspondingly. Khan et al. [10] investigated
two-dimensional electrically conducting a flow of nano-fluid due to the stretching sheet under the
impact of convective boundary condition.

The wide-ranging applications of non-Newtonian liquids in numerous industries such as molten
plastics, nuclear waste disposal, artificial fibers, foodstuffs, transpiration cooling, and petroleum
reservoirs have gained fascination to analyze their characteristic comportment. Casson fluid is one sort
of fluid model for non-Newtonian fluid. Casson fluid has an inestimable viscosity at zero rates of shear
and have zero viscosity at an infinite rate of shear and the yield stress under which there is no flow
occurs. Consequently, Casson-fluid could be defined such as shear-thinning liquid or pseudo-plastic
fluid. The flow characteristic of blood can precisely be defined by Casson fluid at the small shear
rates. Sharada and Shankar [11] scrutinized numerically Soret and Dufour effects, thermal radiation,
and chemical reaction on fluid flow, and heat and mass transfers of Casson fluid over an exponentially
stretching surface. Ullah et al. [12] observed that unsteady MHD diverse convection slip flow of
Casson fluid towards non-linearly stretching sheet soaked in a porous medium in existence of slip
and convective boundary conditions occurs. Furthermore, Ullah et al. [13] acquired numerical results
for hydro-magnetic Falkner Skan flow of the Casson fluid past a moving wedge, along with heat
transfer. Pushpalatha et al. [14] deliberated thermal diffusion effects and radiation on Casson-fluid
flow with convective boundary conditions. Pushpalatha et al. [15] deliberated the thermos-diffusion
consequences on the Casson fluid over an unsteady stretching surface in the existence of thermal
radiations and the magnetic field. They found that the Casson parameters and unsteadiness parameter
have the propensity to denigrate the velocity dissemination. Uddin et al. [16] studied the free
convective boundary layer flow of nano-fluid over a penetrable upward horizontal plate in a porous
medium with thermal convective boundary conditions.

Recently, Rahman et al. [17] explored the hydro-magnetic slip flow of water-based nano-fluid
over a wedge with a convective surface in the existence of heat generation or absorption. Ibrahim and
Shankar [18] analyzed magneto-hydrodynamic boundary layer flow and heat transfer of nano-fluid
past over penetrable stretching sheet using velocity, thermal, and solute slip boundary conditions.
Das [19] presented an imperative numerical inquiry on the convective heat transfer performance
of nanofluids over a penetrable stretching surface in the presence of partial slip, thermal buoyancy,
and internal heat generation/absorption. The transfer of heat, investigated through the thermal
radiation, has enormous applications in different technical processes, satellites, nuclear power-plants,
astronomical vehicles, gas turbines, comprising missiles, and in several propulsion devices for
jets. Linear radiations are not systematically in effect for the enormous temperature alteration.
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Abbas et al. [20] deliberated the consequences of radiation in the existence of a uniform magnetic
field of nano-fluid on the curved stretching surface by integrating the slip effect. In recent times,
Makinde et al. [21] deliberated a numerical study of the effects of radiation on chemically reacting
MHD nano-fluid prejudiced by the heat source/sink, and the collective heat and mass transfer analysis
aimed at mixed convection flow over the vertical surface, with radiation and chemical reaction
explained by Ibrahim et al. [22]. Prasannakumara et al. [23] deliberated the velocity slip effects,
temperature jump, solutal slip, and thermal radiation, on steady flow, and the transfer of heat and
mass of incompressible Jeffrey nano-fluid over the horizontal stretching surface. Imtiaz et al. [24]
scrutinized the unsteady MHD flow of the curved stretching surface.

The literature remains silent whether we have to investigate the impact of multiple slips on
MHD unsteady Casson nano-fluid flow, heat, and mass transfer in the presence of heat source with
thermo-diffusion effect over a stretching/shrinking sheet. The objective of this article was to prolong
the recent work of Fazle Mabood and Standford Shateyi [25]. Appropriate similarities have been used
for transformation, and the governing non-linear partial differential equations are rendered in the
non-dimensional and non-linear system of ODEs. The resulting system of non-linear ODEs has been
solved numerically with an efficient and validated variational finite element method (FEM) with the
boundary conditions. We also use a special case for the existing model to compare our outcomes along
with previous studies. A parametric study has been performed to inquire into the mass and heat
transfer characteristics and also the impact of different parameters of the flow. After that, we have
provided a numerical comparison of our results and discussed them with graphs. In future studies,
transient flow with slip effects in the presence of mixed convection and chemical reaction at the sheet
can be examined.

2. Mathematical Modeling

The unsteady two-dimensional MHD flow of an incompressible fluid and Casson nano-fluid
viscous flow over an electrically conducted stretching/shrinking sheet in the presence of heat source
was considered. We choose an xy-ordinate system as the measurement of the sheet will be taken with
x-, y-axis, and the y-axis along the vertical direction of the sheet, as given in Figure 1. The sheet is
moving with non-uniform velocity U(x, t) = ax/(1− λt) since a is the stretching rate along the x-axis
but λt is positively constant, as by property λt < 1. The transverse magnetic field is supposed be
the function of distance from the origin and is defined as B(x) = B0

√
x with B0 6= 0, where B0 is the

strength of the magnetic field. The induced magnetic field is negligible as compared to the applied
magnetic field. The free stream temperature is supposed to be T∞, the free mass concentration is C∞,
and the nano-particle concentration is E∞. The governing equations for flow can be put into the form
as in ([25,26])

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t + u ∂u

∂x + v ∂u
∂y

= ν(1 + 1
β )

∂2u
∂y2 −

σB2(x)u
ρ + gβT(T − T∞) + gβC(C− C∞) + gβE(E− E∞)− ν

κ′ u
(2)

∂T
∂t + u ∂T

∂x + v ∂T
∂y

= α(1 + 16T3
∞σ∗

3k∗κ ) ∂2T
∂y2 + τ[DB

∂ E
∂y

∂T
∂y + DT

T∞
( ∂T

∂y )
2] + Q(T−T∞)

ρCp
+ DTC

∂2C
∂y2

(3)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 + DT

∂2T
∂y2 (4)

∂E
∂t

+ u
∂E
∂x

+ v
∂E
∂y

= DB
∂2E
∂y2 +

DT
T∞

∂2T
∂y2 (5)

where x and y are the co-ordinates in the x-axis and y-axis; u and v are the velocity components
along the x-axis and y-axis respectively; α, ν, σ, ρ are the thermal diffusivity, kinetic viscosity,
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electrical conductivity, and density of fluid, respectively; g is the acceleration due to gravity; βT is
the thermal expansion coefficient; βC is the solutal concentration expansion coefficient; βE is the
nano-particle concentration expansion coefficient; T is the temperature; C is the solutal concentration;
E is the nano-particle concentration; DM is the molecular diffusivity; DT is the thermal diffusivity; DB is
the Brownian diffusivity; σ∗ is the Stefan-Boltzmann constant; k∗ is the mean absorption coefficient;
T∞ is the stream temperature; Q is the uniform volumetric heat generation/absorption; Cp is the
specific heat of fluid; Cs is the concentration of susceptibility; and KT is the thermal diffusion ratio.
The boundary conditions for the above mathematical model are (see [25]):

u = U(x, t) + Uslip, v = vw, T = Tw(x, t) + Tslip, C = Cw(x, t) + Cslip, E = Ew(x, t) + Eslip,

as y = 0 (6)

u→ 0, T → T∞, C → C∞, E→ E∞, as y→ ∞, (7)

where x and y are the co-ordinates; u and v are the velocity components along the x-axis and y-axis,
respectively; α,ν, σ, ρ are the thermal diffusivity, kinetic viscosity, electrical conductivity and density of
fluid, respectively; g is the acceleration due to gravity; βT is thermal expansion coefficient; βC is the
solutal concentration expansion coefficient; βE is the nano-particle concentration expansion coefficient;
T is the temperature; C is the solutal concentration; E is the nano-particle concentration; DM is
the molecular diffusivity; DT is the thermal diffusivity; DB is the Brownian diffusivity; σ∗ is the
Stefan-Boltzmann constant; k∗ is the mean absorption coefficient; T∞ is the stream temperature;
Q is the uniform volumetric heat generation/absorption; Cp is the specific heat of fluid; Cs is the
concentration of susceptibility; and KT is the thermal diffusion ratio.

Where the injection/suction velocity as vw = v0/
√

x , Tw(x, t) is the temperature of sheet and
Cw(x, t), Ew(x, t) are concentrations at surface of the below form (see [25]):

Tw(x, t) = T∞ + T0

(
ax

2ν(1−λt)2

)
Cw(x, t) = C∞ + C0

(
ax

2ν(1−λt)2

)
Ew(x, t) = E∞ + E0

(
ax

2ν(1−λt)2

)
where T0, C0, and E0 are the reference temperature, reference solutal concentration, and reference
nano-particle concentration respectively, such that 0 ≤ T0 ≤ Tw, 0 ≤ C0 ≤ Cw and 0 ≤ E0 ≤ Ew,
with these above expressions being valid if (1− λt) > 0.

Usually, the stream function Ψ is defined as u = ∂Ψ
∂y and v = − ∂Ψ

∂x that the Equation (1) is satisfied.
We introduce similarity transformations to solve the above equations (see [25,26]):

η =

√
a

ν(1− λt)
y, ψ =

√
aν

(1− λt)
x f (η), θ(η) =

T − T∞

Tw − T∞
,

φ(η) =
C− C∞

Cw − C∞
, ξ(η) =

E− T∞

Ew − E∞

(8)

In view of the above similarity transformations of Equation (7), PDEs from (1)–(5) transform into
the following system of nonlinear ODEs:

(1 +
1
β
) f ′′′ + f f ′′ − f ′2 − σ(

η

2
f ′′ + f ′)−M f ′ + λ1θ + λ2φ + λ3ξ − kp f ′ = 0, (9)

(1 + R)
1

Pr
θ′′ − f ′θ + f θ′ − σ

(η

2
θ′ + 2θ

)
+ Nbφ′θ′ + Ntθ′2 + Qθ + Ndφ′′ = 0 (10)

1
Sc

φ′′ − f ′φ + f φ′ − σ
(η

2
φ′ + 2φ

)
+ Srθ′′ = 0 (11)

ξ ′′ − Le
[

f ′ξ − f ξ ′ + σ
(η

2
ξ ′ + 2ξ

)]
+

Nt
Nb

θ′′ = 0 (12)
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for the above problem the transformed boundary conditions are:

f (0) = fw,

f ′(0) = 1 + S f f ′′(0), (13)

θ(0) = 1 + Sθθ′(0), (14)

φ(0) = 1 + Sφφ′(0), (15)

ξ(0) = 1 + Sξ ξ ′(0), (16)

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, ξ(∞)→ 0, (17)

where unsteadiness parameter σ = λ/a, M is the magnetic field parameter, Pr is the Prandtl number,
Nb is the Brownian motion parameter, Nt is the thermo-phoresis parameter, β is the Deborah number,
Sc is the Schmidt number, R is the thermal radiation parameter, λ1, λ2, and λ3 are the buoyancy
parameters, kp is the permeability parameter, Nd is the Dufour parameter, Sr is the Soret parameter,
and fw is the Suction/injection parameter.

Figure 1. Physical sketch with xy-coordinates.

The primes show the differentiation with respect to η. The parameters used in Equations (8)–(11)
are explained as:
M = [ σ(1−λt)

ρa B0]
1/2, Pr = ν/α, Nb = τDB(Cw − C∞)/ν, Nt = (τDT(Tw − T∞)/νT∞, β =

k0a/(1− λt),Sc = ν
Dm

, Le = σ
DB

, R = (16σ∗T3
∞)/(3k∗K), σ = λ/a, λ1 = (gβTT0)/(2aν), λ2 =

(gβCC0)/(2aν), λ3 = (gβEE0)(2aν), Sr = (DTT0)/νC0,Nd = (DmKTC0)/(CsCpT0), kp = ν(1− λt)/a,
fw = −vw(1− γt)1/2/(νa)1/2,

Also, the local skin friction co-efficient, local Nusselt number, and local Sherwood number are
explained as below

C f =
µ

ρ(Uw)2 (
∂u
∂y

)
y=0

(18)

Nu =
x

k(T − T∞)
[k(

∂T
∂y

)y=0 −
4σ∗
3k∗ (

∂T4

∂y
)y=0] (19)

Sh = − x
(C− C∞)

(
C
∂y

)
y=0

(20)

when Equation (7) is substitited into Equations (17)–(19), the final dimensionless form is obtained;
C f r = (Rex)

1/2 = f ′′(0), Nur = Nu/(Rex)
1/2 = −(1 + R)θ′(0), Shr = Sh/(Rex)

1/2 = −φ′(0) where
the local Reynolds number is Rex, reduced skin friction is C f r, reduced Nusselt number is Nur, and the
reduced Sherwood number is Shr.
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3. Finite Element Method Solutions

We solve the system of non-linear boundary value problem that is given in Equations (8)–(11)
numerically by applying the finite element method (FEM) subjected with the boundary conditions
(12)–(16). The FEM is extremely effectual and has been applied to study different problems in
fluid mechanics, CFD, mass transfer, heat transfer, solid mechanics, and also in many other fields.
The general detail of the finite element method (FEM) can be found in Raddy [26–28]. Reddy [29]
gives a general detail of the variational finite element method, which also found that the finite element
method (FEM) is employed in commercial software like ADINA, ANSYS, MATLAB, and ABAQUS.
Swapna et al. and Rana et al. [30,31] explain that the variational finite element method solves the
boundary value problem very efficiently and accurately. To solve the non-linear boundary value
problem (8)–(11) by using finite element method (FEM), along with boundary conditions (12)–(16),
to apply FEM, first we have to consider:

f ′ = g. (21)

The Equations (8)–(11) take the form

(1 +
1
β
)g′′ + f g′ − g2 − σ(

η

2
g′ + g)−Mg + λ1θ + λ2φ + λ3ξ − kpg = 0, (22)

(1 + R)
1

Pr
θ′′ − gθ + f θ′ − σ

(η

2
θ′ + 2θ

)
+ Nbφ′θ′ + Ntθ′2 + Qθ + Ndφ′′ = 0 (23)

1
Sc

φ′′ − gφ + f φ′ − σ
(η

2
φ′ + 2φ

)
+ Srθ′′ = 0 (24)

ξ ′′ − Le
[

gξ − f ξ ′ + σ
(η

2
ξ ′ + 2ξ

)]
+

Nt
Nb

θ′′ = 0, (25)

The corresponding boundary conditions now reduce to the following form:

f (0) = fw, g(0) = 1 + S f g′(0), θ(0) = 1 + Sθθ′(0), φ(0) = 1 + Sφφ′(0),

ξ(0) = 1 + Sξ ξ ′(0), (26)

h(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, ξ(∞)→ 0, (27)

3.1. Variational Formulations

The variational formulation is associated with Equations (20)–(24) over a linear element (ηc, ηc+1)

is given by ∫ ηc+1

ηc
w1{ f ′ − g}dη = 0, (28)∫ ηc+1

ηc
w2{(1 +

1
β
)g′′ + f g′ − g2 − σ(

η

2
g′ + g)−Mg + λ1θ + λ2φ + λ3ξ − kpg}dη = 0, (29)∫ ηc+1

ηc
w3{(1 + R)

1
Pr

θ′′ − gθ + f θ′ − σ
(η

2
θ′ + 2θ

)
+ Nbφ′θ′ + Ntθ′2 + Qθ + Ndφ′′}dη = 0, (30)∫ ηc+1

ηc
w4{

1
Sc

φ′′ − gφ + f φ′ − σ
(η

2
φ′ + 2φ

)
+ Srθ′′}dη = 0, (31)∫ ηc+1

ηc
w5{ξ ′′ − Le

[
gξ − f ξ ′ + σ

(η

2
ξ ′ + 2ξ

)]
+

Nt
Nb

θ′′}dη = 0, (32)

where w1, w2, w3, w4, and w5 are weight functions and maybe viewed as variations in f, g, θ, φ, ξ resp.
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3.2. Finite Element Formulations

The equation of finite element model that is gained from the Equations (27)–(31) by exchanging
the FEM approximation in the form:

f̄ =
3

∑
j=1

f̄ e
j ψe

j , ḡ =
3

∑
j=1

ḡe
j ψ

e
j , θ̄′ =

3

∑
j=1

θ̄′ej ψe
j , φ̄′ =

3

∑
j=1

φ̄′ej ψe
j (33)

with w1 = w2 = w3 = w4 = w5 = ψe
i (i = 1, 2, 3), where the shape function ψe

i are the shape functions
for the element (ηc, ηc + 1) and are taken as

ψe
1 = (ηc+1−ηc−2η)(ηc+1−η)

(ηc+1−ηc)2 , ψe
2 = 4(η−ηc)(ηc+1−η)

(ηc+1−ηc)2 ,

ψe
3 = − (ηc+1−ηc−2η)(η−ηc)

(ηc+1−ηc)2 , ηc ≤ η ≤ ηc+1.
(34)

Therefore, the finite element model equations are given by
[W11] [W12] [W13] [W14] [W15]

[W21] [W22] [W23] [W24] [W25]

[W31] [W32] [W33] [W34] [W35]

[W41] [W42] [W43] [W44] [W45]

[W51] [W52] [W53] [W54] [W55]




f
g
θ

φ

ξ

 =


b1

b2

b3

b4

b5

 (35)

where [Wmn] and bm (m,n = 1,2,3,4,5) are the matrices and are given as:

[W11
ij ] =

∫ ηc+1

ηc
ψe

i

dψe
j

dη
dη, W12

ij = −
∫ ηc+1

ηc
ψe

i ψe
j dη, [W13

ij ] = [W14
ij ] = 0, [W15

ij ] = [W21
ij ] = 0,

[W22
ij ] = −(1 + 1

β
)
∫ ηc+1

ηc

dψe
i

dη

dψe
j

dη
dη +

∫ ηc+1

ηc
f̄ ψe

i

dψe
j

dη
dη −

∫ ηc+1

ηc
ḡψe

i ψe
j dη − A

η

2

∫ ηc+1

ηc
ψe

i

dψe
j

dη
dη

−
∫ ηc+1

ηc
ḡψe

i ψe
j dη − A

∫ ηc+1

ηc
ψe

i ψe
j dη −M

∫ ηc+1

ηc
ψe

i ψe
j dη − kp

∫ ηc+1

ηc
ψe

i ψe
j dη

[W23
ij ] = λ1

∫ ηc+1

ηc
ψe

i ψe
j dη, W24

ij = λ2

∫ ηc+1

ηc
ψe

i ψe
j dη, W25

ij = λ3

∫ ηc+1

ηc
ψe

i ψe
j dη,

[W31
ij ] = 0, [W32

ij ] = 0, [W33
ij ] = −(1 + R)

1
Pr

∫ ηc+1

ηc

dψe
i

dη

dψe
j

dη
dη −

∫ ηc+1

ηc

ḡψe
i ψe

j dη +
∫ ηc+1

ηc

f̄ ψe
i

dψe
j

dη
dη

− A
η

2

∫ ηc+1

ηc

ψe
i

dψe
j

dη
dη − 2A

∫ ηc+1

ηc

ψe
i ψe

j dη + Nb
∫ ηc+1

ηc

φ̄′ψe
i

dψe
j

dη
dη

+ Nt
∫ ηc+1

ηc

θ̄′ψe
i

dψe
j

dη
dη + Q

∫ ηc+1

ηc

ψe
i ψe

j dη, [W34
ij ] = −Nd

∫ ηc+1

ηc

dψe
i

dη

dψe
j

dη
dη, [W35

ij ] = 0,

[W41
ij ] = [W42

ij ] = 0, [W43
ij ] = −Sr

∫ ηc+1

ηc

dψe
i

dη

dψe
j

dη
dη,

[W44
ij ] = − 1

Sc

∫ ηc+1

ηc

dψe
i

dη

dψe
j

dη
dη +

∫ ηc+1

ηc
f̄ ψe

i

dψe
j

dη
dη −

∫ ηc+1

ηc
ḡψe

i ψe
j dηdη

− A
η

2

∫ ηc+1

ηc
ψe

i

dψe
j

dη
dη − 2A

∫ ηc+1

ηc
ψe

i ψe
j dη,

[W45
ij ] = [W51

ij ] = [W52
ij ] = [W54

ij ] = 0, [W53
ij ] = −

Nt
Nb

∫ ηc+1

ηc

dψe
i

dη

dψe
j

dη
dη
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[W55
ij ] = −

∫ ηc+1

ηc

dψe
i

dη

dψe
j

dη
dη + Le

∫ ηc+1

ηc
f̄ ψe

i

dψe
j

dη
dη − Le

∫ ηc+1

ηc
ḡψe

i ψe
j dηdη

− LeA
η

2

∫ ηc+1

ηc
ψe

i

dψe
j

dη
dη − 2LeA

∫ ηc+1

ηc
ψe

i ψe
j dη, (36)

and

b1
i = 0, b2

i = −(ψ dg
dη

)
ηc+1
ηc , b3

i = −(1 + R)
1

Pr
(ψ

dθ

dη
)

ηc+1
ηc − Nd(ψ

dφ

dη
)

ηc+1
ηc ,

b4
i = − 1

Sc
(ψ

dφ

dη
)

ηc+1
ηc − Sr(ψ

dθ

dη
)

ηc+1
ηc , b5

i = −(ψ dξ

dη
)

ηc+1
ηc − Nt

Nb
(ψ

dθ

dη
)

ηc+1
ηc ,

where f̄ = ∑3
j=1 f̄ jψ

e
j , ḡ = ∑3

j=1 ḡjψ
e
j , θ̄′ = ∑3

j=1 θ̄′jψ
e
j , and φ̄′ = ∑3

j=1 φ̄′j ψe
j are assumed to be known.

After the assemblage of element equations, a consequential system of non-linear equations is
obtained, after that, it requires an iterative scheme to solve it for an efficient solution. The calculation of
f , g, θ, and φ are then conceded out for a higher level, and then proceeding until the required 0.00005
is not obtained. The results in Table 1 show the convergency, as we computed, for the increasing
number of elements, n = 300, 500, 1000, 1300, 1500, 1800, 1900, 2100. From the results, it is clear that
as the number of elements increases further, no significant difference in the values of f , g, θ, φ, and ξ

can be seen as the number of elements increases beyond 1800, so the outcomes at n = 1800 elements
are reported.

Table 1. The convergence of the results of finite element method (FEM) when Pr = 1, M = σ = 0.2, β =

0.1, λ1 = λ2 = λ3 = 0.2, S f = Sθ = Sφ = Sξ = St = Sr = R = Sg = Sp = 0.5, kP = Nu = Nt = Nb =

0.1, Sc = 10, Le = 5, fw = 0.3.

Number of Elements f (3) g(3) θ(3) φ(3) ξ(3)

300 0.82439 0.16241 0.16733 0.06876 0.03046
500 0.82455 0.16250 0.19729 0.06875 0.03046

1000 0.82466 0.16257 0.19726 0.06874 0.03045
1300 0.82469 0.16259 0.19726 0.06873 0.03045
1500 0.82470 0.16260 0.19725 0.06873 0.03045
1800 0.82471 0.16260 0.19725 0.06873 0.03045
1900 0.82472 0.16261 0.19725 0.06874 0.03045
2100 0.82472 0.16261 0.19725 0.06874 0.03045

4. Results and Discussion

The numerical calculations have been performed for the velocity, temperature, solutal,
and Casson nano-fluid volume fraction functions for a different assessment of physical parameters,
as magnetic parametre M, Prandtl number Pr, Unsteadiness σ, permeability kp, Brownian motion
Nb, thermophoresis Nt, thermal radiation R, Dufour Nd, Schmidt Sc, buoyancy λ1, λ2, λ3,
Suction/Injection fw, Soret Sr, Lewis number Le, hydro-dynamic slip S f , thermal slip Sθ , solutal slip
Sφ, and nano-particles concentration slip Sξ .

The detail of the present results and the appraisal of flow velocity is made with the exact solution
that is given by Crane [32] as f (η) = 1− e(−η) under the special case (M = 0, σ = 0, β → ∞, λ1 =

λ2 = λ3 = 0, S f = 0, fw = 0, kp = 0). The finite element method’s outcomes have decent concurrence
with the exact solution, which approves the validity of the finite element method. It can be seen
clearly in Table 2, and in Table 3, that the skin friction coefficient attained by the finite element
method is equivalent to the numerical outcomes of Gireesha et al. [33] and the exact solution of
Mudassar et al. [34] under special case σ = 0, β = 0, λ1 = λ2 = λ3 = 0, S f = 0, fw = 0, kp = 0.
To confirm the accuracy of the presented numerical results, the results obtained by the finite element
method for skin friction co-efficient for steady and unsteady flow have been compared with the
numerical results that have previously been reported in studies and shown in Table 4. Regarding our
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results, there is admirable conformity among our outcomes and previously available research articles,
which approves the cogency and the accuracy of the current results that are obtained by the finite
element method (FEM). Table 5 describes the results of the heat transfer rate that are acquired by the
finite element method, which are compared with the results of earlier studies and with the accurate
solution of Ishak et al. [35] in a special case (Nt = Nb = 0). We observe that our results are in
complete agreement and the grid invariance test has performed to sustain accuracy for 4 decimal
points. In Table 6, local skin friction coefficient − f ′′(0), the rates of heat transfer −θ′(0), and mass
transfer −φ′(0) that are acquired by FEM, which are also compared with the published research work,
show excellent correlation.

Table 2. The comparison of the exact solution of Crane and FEM for the flow velocity f ′(η).

η Crane [32] FEM η Crane [32] FEM

0 1 1 7 0.0009 0.0009
1 0.1379 0.1379 8 0.0003 0.0003
2 0.1353 0.1353 9 0.0001 0.0001
3 0.0498 0.0498 10 0.0000 0.0000
4 0.0183 0.0018 11 0.0000 0.0000
5 0.0067 0.0067 12 0.0000 0.0000
6 0.0025 0.0025 13 0.0000 0.0000

Table 3. Assessment of skin friction coefficient for different values of M.

M Gireesha et al. [33] Mudassar et al. [34] FEM (Our Results) Error in %
β = 0 Exact Solution (a) (b) |( b−a

a )| × 100

0.0 1.000 1.000000 1.0000078 0.00078
0.2 1.095 1.095445 1.0954462 0.00010
0.5 1.224 1.224745 1.2247452 0.00001
1.0 1.414 1.414214 1.4142142 0.00001
1.2 1.483 1.483240 1.4832385 0.00010
1.5 1.581 1.581139 1.5811392 0.00001
2.0 1.732 1.732051 1.7320515 0.00002

Table 4. Assessment of skin friction coefficient for various values of M and σ when fw = λ1 = λ2 =

λ3 = kp = S f = 0.

M Mabood and Das Fazle and Stanford FEM σ Chamkha et al. Fazle and Stanford FEM
[36] [25] (Our Results) [37] [25] (Our Results)

0 −1.000008 −1.0000084 −1.0000082 0.2 - - 1.068027
1 1.4142135 1.41421356 1.41421353 0.4 - - 1.134687
5 2.4494897 2.44948974 2.44948963 0.6 - - 1.199118

10 3.3166247 3.31662479 3.31662463 0.8 1.261512 1.261042 1.261042
50 7.1414284 7.14142843 7.14142839 1.0 - - 1.320522
100 10.049875 10.0498756 10.0498751 1.2 1.378052 1.377724 1.377724
500 22.383029 22.3830293 22.3830283 1.4 - - 1.432836

1000 31.638584 31.6385840 31.6385833 1.6 - - 1.486039

Table 5. Comparison of −θ′(0) for various values of Pr when M = fw = Sθ = σ = λ1 = λ2 = λ3 =

R = Nd = kp = S f = 0.

Pr Ali Fazle and Stanford Ishak et al. Dulal Pal. Haile et al. Ishak et al. [35] FEM Error in %
[38] [25] [35] [39] [40] (a) Exact Solution (b) Our Results |( b−a

a )| × 100

0.72 0.8058 0.8088 - - - 0.8086313498 0.8086339299 0.0003
1.00 0.9691 1.0000 1.0000 1.0000 1.0004 1.000000000 1.0000080213 0.0008
3.00 1.9144 1.9237 1.9237 1.9236 1.9234 1.923682594 1.9236777221 0.0003
10.0 3.7006 3.7207 3.7207 3.7207 3.7205 3.720673901 3.7206681683 0.0002
100 - - 12.2941 12.2940 12.2962 12.294083260 12.294051659 0.0003
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Table 6. Comparison of − f ′′(0), −θ′(0), and −φ′(0) for different values of Pr, and Sc when M = σ =

λ3 = β = R = Nb = Nt = Nd = Sr = 0, fw = 0.5, λ1 = kp = 1, λ2 = 2, S f = Sθ = Sφ = Sξ = 0.

Pr Sc
Chamkha et al. [37] FEM(Our Results)

− f ′′(0), −θ′(0), −φ′(0) − f ′′(0) −θ′(0) −φ′(0)

0.71 0.22 0.27377 1.158393 0.740140 0.27371 1.158389 0.740160
0.60 0.49677 1.101087 1.312248 0.49669 1.101082 1.312192
0.94 0.59941 1.076931 1.713443 0.59935 1.076899 1.713358

0.3 0.62 0.38639 0.621980 1.355045 0.38655 0.621892 1.355036
0.71 0.50438 1.099032 1.337571 0.50429 1.099018 1.337267
1.0 0.55244 1.384875 1.331027 0.55237 1.384753 1.331856
3.0 0.69042 2.966999 1.316710 0.69036 2.966894 1.316382

Figure 2 shows the effect of M on the velocity function with no hydro-dynamic slip and with
hydro-dynamic slip. The results show that in both cases the velocity component decreases as the
value of the magnetic parameter M increases. Physically, the magnetic parameter M produced Lorentz
force like a drag force, which causes the motion of the fluid to decelerate. Figure 2 also shows that in
both cases the suction fw decelerates the momentum boundary layer thickness. The boundary layer
thickness can be controlled with the help of suction fw.
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0.8

1

f
(

)

f
w
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f
w
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Le=5;Sf=S =S =S =0.5; Nb=Nd=Nt=kp=Q=0.1

M = 0, 0.5, 1

Figure 2. Effects of M, fw, and S f on f ′.

Figures 3 and 4 exemplify that the velocity boundary layer thickness increases with enhancing
the thermal buoyancy parameter λ1 and the nano-particles concentration buoyancy parameter λ3 in
the non-existence of hydro-dynamic slip and the existence of hydro-dynamic slip. In these two cases,
we have to perceive that the momentum boundary layer is prolonged with the increasing values of
buoyancy λ1 and λ3. Also in Figures 3 and 4, the velocity profile is increasing in the case of steady and
unsteady flow and alike behavior of solutal buoyancy has been observed in Figure 5. It is observed
that increasing the value of radiation parameter R is the reason to improve the velocity profile and
incentive of instability in parameter kp, and the velocity profile is explained in Figure 6.
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Figure 3. Effects of λ1, σ, and S f = 0 on f ′.
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Figure 4. Effects of λ3 and σ on f ′. (a) S f = 0 (b) S f = 0.1.
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Figure 5. Effects of λ2 and R on f ′. (a) S f = 0 (b) S f = 1.
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Figure 6. Effects of kp, fw, and S f on f ′.

Also, we perceive in both cases that as the permeability of kp increases, this causes
a decline in the velocity profile with no hydro-dynamic slip and with hydro-dynamic slip.
Furthermore, we also perceive in Figure 6 that the suction decreases the momentum boundary layer
thickness. Similar behavior of the Deborah number β has been perceived on the velocity profile in
Figure 7. Figure 8 indicates the impact of M on the temperature profile with the non-existence of
thermal slip and with existence thermal slip. In the figure, it is clear that with an increasing value
of M the temperature profile also increases in both cases. From Figure 8 it is also clear that suction
fw decreases the thermal boundary layer thickness in both cases and the thickness of the thermal
boundary layer can be controlled with the help of suction fw. Figure 9 depicts the similar behavior of
M. It is perceived that the temperature increases with the discrepancy in parameter R.
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Figure 7. Effects of β, fw, and S f on f ′.

Figure 10 demonstrates the influence of σ and Pr on the temperature profile with and without
the existence of thermal slip, with increasing Pr, σ, and Sθ causing the thermal boundary layer to
decrease. The description of the effect of Nb, fw, and Sθ with the temperature profile is explained in
Figure 11. It is clear that with the increase in Nb, the thermal boundary layer of fluid flow increases in
both cases. It can also be perceived that fw decreases the thermal boundary layer thickness in both
cases. In Figure 12, there is the influence of M and Sc on the solutal profile with the non-existence of
solutal slip and with the existence of solutal slip. From the figure, it is clear that with the increasing
value of M, the solutal profile also increases in both cases. Furthermore, the effect of Sc over the solutal
profile declines the profile. The impact of the existence and non-existence of solutal slip and increasing
values of Sr is depicted in Figure 13. It is seen that increasing the value of the Soret parameter increases
the solutal profile in both the steady and unsteady cases. It is also seen that increasing the value of the
slip results in decreasing the thickness of the solutal profile boundary.



Appl. Sci. 2019, 9, 5217 13 of 21

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

(
)

f
w

 = 0.0, S  = 0.0

f
w

 = 1.0, S = 0.0

f
w

 = 1.0, S  = 1.0

Pr=1; =
1
=

2
=

3
=0.2; =R=0.5;Sc=10;Sr=0.5;

Le=5;S
f
=S =S =0.5; Nb=Nd=Nt=kp=Q=0.1

M = 0, 1, 2

Figure 8. Effects of M, fw, and Sθ on θ.
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Figure 9. Effects of M, R, and Sθ on θ.

Figure 14 indicates the impact of Nt on the nano-particle volume fraction profile without the
existence of nano-particles concentration slip and with the existence of nano-particles concentration
slip. It is clear from the figure that in both the steady and unsteady cases, increasing values of Nt cause
a decline in the nano-particle volume fraction profile. The impacts of σ and Sγ over the nano-particle
volume fraction profile have been illustrated in Figure 14. It is noticed that the nano-particle volume
fraction profile decreases in increments in the values of σ and Sγ. Figures 15 and 16 show the impact
of Lewis number Le, unsteadiness parameter σ, and suction parameter fw on the nano-particle volume
fraction profile, and interpretations about the nano-particle volume fraction profile are made. It is seen
that increasing values of Le and fw in the boundary layer of nano-particles causes the volume fraction
profile to decline. In addition, it is clear from the figures that the nano-particle volume fraction profile
decreases both with and without the existence of nano-particles concentration slip.

Figure 17 shows the impact of M, σ, and S f on the skin friction co-efficient and also shows that
the skin friction co-efficient decreases with the increase of slip parameter, magnetic and unsteadiness
parameter. In Figure 18, the skin friction coefficient increases with the increment in the thermal
buoyancy, suction parameters, and solutal buoyancy. Figure 19 represents the increment in the value of
Nusselt number with increasing values of magnetic, radiation and thermal slip parameters. As perceive
in Figure 20 that when the values of solutal buoyancy and suction intensity increases with the existence
and the non-existence absence of thermal buoyancy. Figure 21 demonstrates that the impact of Sc, Sr,
and Sφ on the reduced Sherwood number. Also from the Figure 22, it clear that the reduced Sherwood
number decreases with increment in the values of the unsteadiness parameter σ, magnetic parameter
M and the suction parameters fw.
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Figure 10. Effects of σ, Pr, and Sθ on θ.
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Figure 11. Effects of Nb, fw, and Sθ on θ.
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Figure 13. Effects of Sr, σ, and Sφ on φ.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

(
)

Nt= 0.1, 0.3,0.5

= 0.0, S  = 0.0

= 1.0, S  = 0.0

= 1.0, S  = 1.0

M=
1
=

2
=

3
=0.2; =R=0.5;Sc=10;Sr=0.5;Le=5;

S
f
=S =S =0.5;Nd=Nb=kp=Q=0.1; Pr=1;f

w
=0.2;

Figure 14. Effects of Nt, σ, and Sξ on ξ.
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Figure 22. Effects of M, σ, and fw on the reduced Sherwood number.

In Table 7 we analyze the variation of physical parameters M, λ1, λ2, λ3, σ, Pr, Le on skin friction
co-efficient − f ′′(0), Nusselt number −θ′(0), and Sherwood number −ξ ′(0).

The following results are concluded from Table 7:
(i) The skin-friction coefficient is increasing while reducing the local Nusselt and Sherwood

numbers through improvement in the Magnetic parameter; (ii) The increment in thermal buoyancy
parameters λ1, λ2, λ3 causes the skin-friction coefficient to decrease while increasing the local Nusselt
number and Sherwood number; (iii) With the increasing unsteadiness parameter σ, the skin-friction
coefficient, local Nusselt, and Sherwood numbers are also increasing; (iv) The skin-friction coefficient is
increasing with the increment in Prandtl number and the local Nusselt number and Sherwood number
also increase; (v) The skin-friction coefficient is increasing with the increasing Lewis number and also
increment in the local Nusselt number and Sherwood number.

Table 7. Various mathematical values of physical constraints M, λ1, λ2, λ3, σ, Pr, Le when R = fw =

Sr = St = S f = Sp = Sg = 0.5, kp = 0.1, Nu = Nb = Nt = Q = 0.1, β = 0.2, Sc = 10.

M λ1 λ2 λ3 σ Pr Le − f ′′(0) −θ′(0) −ξ′(0)

0.5 0.2 0.2 0.2 0.5 1 5 0.43564 0.70863 1.33066
1.0 0.47695 0.70192 1.32746
1.5 0.51239 0.69612 1.32468
0.5 0.2 0.2 0.2 0.5 1 5 0.43564 0.70863 1.33066

0.5 0.42223 0.71052 1.33163
0.8 0.40901 0.71237 1.33258

0.5 0.2 0.2 0.2 0.5 1 5 0.43564 0.70863 1.33066
0.5 0.43095 0.70928 1.33099
0.8 0.42628 0.70993 1.33133

0.5 o.2 0.2 0.2 0.5 1 5 0.43564 0.70863 1.33066
0.5 0.43217 0.70906 1.33089
0.8 0.42870 0.70949 1.33113

0.5 0.2 0.2 0.2 0.5 1 5 0.43564 0.70863 1.33066
1.0 0.46926 0.79556 1.37699
1.5 0.49903 0.86094 1.41349

0.5 0.2 0.2 0.2 0.5 1 5 0.43564 0.70863 1.33066
3 0.43819 0.88813 1.28962
5 0.43925 1.00288 1.25652

0.5 0.2 0.2 0.2 0.5 1 5 0.43564 0.70863 1.33066
7 0.43635 0.70919 1.44132

10 0.43689 0.70993 1.54699
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5. Conclusions

In this paper, we have developed a mathematical model to investigate the unsteady two-dimensional
magnetohydrodynamic (MHD) flow and heat transfer of an incompressible electrically conducted fluid.
This study was conducted to analyze the multiple slip effects on magneto-hydrodynamic unsteady
Casson nano-fluid flow over a non-linear porous shrinking/stretching sheet in the presence of a heat
source with Soret effect. Appropriate similarities have been used for transformations and the governing
partial differential equations (PDEs) are rendered into a system of ordinary differential equations (ODEs).
The resulting system of ordinary differential equations was solved numerically with an efficient and
validated finite element method (FEM). We also use a special case of the present model to compare our
results with previous studies. A parametric study has been performed to explore the mass and heat
transfer characteristics, and also the impact of different parameters, of the flow. The following are the
results that can be concluded from the present study.

• The cause of reducing the fluid velocity near the region of the boundary layer is the increment in
values of slip, suction, magnetic field, and unsteady parameters.

• The increment in thermal buoyancy parameters λ1, λ2, λ3 and slip parameters cause decreasing
the skin-friction coefficient while increasing the local Nusselt number and Sherwood number.

• Decreasing the value of the Sherwood number causes an increasing value of the solutal slip
parameter, Schmidt number, and Soret number, but the effect is the opposite with increasing values
of the unsteadiness, magnetic, and suction parameters.

• With the increasing value of the magnetic parameter M, the slip velocity parameter and suction
parameter are found to be reduced in the velocity profile.

• The skin-friction coefficient decreases with the increasing value of slip, magnetic, and unsteadiness
parameters, but the effect is the opposite for increasing values of thermal buoyancy,
suction parameter, and solutal buoyancy.

• The increment of the values of buoyancy parameter, injection parameter, and heat source
parameter cause an increase in the velocity profile.
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