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Featured Application: The superiority of a novel computational technique (deep neural decision
trees) for prediction of currency crises over other methodologies and the construction of new
crisis prediction models more precise than existing ones.

Abstract: Currency crises are major events in the international monetary system. They affect the
monetary policy of countries and are associated with risks of vulnerability for open economies. Much
research has been carried out on the behavior of these events, and models have been developed to
predict falls in the value of currencies. However, the limitations of existing models mean further
research is required in this area, since the models are still of limited accuracy and have only been
developed for emerging countries. This article presents an innovative global model for predicting
currency crises. The analysis is geographically differentiated for regions, considering both emerging
and developed countries and can accurately estimate future scenarios for currency crises at the global
level. It uses a sample of 162 countries making it possible to account for the regional heterogeneity of
the warning indicators. The method used was deep neural decision trees (DNDTs), a technique based
on decision trees implemented by deep learning neural networks, which was compared with other
methodologies widely applied in prediction. Our model has significant potential for the adaptation
of macroeconomic policy to the risks derived from falls in the value of currencies, providing tools
that help ensure financial stability at the global level.

Keywords: currency crisis; crisis event prediction; global model; deep learning; deep neural
decision trees

1. Introduction

Currency crises can have a catastrophic impact on the real economy in a short space of time. In
general, they occur when there is a sudden devaluation in a currency, often resulting in a speculative
attack on the international currency market. Currency crises can also occur as a result of high balance
of payments deficits or when governments are unable to restore the value of their currency after a fall
in its price in the markets.

One of the first currency crises occurred in 1992 when many European countries faced a crisis
as part of the Exchange Rate Mechanism (ERM). Another episode was the currency crisis suffered
by the Mexican peso in December 1994. This crisis began with an abrupt decision by the Mexican
government to devalue its currency, causing a crash in the peso days later and an economic crisis
that resulted in a sharp drop in GDP. However, the biggest event has been the Asian Financial Crisis
in 1997. The crisis began with the sharp devaluation of the Thai baht and was the first to show the
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effect of contagion on other countries. However, the event was about more than just speculation on
the Thai currency and saw the collapse of Asian stock markets. The financial crisis that began with
the devaluation of the Thai baht exchange rate resulted in a sharp increase in interest rates and the
collapse of many companies, as well as an increase in the cost of credit and a general fall in GDP in the
region [1]. This resulted in foreign and national investors pulling out investment. Not only did this
crisis affect Asian countries, but it also had a negative impact on other emerging economies, especially
in Latin America, showing that currency crises are not limited to a specific economy. Globalization can
increase the economic difficulties of societies and affect the structure of national economies after the
real economy has suffered a damaging impact [2]. Figure 1 shows the number of currency crises per
year at the international level.
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Figure 1. Number of currency crises in the world (1970–2017).

On the other hand, it is interesting to influence the economic consequences that currency crises
can cause. Reference [3] demonstrated that a currency crisis makes it difficult to design an optimal
monetary policy, making the setting of the interest rate a dilemma; since, if it increases, it makes it
difficult to lend money to companies, and, if it decreases, it devalues the debt denominated in foreign
currency. They concluded that the best decision is to reduce the interest rate, thanks to the continuous
international financial development and the increase in credit flows. Following this argument, some
works indicated that currency crises deteriorate the balance sheets of companies based on the fact that,
if prices are rigid, a depreciation of the currency leads to an increase in the obligations of payment
of the debt in the foreign currency of companies, causing a fall in their profits [4,5]. This reduces the
borrowing capacity of companies and, therefore, investment and production in an economy with credit
limitations which, in turn, reduces the demand for the national currency and leads to depreciation.
Other authors presented a general equilibrium model of currency crises and how they are driven by
credit restrictions and rigidity of nominal prices [6–8]. They showed that an increase in the interest rate
to support the currency in crisis may not be effective, but that relaxation of short-term loan facilities
can make this policy effective by mitigating the increase in interest rates for companies [9]. In addition
to interest rate policy being an instrument to end a currency crisis, intervention in the foreign exchange
market is also a measure to stabilize inflation and production as a result of this type of crisis. They
demonstrated how intervention in the foreign exchange market improves the situation of the economy,
regardless of the exchange rate regime chosen by the country. It can achieve great results if the economy
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encounters imperfect capital mobility/asset substitutability movements, producing the same result as
discretionary monetary policy and without jeopardizing the inflation target [9–11].

To avoid future crises, researchers have tried to identify common factors underlying exchange
rate instability and develop predictive models. However, despite impressive results for in-sample,
the existing early warning models encounter difficulties when it comes to predicting crises outside
it [12–14].

In recent years, there has been considerable research on currency crises, mainly on the application
of computational techniques for emerging economies. Statistical methods have also been used, albeit
with limited success. For example, Reference [12] applied extreme value theory, obtaining an accuracy
of 44%. Reference [15] developed a discrete choice early warning system considering the persistence of
the phenomenon of the crisis. Their logistic regression system used a maximum likelihood estimation
method both country-by-country and in a panel framework. The model obtained predictive capacity
that significantly improved the existing static models, both inside and outside the sample (89.8% and
90.2%, respectively).

Reference [1] used computational combinations with support vector machine (SVM), logistic
regression, and logical analysis of data tree (LADTree), based on the k-nearest neighbor. The results
showed that the computational classifiers were more accurate than the traditional statistical methods,
obtaining a level above 90%. Reference [2] individually used SVM for the currency crisis in Argentina,
obtaining a high level of robustness. Similarly, Reference [13] studied currency crises in developed
countries using the classification and regression tree methodology (CART) and random forest (RF).
Their findings determined that significant factors included high short-term domestic interest rates
and overvalued exchange rates. Reference [16] compared logistic regression, neural networks (NNs),
and decision trees (DTs) to predict the currency crisis in Turkey, with NNs achieving the highest level
of accuracy. Also for Turkey, Reference [17] used logistic regression to analyze the determinants of
the currency and banking crisis. The study found that currency crises are caused by an excessive
fiscal deficit, short-term increases in external debt, overvaluation of the Turkish lira, and adverse
external shocks, confirming the results obtained by other studies based on the experiences of emerging
countries [18,19].

This study attempted to build more accurate models for predicting currency crises. To do so, we
developed models for four regions of the world (i.e., Latin America, Asia, Africa, and the Middle East
and Europe) together with a global model for all world regions. This study thus sought to address a
gap in the literature, which requires broader models that can provide powerful and homogeneous
empirical tools for public institutions in different countries. It did this using the deep neural decision
trees (DNDTs) methodology, developed in Reference [20], which allows for solutions to forecasting
problems involving data outside of a sample, also one of the least resolved aspects in the existing
literature. We compared this novel method in terms of accuracy with other popular methodologies
used in time-series prediction such as regression logistic, neural networks, support vector machines,
and AdaBoost.

The rest of this article is organized as follows: Section 2 describes the DNDTs algorithm, and
Section 3 summarizes the data and variables used as possible predictors. The results and their
comparison with the existing literature are provided in Section 4. Finally, Section 5 summarizes the
main conclusions.

2. Methodology

As already stated above, the DNDT algorithm was applied to solve the research question
raised, but we have also used different methods in the construction of the currency crisis prediction
model. The use of different methods aimed to achieve a robust model which is contrasted not only
through a classification technique but also by applying all those that have shown success in the
previous literature [1,2,12–14]. Specifically, logistic regression, artificial neural networks, support
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vector machines, and AdaBoost were used. A synthesis of the methodological aspects of each of these
classification techniques appears below.

2.1. Logistic Regression

The logistic regression model (Logit) is a non-linear classification model, although it contains
a linear combination of parameters and observations of the explanatory variables [21]. The logistic
function is bounded between 0 and 1, thus providing the probability that an element is in one of the
two established groups. From a dichotomous event, the Logit model predicts the probability that the
event will or will not take place. If the probability estimate is greater than 0.5, then the prediction
is that it does belong to that group, otherwise it would assume that it belongs to the other group
considered. To estimate the model, we started from the quotient between the probability that an event
will occur and the probability that it will not occur. The probability of an event occurring is determined
by Expression (1).

P
(
Yi =

1
xi

)
=

e(β0+β1+X1+...+βkXk)

1 + e(β0+β1+X1+...+βkXk)
=

1

1 + e−(β0+β1+X1+...+βkXk)
(1)

where β0 is the constant term of the model and β1, . . . , βk are the coefficients of the variables.

2.2. Support Vector Machines

Support vector machines (SVMs) have been shown to achieve good generalization performance
over a wide variety of classification problems, where it is seen that SVM tends to minimize generalization
errors, that is, classifier errors over new instances. In geometric terms, SVM can be seen as the attempt
to find a surface (σi) that separates positive examples from negative ones by the widest possible
margin [22–24].

The search that meets the minimum distance between it and an example of training is the
maximum and is performed across all surfaces (σ1, σ2 . . . ) in the A-dimensional space that separates
the positive examples from the negative in the training set (known as decision surfaces). To better
understand the idea behind the SVM algorithm, we take the case in which the positive and negative
examples are linearly separable; therefore, the decision surfaces are |A|-1-hyperplanes. For example,
in the case of two dimensions, several lines can be taken as decision surfaces. In this circumstance,
the SVM method chooses the middle element of the widest set of parallel lines, that is, from the set in
which the maximum distance between two of its elements is the greatest. It should be noted that the
best decision surface is determined only by a small set of training examples, called support vectors.

An important advantage of SVM is that it allows the construction of non-linear classifiers, that is,
the algorithm represents non-linear training data in a high-dimensional space (called the characteristic
space) and builds the hyperplane that has the maximum margin. In addition, due to the use of a
kernel function to perform the mapping, it is possible to calculate the hyperplane without explicitly
representing the feature space.

In the present work, the method of minimum sequential optimization (SMO) was used to train the
SVM algorithm. In general, SMO divides a large number of quadratic programming (QP) problems
that need to be solved in the SVM algorithm by a series of smaller QP problems.

2.3. Artificial Neural Networks (Multilayer Perceptron)

A multilayer perceptron (MLP) is a feedforward artificial neural network model of supervised
learning which is composed of a layer of input units (sensors), another output layer, and a certain
number of intermediate layers, called hidden layers, in so much that they have no connections with
the outside. Each input sensor is connected to the units of the second layer and these in turn with
those of the third layer, etc. The network aims to establish a correspondence between a set of input
data and a set of desired outputs.
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Reference [25] confirmed that learning in MLP is a special case of functional approximation, where
there is no assumption about the model underlying the analyzed data. This process involves finding a
function that correctly represents the learning patterns, in addition to carrying out a generalization
process that allows to efficiently treat individuals not analyzed during said learning [26]. For this, we
proceed to the adjustment of weights, W, from the information from the sample set, considering that
both the architecture and the connections of the network are known, being the objective to obtain those
weights that minimize the learning error. Given, then, a set of pairs of learning patterns {(x1, y1), (x2,
y2) . . . (xp, yp)} and an error function ε (W, X, Y), the training process implies the search for the set of
weights that minimizes the learning error E(W) [27], as expressed in Equation (2).

min
W

E(W) = min
W

p∑
i = 1

ε(W, xi , yi) (2)

2.4. AdaBoost

AdaBoost is a meta-algorithm learning machine that can be used in conjunction with many other
types of learning algorithms to improve its performance. The output of the other learning algorithms
of the “weak” classifiers is combined in a weighted sum representing the final output of the driven
classifier. AdaBoost is adaptive in the sense that weak posterior classifiers are adjusted in favor of
those cases poorly classified by previous classifiers. AdaBoost is sensitive to noisy data and outliers. In
some problems, however, it may be less susceptible to problems than other learning algorithms [28].

While each learning algorithm tends to adapt to some types of problems better than others,
and usually has many different parameters and configurations to adjust before achieving optimal
performance in a data set, AdaBoost (with decision trees such as weak classifiers) is often referred to
as the best classifier outside the sample. Unlike neural networks and SVMs, the AdaBoost training
process selects only those characteristics known to improve the predictability of the model, reduce
dimensionality, and, potentially, improve the execution time of functions as irrelevant that do not need
to be calculated.

AdaBoost refers to a method of training a driven classifier [29]. A boost classifier is designed as
follows:

FT(x) =
T∑

t = 1

ft(x) (3)

where each ft is a weak learner that takes an object x as input and returns a result of real value that
indicates the class of the object. The weak classifier output signal identifies the predicted object class
and the absolute value gives confidence in that classification. Similarly, the T of the layer classifier will
be positive if the sample is believed to be in the positive and negative class in another way.

Each weak classifier produces an output, the hypothesis h(xi), for each sample in the training set.
In each iteration t, a weak learner is selected and assigned a coefficient αt such that the training error
sum Et of the resultant t of the classifying pulse is minimized.

Et =
∑

i

E[Ft−1(xi) + αth(xi)] (4)

where Ft−1 is the driven classifier that has been built up to the previous stage of the formation, E(F) is
the error function, and ft (x) = αth(x) is the weak beginner being considered for the addition to the final
classifier.

2.5. Deep Neural Decision Trees (DNDTs)

Deep neural decision trees are DT models executed by deep-learning NNs, where a configuration
of DNDT weightings corresponds to a specific decision tree and is thus interpretable [20]. Nevertheless,
as DNDT is performed by the NN, it has several different properties of conventional DTs: DNDTs



Appl. Sci. 2019, 9, 5227 6 of 18

can be implemented from the NN structure in software such as Python (Pytorch). All parameters are
optimized simultaneously with stochastic gradient descent (SGD) instead of a complex greedy splitting
procedure; this allows large-scale processing with mini-batch-based learning and can be connected
to any larger NN model for end-to-end learning with backward propagation. Continuing with this
explanation, conventional DTs learn through a greedy and recursive division of characteristics [30].
This may have benefits with respect to the selection of functions; however, this greedy search may
become inefficient [31]. Some recent work explores alternative approaches to train decision trees
that aim to achieve better performance, for example, with a latent variable structured prediction [31].
On the other hand, a DNDT is much simpler, but we can still find the best solutions compared to
conventional DT inductors when looking for the structure and parameters of the tree with SGD. Finally,
while conventional DT inductors only use binary divisions to simplify, DNDT can also work with
arbitrary cardinality divisions which can sometimes generate more interpretable trees. The algorithm
begins by implementing a soft binning function to calculate the error rate for each node, making it
possible to make decisions divided into DNDTs [32]. In general, the input of a binning function is a real
scalar x which generates an index of the containers to which x belongs. Assuming x is a continuous
variable, group it into n + 1 intervals. This requires n cut-off points which are trainable variables in this
context. The cut-off points are denoted as (β1, β2, . . . , βn) and are strictly ascending such that β1 < β2

< . . . < βn.
The activation function of the DNDT algorithm is implemented based on the NN defined in

Equation (1).
π = fw,b,τ (x) = softmax((wx + b)/τ) (5)

where w is a constant with value w = [1, 2, . . . , n + 1], τ > 0 is a temperature factor, and b is defined in
Equation (6).

b = [0, −β1, −β1, −β2, . . . , −β1 − β2 − . . . − βn] (6)

The NN defined in Equation (1) gives a coding of the binning function x. Additionally, if τ tends
to 0 (often the most common case), the vector sampling is implemented using the Straight-Through
(ST) Gumbel–Softmax method [33].

Given the binning function described above, the key idea is to build the DT using the Kronecker
product. Assuming we have an input instance x ∈ RD with D characteristics. Associating each
characteristic xd with its own NN fd (xd), we can determine all the final nodes of the DT, in line with
Equation (7).

z = f1(x1) ⊗ f2(x2) ⊗ . . . ⊗ fD(xD) (7)

where z is now also a vector that indicates the index of the leaf node reached by instance x. We assume
that a linear classifier on each leaf z classifies the instances that reach it. The number of cut points
per feature is the complexity parameter of the model. The cut-off point values are not limited, which
means that some of them may be inactive. For example, they are smaller than the minimum xd or
greater than the maximum xd.

With the method described so far, we can route the input instances to the leaf nodes and classify
them. Therefore, training a decision tree becomes a matter of training the cut-off points of the container
and the sheet sorters. Since all steps forward are differentiable, all parameters can be trained directly
and simultaneously with SGD.

The DNDT scales well with the number of inputs due to the training of the mini-batches of the
NN. However, the main drawback of the design is the use of the Kronecker product, which means it
is not scalable in terms of the number of characteristics. In our current implementation, we avoided
this problem by using broad datasets, training a forest with a random subspace [34]. This involved
introducing multiple trees and training each with a subset with random characteristics. A better
solution that does not require a forest of hard interpretability involves exploiting the dispersion of the
binning function during the learning since the number of non-empty leaves grows much slower than
the total.
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2.6. Sensitivity Analysis

While DTs have a high explanatory capacity, when numerous exploratory variables are used, we
need indicators to show the determined impact of these variables. Sensitivity analysis is used for this
purpose, allowing the quantification of the relative significance of the independent variables related
to the dependent variable [35]. The DT models used in this study build an appropriate measure of
significance as shown in Table A3. The sensitivity analysis is also used to reduce the models to the
most significant variables, eliminating or ignoring those of lesser significance. A variable is considered
more significant than another if it increases the variance compared to the set of variables of the model.
Each DT model generates significance scores for each independent variable. This is done using the
Sobol method [36], which decomposes the variance of the total output V(Y) in line with the equations
in Equation (8).

V(Y) =
∑

i

Vi +
∑

i

∑
j>1

Vi j + . . .+ V12...k (8)

where Vi = V(E(Y|Xi)) and Vi j = V
(
E
(
Y
∣∣∣Xi, X j

))
−Vi −V.

The sensitivity indexes are determined by Si = Vi/V and Sij = Vij/V, where Sij indicates the effect of
the interaction between two factors. The Sobol decomposition allows the estimation of a total sensitivity
index STi which measures the sum of all the sensitivity effects involved in the independent variables.

2.7. Research Steps

The empirical research for predicting currency crises involved five steps: Creating the sample,
data preprocessing, model construction, accuracy assessment, and classification and prediction as
shown in Figure 2. The first step (sample creation) was based on obtaining the relevant data from
the data sources such as information published by international economic bodies. The attributes of
the dataset include measurements of exposure to debt, the external sector, domestic macroeconomic
factors, the banking sector, and political attributes. The data preprocessing step involved making
the attributes with continuous values discreet, generalizing data and analysis of the relativity of the
attributes, and eliminating outlier values. Regarding outliers values, since the deletion of elements of
the sample implies a loss of information, only the ends that do not belong to the interval have been
suppressed:

(Q1 − 3RQ, Q3 + 3RQ) (9)

where Q1 is the first quartile, Q3 is the third quartile, and RQ is interquartile range.
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Figure 2. Flowchart of the research.

The step of constructing the model was based on inductively learning from the preprocessed data
using the DNDT algorithm defined in Section 2 and choosing the significant independent variables via
the proposed sensitivity analysis. To do so, the sample was randomly divided into three mutually
exclusive datasets: Training (70%), validation (10%), and testing (20%). This process used the 10
fold cross-validation method with 500 iterations to estimate error ratios [37]. The first subset of data
was used to train the models and estimating the parameters. The second subset was used for model
selection. Finally, the third dataset (testing) was used to evaluate the predictive accuracy of the model
in the accuracy assessment step. This was complemented by the analysis of the model’s robustness and
its predictive capacity for currency crises at the global level in the classification and prediction step. All
variables used in this study were considered in every dataset of training, validation, and testing data
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3. Data and Variables

The sample used in this study comprised 162 developed, emerging, and developing countries with
information for the period 1970–2017 (Appendix A). The granularity of the data was annual, following
the format data of previous works [1,12,38]. The dataset of the present study had 7708 observations,
being 236 crisis observations. Specifically, a set of 32 explanatory variables chosen from the existing
literature on the prediction of currency crises was obtained. Of these, 23 corresponded to factors related
to debt exposure, the external sector, domestic macroeconomy, and the banking sector [1,14,15,17,19].
This information was sourced from the International Monetary Fund (IMF) International Financial
Statistics, World Bank Development Indicators, World Economic Outlook, and the World Bank Global
Financial Database. The nine remaining variables refer to political factors and have been extracted
from the database of the Polity IV Project of Center for Systemic Peace, selecting the variables used in
Reference [39]. The dependent variable was constructed based on the definition in Reference [38]: “a
currency crisis is defined as a nominal depreciation of the currency with respect to the US dollar by at
least 30% and at least 10 percentage points higher than the depreciation rate for the previous year”.
This dependent variable was 1 for the years in which currency crises occurred and 0 otherwise. The
choice of countries was mainly guided by the availability of data, covering four main regions: Africa
and the Middle East, South and East Asia, Latin America, and Europe. Table 1 shows the independent
variables used in this research.

Table 1. Independent variables.

Category Code Definition Expected
Sign 1

Debt Exposure

Total Debt gross external debt as % of GDP +

Short-Term Debt gross short-term external debt as % of GDP +

Real Interest Rate lending interest rate adjusted for inflation +

External Sector

Foreign Exchange
Reserves total reserves (without gold) as % of GDP −

Trade Openness ratio of exports plus imports to GDP +/−

Imports imports of goods and services at current prices in USD +/−

Exports exports of goods and services at current prices in USD −

Current Account current account balance as % of GDP −

Portfolio Investments portfolio investment net at current USD −

FDI net FDI inflows as % of GDP −

Domestic
Macroeconomic

Factors

Real GDP annual real GDP at current USD −

Real GDP Growth annual growth of real GDP −

Inflation rate of change in CPI +

M2 Multiplier Growth annual growth of M2 +

M2/Reserves ratio of M2 to foreign exchange reserves +

REER Overall deviation of real effective exchange rate from 5 year rolling mean −

Government Spending general government final spending as % of GDP +/−

Fixed Capital Formation gross fixed capital formation at current USD −

Unemployment unemployment total as % of total labor force +

Contagion event of a currency crisis in any country of the same region (t − 1) +

Soft Peg 2 exchange rate regime applied to currency to keep its value stable
against a reserve currency +

Peg 2 exchange rate regime in which a currency’s value is fixed against
either the value of another country’s currency +
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Table 1. Cont.

Category Code Definition Expected
Sign 1

Banking Sector

Domestic Credit ratio of domestic credit to GDP +/−

Lending Interest Rate the bank rate meets the short- and medium-term financing needs −

Deposit Interest Rate rate paid by banks for demand, time, or savings deposits −

Political Factors

Polity combined polity score (autocracy score minus democracy score) +/−

Durable regime durability (control variable of Polity) +

Persist polity persistence (control variable of Polity) +

SFI state fragility index +

Left Government left-leaning government +

Election legislative/executive election +

Turnover annual turnover of veto players +

Years years in the office of chief executive’s party +

Economic Effectiveness effectiveness of economic policy measured by GDP per capita −

1 The expected relationship of the independent variable according to its influence to increase or decrease the
probability of suffering a currency crisis. 2 It is denoted with 1 when the country applies this exchange rate regime
for the year under consideration and 0 otherwise.

4. Results

4.1. Descriptive Statistics

The main descriptive statistics for the variables of the sample are provided in Table 2. Episodes
of currency crises (dependent variable = 1), compared to the absence of these episodes (dependent
variable = 0), are characterized by higher average levels of public debt (Total Debt and Short-Term
Debt), less openness to the rest of the world (Trade Openness, Imports, and Exports), and alarming
results in certain macroeconomic indicators like Real GDP Growth and Inflation. In contrast, the
remaining variables have lower average values. There is also a moderate dispersion in the distribution
of the variables analyzed which can be extended to the sample as a whole.

Table 2. Descriptive statistics.

Variables

Dependent Variable

0 1

Mean SD 2 Mean SD 2

Total Debt 57.219 12.565 63.814 16.204
Short-Term Debt 10.381 7.053 13.725 7.824
Real Interest Rate 5.763 2.422 7.416 2.942

Foreign Exchange Reserves 9.608 8.642 17.522 13.458
Trade Openness 61.517 7.874 56.174 7.273

Imports 1 51,856 344.565 16,418 245.637
Exports 1 53,783 387.632 16,976 265.484

Current Account −2.578 1.206 −2.533 1.384
Portfolio Investments 1 −2.123 362.859 −114,665 154.350

FDI 1.959 1.362 4.019 2.548
Real GDP 1 1,950,090 78,250.933 69,591 4527.409

Real GDP Growth 4.157 1.594 0.705 1.062
Inflation 18.495 7.452 37.820 9.781

M2 Multiplier Growth 0.125 0.126 0.272 0.151
M2/Reserves 485.463 24.572 502.848 26.287
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Table 2. Cont.

Variables

Dependent Variable

0 1

Mean SD 2 Mean SD 2

REER Overall 112.772 21.783 85.259 18.523
Government Spending 15.589 9.747 24.171 11.083

Fixed Capital Formation 1 56,025 276.574 17,199 127.496
Unemployment 9.365 7.842 14.046 11.578

Contagion 0.138 0.035 0.192 0.370
Soft Peg 0.164 0.042 0.249 0.076

Peg 0.089 0.017 0.135 0.051
Domestic Credit 52.768 17.478 73.721 19.779

Lending Interest Rate 34.048 16.675 22.463 14.347
Deposit Interest Rate 37.617 18.428 42.843 23.362

Polity −1.000 0.426 −5.000 0.618
Durable 24.000 2.165 11.000 1.482
Persist 17.000 2.478 9.000 1.247

SFI 5.000 1.822 12.000 2.151
Left Government 0.412 0.237 0.574 0.428

Election 0.096 0.057 0.126 0.084
Turnover 5.590 1.573 5.460 1.522

Years 7.693 2.582 2.942 2.165
Economic Effectiveness 2.000 1.562 1.300 1.257

1 Variables expressed in millions of USD. 2 Standard deviation.

4.2. Estimated Models

Table 3 shows the levels of precision (in percentage) reached in the classification of the currency
crises of the methodologies applied in the present study for the three data sets: Training, validation,
and testing. In greater order to less accuracy, it is shown that in all models, the DNDT method was the
one that achieved greater classification capacity, followed by AdaBoost, MLP, SVM, and Logit.

Table 3. Comparison of accuracy ratios of deep neural decision trees (DNDTs) with other methodologies.

Model Dataset Logit Multilayer
Perceptron

Support Vector
Machines AdaBoost DNDT

Africa and
Middle East

Training 91.52 94.44 93.38 95.25 99.17
Validation 90.84 93.91 92.57 94.57 98.85

Testing 90.25 93.62 92.18 94.11 98.24

Latin
America

Training 91.16 94.12 93.04 95.08 98.42
Validation 90.72 93.37 92.68 94.21 97.79

Testing 90.20 92.85 91.95 93.36 96.90

South and
East Asia

Training 91.64 95.06 93.47 96.17 99.68
Validation 91.03 94.52 93.02 95.64 99.03

Testing 90.62 94.13 92.61 95.19 98.54

Europe
Training 92.19 95.43 93.81 96.86 100.00

Validation 91.58 95.10 93.22 96.42 99.61
Testing 90.88 94.46 92.93 95.73 99.07

Global
Training 91.59 94.84 93.33 95.95 99.16

Validation 90.94 94.27 92.65 95.34 98.87
Testing 90.37 93.76 91.83 94.28 98.43

Figure 3 shows the results obtained using DNDTs for the models in each region and the global
model. The classification accuracy obtained using the training data was 99.17%, 98.42%, 99.68%, 100%,
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99.16% for the models for Africa and Middle East, Latin America, South and East Asia, Europe, and
Global, respectively. The accuracy obtained using the validation was 98.85%, 97.79%, 99.03%, 99.61%,
and 98.87% for the models for Africa and Middle East, Latin America, South and East Asia, Europe,
and Global, respectively. Finally, the accuracy for the testing data was 98.24% for Africa and Middle
East, 96.90% for Latin America, 98.54% for Asia, 99.07% for Europe, and 98.43% for the Global model.
Figure 4 shows the accuracy rates obtained for each model in the 500 calculation iterations.
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The goodness-of-fit for the models developed was measured by both the corresponding ROC
curves and root mean square error (RMSE). The area of the ROC curve for the five models was close to 1,
indicating satisfactory levels in all cases (Figure 5). The RMSE for the 500 iterations in the estimations
with the test data is shown in Table 4 and Figure 6. The RMSE was less than 0.30 in all models, also
showing a close fit for all models.Appl. Sci. 2019, 8, x FOR PEER REVIEW  13 of 19 
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Table 4. The root mean square error (RMSE) scores of estimated models.

Model
RMSE

Training Validation Testing

Africa and Middle East 0.13 0.15 0.19
Latin America 0.21 0.25 0.24

South and East Asia 0.12 0.16 0.18
Europe 0.09 0.12 0.14
Global 0.18 0.21 0.23

Figure 7 shows the most significant variables for each model in line with the sensitivity analysis
(Appendix B shows the sensitivity of all the variables). The results show a group of significant variables
that are repeated in practically all the estimated models. The variable Fixed Capital Formation was
significant in all models, showing the significance of the change in the net investment of a country for
the risk of a currency crisis. This result contradicts the previous experience in Reference [40], for which
this variable was not significant. Regarding the domestic macroeconomic variables, those for monetary
supply (M2 Multiplier Growth and M2/Reserves) were also highly significant, showing that a surge
in money supply was detrimental to the currency price (also corroborated by the sensitivity of the
variable REER Overall in the majority of models). Similarly, variables for the External Sector attribute,
such as Trade Openness, FDI and Current Account, were highly sensitive, indicating the significance of
the behavior of a country’s international trade on its currency price. This is in contrast to the findings
of previous studies [1,15,41]. Similarly, the variables Total Debt and Government Spending (related to
the accumulation of debt) were also highly significant, showing that high public debt ratios increase
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the risk of currency crises. Finally, the most significant political variables in our models were SFI (Latin
America and Global), which shows the capacity of the government to make and implement public
policy, and Polity which indicates the level of democracy of a country. Existing literature has not found
these political variables to be significant [39]. The results also differ in terms of the variables for the
banking sector which have been significant in previous work [6,7] but which did not exhibit a high
level of sensitivity in our estimations.
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The results of this study confirm that the models developed using DNDTs obtained a predictive
capacity of nearly 100% for currency crises in both regional models and the global model, obtaining
higher levels of accuracy than previous studies. The accuracy of the global model was 96.38%, although
a comparison of this model is difficult, since it is the first model created to protect currency crises
at the global level. Other studies have obtained lower levels of accuracy than our results, such as
Reference [6], which obtained an accuracy of 84.62% using the dynamic panel model. Similarly, we
also improved on the results obtained by Reference [16] which obtained 93.8% accuracy using NN for
Turkey. Our methodology also had greater predictive power than other computational techniques like
kNN-SVM, which obtained 97% accuracy for a sample of emerging countries [1] and random forests
and wavelet transform, recently applied in Reference [42] to a sample of emerging and underdeveloped
countries (ROC value = 0.94).

5. Conclusions

Currency crises constitute an area of international concern that has received interest from
macroeconomic researchers and public policymakers in recent decades. Our results show that DNDTs
improve the accuracy of predictive models for currency crises. They also improve the quality of
information for policymakers in the regions under consideration who require empirical tools to mitigate
and resolve the impact of a sharp fall in the value of their currency and the negative effects. Our
models may also be of particular relevance to financial institutions, such as rating agencies and central
banks, which need to control the risk of a potential imminent crisis.

The DNDT algorithm exhibited high predictive capacity in the case analyzed as a result of using
NNs to implement DTs. The algorithm also improved the interpretation of results and the quality
of information. The results are more accurate than in the existing literature, taking into account the
requirement of the samples used in this study.

The results of this study have also suggested a new set of variables to predict currency crises. In
this respect, the significance of variables for the external sector and domestic macroeconomy stands
out, suggesting they are the best indicators to predict a currency crisis at the global level. There are
also a number of other variables for models adapted to the specific circumstances of Asia and Europe,
and Africa and Latin America, in which the political and domestic credit variables stand out.

Given the significance of the issue addressed in this study, presenting a global forecasting model
to address a gap in the existing literature and obtaining accuracy in the testing sample of over 96%
represents significant progress in the challenging task of forecasting future currency crises. It also
provides a unique international experience, simplifying and reducing the resources and effort for
creating different models for predicting currency crises.
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Appendix A

Table A1. List of Countries in the Sample.

Albania Gabon New Caledonia
Algeria Gambia, The New Zealand
Angola Georgia Nicaragua

Argentina Germany Niger
Armenia Ghana Nigeria
Australia Greece Norway
Austria Grenada Pakistan

Azerbaijan Guatemala Panama
Bangladesh Guinea Papua New Guinea
Barbados Guinea-Bissau Paraguay
Belarus Guyana Peru
Belgium Haiti Philippines

Belize Honduras Poland
Benin Hungary Portugal

Bhutan Iceland Romania
Bolivia India Russia

Bosnia and Herzegovina Indonesia Rwanda
Botswana Iran, I.R. of São Tomé and Principe

Brazil Ireland Senegal
Brunei Israel Serbia, Republic of

Bulgaria Italy Seychelles
Burkina Faso Jamaica Sierra Leone

Burundi Japan Singapore
Cambodia Jordan Slovak Republic
Cameroon Kazakhstan Slovenia

Canada Kenya South Africa
Cape Verde Korea Spain

Central African Republic. Kuwait Sri Lanka
Chad Kyrgyz Republic Sudan
Chile Lao People’s Democratic Republic Suriname
China Latvia Swaziland

China: Hong Kong Lebanon Sweden
Colombia Lesotho Switzerland
Comoros Liberia Syrian Arab Republic

Congo, Democratic Republic of Libya Tajikistan
Congo, Republic of Lithuania Tanzania

Costa Rica Luxembourg Thailand
Côte d’Ivoire Macedonia Togo

Croatia Madagascar Trinidad and Tobago
Czech Republic Malawi Tunisia

Denmark Malaysia Turkey
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Appendix B

Table A2. Variable significance values of variables for currency crisis (Continued).

Djibouti Maldives Turkmenistan
Dominica Mali Uganda

Dominican Republic Mauritania Ukraine
Ecuador Mauritius United Kingdom

Egypt Mexico United States
El Salvador Moldova Uruguay

Equatorial Guinea Mongolia Uzbekistan
Eritrea Morocco Venezuela
Estonia Mozambique Vietnam
Ethiopia Myanmar Yemen

Fiji Namibia Yugoslavia, SFR
Finland Nepal Zambia
France Netherlands Zimbabwe

Table A3. Variable significance values of variables for Currency Crisis.

Variables Africa and
Middle East Latin America South and East

Asia Europe Global

Total Debt 0.000 0.726 0.183 0.586 0.439
Short Term Debt 0.000 0.000 0.024 0.225 0.000
Real Interest Rate 0.000 0.000 0.204 0.000 0.000
Foreign Exchange

Reserves 0.000 0.000 0.634 0.079 0.000

Trade Openness 0.748 1.253 1.351 0.000 0.834
Imports 0.000 0.415 0.000 0.000 0.000
Exports 0.000 0.000 0.657 0.128 0.000

Current Account 0.483 0.000 1.181 0.000 0.624
Portfolio Investments 0.531 0.000 0.000 0.142 0.000

FDI 1.178 0.217 0.192 0.055 0.375
Real GDP 0.000 1.173 0.000 0.000 0.000

Real GDP Growth 0.000 0.000 0.000 0.000 0.000
Inflation 0.000 0.000 0.000 0.000 0.000

M2 Multiplier Growth 1.732 0.186 0.000 1.494 1.248
M2/Reserves 0.620 0.073 0.155 0.000 1.172
REER Overall 0.249 0.000 0.349 0.000 0.597

Government Spending 0.184 0.142 0.000 0.000 0.214
Fixed Capital Formation 0.785 0.593 0.172 0.843 0.187

Unemployment 0.000 0.000 0.000 0.000 0.000
Contagion 0.000 0.000 0.000 0.000 0.000

Soft Peg 0.000 0.004 0.000 0.000 0.000
Peg 0.000 0.000 0.000 0.000 0.000

Domestic Credit 0.627 0.301 0.000 1.518 0.000
Lending Interest Rate 0.000 0.000 0.000 0.000 0.000
Deposit Interest Rate 0.000 0.000 0.000 0.000 0.000

Polity 0.493 0.239 0.147 0.000 0.382
Durable 0.000 0.000 0.000 0.000 0.000
Persist 0.000 0.000 0.182 0.000 0.000

SFI 0.211 0.000 0.085 0.231 0.275
Left Government 0.000 0.151 0.000 0.000 0.000

Election 0.000 0.000 0.000 0.000 0.000
Turnover 0.000 0.096 0.000 0.000 0.000

Years 0.000 0.000 0.000 0.000 0.000
Economic Effectiveness 0.000 0.000 0.000 0.000 0.000
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