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Abstract: Recent very high spatial resolution (VHR) remote sensing satellites provide high spatial
resolution panchromatic (Pan) images in addition to multispectral (MS) images. The pan sharpening
process has a critical role in image processing tasks and geospatial information extraction from satellite
images. In this research, CIELab color based component substitution Pan sharpening algorithm was
proposed for Pan sharpening of the Pleiades VHR images. The proposed method was compared
with the state-of-the-art Pan sharpening methods, such as IHS, EHLERS, NNDiffuse and GIHS.
The selected study region included ten test sites, each of them representing complex landscapes
with various land categories, to evaluate the performance of Pan sharpening methods in varying
land surface characteristics. The spatial and spectral performance of the Pan sharpening methods
were evaluated by eleven accuracy metrics and visual interpretation. The results of the evaluation
indicated that proposed CIELab color-based method reached promising results and improved the
spectral and spatial information preservation.
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1. Introduction

The earth observation satellites with very high resolution (VHR) optical sensors provide a
multispectral (MS) image and a panchromatic (Pan) image that are acquired simultaneously in order
to provide essential accommodation between spectral and spatial resolution, which is an important
consideration for optical satellite sensors due to their physical limitations [1,2]. Spectral diversity is
important for modeling the spectral characteristics of different land cover/use classes and identifying
them; on the other hand, spatial information is very crucial for identifying spatial details and geometric
characteristics. The Pan image provides high spatial resolution with a single, wide range spectral band,
whereas the MS image provides several spectral bands in different sections of the electromagnetic
spectrum with low spatial resolution in order to meet the abovementioned requirements.

The fusion of Pan and MS images that are acquired over the same area from the single or
multiple satellite system is referred to as Pan sharpening. The main aim of Pan sharpening is to
create a high-resolution MS image, having the spatial resolution of Pan but preserving the spectral
characteristics of MS [3]. Unlike the challenging problem of multi-sensor data fusion, single sensor Pan
sharpening does not need image-to-image registration, as the Pan and MS sensors are mounted on the
same platform and the images are acquired simultaneously with well-matching viewing geometry [4].
Several earth observation satellites, such as Geo-Eye, OrbView, QuickBird, WorldView, Pléiades and

Appl. Sci. 2019, 9, 5234; doi:10.3390/app9235234 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5693-3614
http://dx.doi.org/10.3390/app9235234
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/23/5234?type=check_update&version=2


Appl. Sci. 2019, 9, 5234 2 of 30

Spot, have this capability, and bundle (PAN+MS) products from these systems can be used directly as
the input for Pan sharpening.

An ideal Pan sharpening algorithm leads to the best performance in spatial and spectral domains
by keeping the spatial resolution of a Pan image and preserving the spectral characteristics of an
MS image. Launching of VHR sensors led to the appearance of diverse Pan sharpening methods in
recent decades [5–7]. In addition, Pan sharpening is a primary image enhancement step for many
remote sensing applications, such as object detection [8], change detection [9], image segmentation and
clustering [10,11], scene interpretation and visual image analysis [12]. Commonly, image fusion can be
classified into three levels—pixel level, feature level and decision or knowledge level—while the Pan
sharpening is categorized as a sub-pixel level process [13,14].

Pan sharpening algorithms can be divided into four groups: (1) rationing methods;
(2) injection-based methods; (3) model-based methods; and (4) component substitution (CS) methods.
Of these methods, CS algorithms are more practical because of their calculation speed and performance
compatibility. The CS methods can be categorized into four classes according to the transform matrix
used in the algorithm; which are principle component analysis (PCA) [15,16], intensity-hue-saturation
(IHS) [7,17], Gram–Schmidt (GS) [18,19] and generalized component substitution (GCS) [5,20].
The common and general limitation of all CS-based methods is the distortion in spectral characteristics
when compared to original MS image [21,22].

This research proposes a robust CS method for Pan sharpening the Pleiades VHR satellite images
with the aim of enhanced spatial resolution and reduced spectral distortion. The principle of the
proposed method is similar to the IHS method, where a uniform CIELab color space based on human
eye spectral response is used instead of IHS color space [23]. The CIELab color space has been used
for different image processing tasks. Wirth and Nikitenko, 2010 [24], investigated the performance
of CIELab color space on the application of unsharp masking and fuzzy morphological sharpening
algorithms. In the study of [25], the experiments of the content-based image retrieval (CBIR) were used
to evaluate the performance of CIELab and the other three color spaces (RGB, CIELuv and HSV) on an
image retrieval process. In addition, CIELab color space was used to help different image segmentation
tasks [26,27]. In a previous Pan sharpening research, color normalization-based on CIELab color space
aided the image fusion algorithm with sharpening a Hyperion hyperspectral image with an Ikonos
Pan image using the spectral mixing-based color preservation model [28]. In another study, a remote
sensing image fusion technique using CIELab color space was proposed by Jin et al. [29]. In that study,
the authors improved the performance of image fusion techniques by combining non-subsampled
shearlet transform and pulse coupled neural network. However, this approach is computationally
complicated and there is lack of a specific satellite dataset.

Although the CIELab method is used in different image processing tasks applied on natural
and satellite images, evaluation of its performance on the Pan sharpening process is limited and
there is no detailed evaluation of this method on VHR image Pan sharpening by considering the
different landscape characteristics and with use of spatial and spectral metrics in addition to visual
interpretation yet, to our knowledge. This research focused on proposing a robust, CIELab-based
Pan sharpening approach and aimed to fill the abovementioned gap in detailed investigation and
accuracy assessment of CIELab-based Pan sharpening in the literature. In this research, results from
the proposed method were compared with the results from the six well-known methods, which are
Ehlers, Generalized IHS, IHS, Gram-Schmitt, HCS and NNDiffuse methods. Pleiades satellite images
of ten different test sites having different landscape characteristics were comparatively evaluated to
check the spatial and spectral performance of the proposed method with quantitative accuracy metrics.
In addition, visual interpretation-based analyses were performed on the results in order to discuss the
performances of methods. The results illustrated advantages of using uniform color space for the aim
of the Pan sharpening application.
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2. State of Art

A brief review of the state of the art methods that used for comparative analysis with respect to
the proposed method are presented in Table 1.

Table 1. The brief review of state of the art Pan sharpening methods.

Method Description References

IHS Method

In this system, the total amount of the brightness in one color is
represented through intensity channel. The wavelength

property of the color and the purity of the color are represented
by hue and saturation respectively.

[30,31]

EHLERS (FFT-Enhanced
IHS Transform) Method

The fundamental idea of this method is modifying the Pan
image in the way that it looks more similar to the intensity

component of MS image. This method uses FFT (fast fourier
transform) filtering for partial replacement instead of entire

replacement of the intensity component.

[32]

NNDiffuse
(Nearest-neighbor

diffusion-based) Method

This method, considers each pixel spectrum as a weighted linear
combination of spectra of its sideward neighboring super pixels
in the Pan sharpened image. Algorithm uses various factors like
intensity smoothness (σ), spatial smoothness (σ_s) and pixel size

ratio for conducting the Pan sharpening

[33,34]

GIHS (Generalized IHS)
Method

Directly applying of IHS method needs many multiplication and
addition operations, which makes the Pan sharpening operation

computationally inefficient. GIHS method develops a
computationally efficient Pan sharpening method, which does

not require coordinate transformation

[35]

Gram-Schmidt Method

This method uses the Gram-Schmidt orthogonalization for
converting the original low-resolution MS bands, which are

linearly independent vectors, into a set of orthogonal vectors.
The first vector in the orthogonal space is considered as

simulated Pan image, which produced by weighted aggregation
of the consecutive original MS bands.

[21,22]

Hyperspherical Color
Sharpening Method

The Hyperspherical Color Sharpening method (HCS) is a Pan
sharpening method designed for WorldView-2 sensor imagery
and can be applied to any MS data containing 3bands or more.
HCS approach is based on transforming original color space to

hyperspherical color space.

[36,37]

3. Methodology and Accuracy Assessment

This research proposes a new Pan sharpening method that relies on the CIELab transform,
which modifies the color components of images to be used for Pan sharpening of VHR satellite images.
The flowchart of the proposed method is given in Figure 1, and the details of the proposed method are
described in the sub sections.

3.1. Multispectral Image Transform to CIELab Color System

The RGB color system was designed in such a way that it includes nearly all primary colors and
can be comprehended by human vision. Nevertheless, it is a tough task to deal with RGB color due to
strong correlation between its components [29]. In this study, a uniform and complete color model, the
CIELab color system, was used. In this uniform color system, a variation in the coordinates of the color
component provides the same amount of variation in the luminance and saturation components [10].
Besides, this color space is projected to draw human vision, unlike the RGB and CMYK (cyan, magenta,
yellow, black) color spaces [38]. The CIELab color system was used in the proposed Pan sharpening
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approach in order to reduce the spectral distortion, while maintaining the color perception of human
vision [39].Appl. Sci. 2019, 9, 5234 4 of 31 
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Figure 1. CIELab image Pan sharpening flowchart.

The design of the CIELab color system is based on Hering’s theory, which indicates that only
red (R), green (G), blue (B) and yellow (Y) are unique among the thousands of colors that are
used to characterize the hue component [40]. Although, other colors can be produced using these
unique colors (for example it is possible to obtain orange by mixing red and yellow), they (R, G, B
and Y) can be described only with their own name. R, G, B and Y, with black (B) and white (W),
constitutes a color system with six basic color properties and three opponent pairs: R/G, Y/B and B/W.
The opponency idea rises from observation upon colors attributes, which proves no color could be
characterized using both blue and yellow or red and green together [41]. A blue shade of yellow
does not exist. These three opponent pairs are represented in the form of a three-dimensional color
space, as illustrated in Figure 2. In this figure, the vertical axis L* represents the luminance, in which
perfect black is represented by 0 and perfect white is represented by 100. The a* and the b* are the
axes that are perpendicular to luminance indicated chromaticity, and stand for redness/greenness and
yellowness/blueness, respectively. Positive values represent redness (for a* component) and yellowness
(for b* component), whereas greenness and blueness are denoted with negative values.
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The L*, a* and b* values are computed using XYZ values. The XYZ system that was based on the
RGB color space was presented by the International Commission on Illumination, CIE (Commission
international de l’éclairage), in the 1920s and patented in 1931. The difference of RGB and XYZ lies in
the light sources. The R, G and B elements are real light sources of known characteristics, whereas the
X, Y and Z elements are three theoretical sources, which are selected in a way that all visible colors can
be defined as a density of just-positive units of the three primary sources [10].

Occasionally, the colorimetric calculations with the use of color matching functions produce
negative lobs. This problem can be solved by transforming the real light sources to these theoretical
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sources. In this color space, red, green and blue colors are more saturated than any spectral RGB. X,
Y and Z components, represent red, green and blue colors respectively. RGB to XYZ and its reverse
transformations can be performed by following equations:

X
Y
Z

 =


0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

•


R
G
B

 (1)


R
G
B

 =


3.2404542 −1.5371385 −0.4985314
−0.9692660 1.8760108 0.0415560
0.0556434 −0.2040259 1.0572252

•


X
Y
Z

. (2)

Lab system is calculated by the following equations [23]:

L = 116 FY − 16 (3)

a = 500 [F X − FY] (4)

b = 200[F Y − FZ] (5)

Where FX= (
X
Xn

)
1
3 if (

X
Xn

)>(
24

116
)3 (6)

And FX= (
841
108

)(
X
Xn

)+
16

116
if (

X
Xn

) ≤ (
24

116
)

3
, (7)

where Xn is the tristimulus value of a perfect white object color stimulus, which the light reflected from
a perfect diffuser under the chosen illuminant. FY and FZ values are calculated in the same way as FX.

3.2. Pan-Sharpening

In the Pan sharpening procedure, the MS image should be resampled to the same pixel size of
the Pan image before converting it to CIELab color space. In this research, the bicubic interpolation
method was used to resample 2 m resolution Pleiades MS images into 50 cm resolution to match the
pixel size of Pleiades Pan image. This resampled dataset is used in all Pan sharpening methods used
in this research, including the proposed one. After converting the MS image from RGB to CIELab
space, the Pan sharpening process continues with replacing the Pan image with the L* component.
Unlike the proposed method in [29] study, there is no need for color space conversion of Pan image
in the proposed method, which leads to low computation and less data distortion. Before replacing
the L* band of MS with the Pan image, there is a histogram matching step that could be considered
as preprocessing step. After resampling the MS image to the same size of Pan image and converting
the MS image color space, the histogram of Pan image has to be matched with the histogram of L*
component in order to minimize the spectral differences [42]. For performing histogram matching task,
mean and standard deviation normalizations were used [43]:

PanHM = (Pan− µPan)
σI

σPan
+ µI, (8)

where PanHM stands for histogram matched Pan image, µ stands for mean and σ represents standad
deviation. After these preprocessing steps, the L* component is replaced with a Pan image. The Pan
sharpened image is then produced by implementing inverse conversion of CIELab color system on the
Pan*a*b* image and results in a new MS image with high spatial resolution.

3.3. Accuracy Assessment

Several metrics were proposed to assess the accuracy of Pan-sharpened images that use the precise,
high-resolution MS image as a reference image. In this research, the first seven metrics provided
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in Table 2 were used for the spectral quality assessment, while the later four metrics were used for
spatial quality assessment of the results. Although metrics provide important quantitative insights
about the algorithm performance, qualitative assessment of the color preservation quality and spatial
improvements in object representation is required. Thus, results obtained from the Pan sharpening
algorithms were also evaluated with visual inspection.

Table 2. The description of all accuracy indices (definition of terms provided in List A1).

Quality
Metric Description Formula

What Value
to Look for

(Higher/Lower)
Reference

RMSE

Root Mean Square Error (RMSE) is used to
calculate the variation in DN values for checking
the difference between the Pan sharpened and

reference image.

RMSE =√
1

MN

M∑
i=1

N∑
j=1

(MS(i, j) − PS(i, j))2
Lower

(near to zero) [45]

ERGAS

Relative dimensionless global error synthesis
(ERGAS) is used to calculate the accuracy of Pan

sharpened image considering normalized
average error of each band of the result image.

ERGAS = 100 dh
dl

√
1
n

n∑
i=1

(
RMSE(i)
Mean(i) )

2 Lower
(near to zero) [45]

SAM

Spectral Angle Mapper (SAM) represents the
spectral similarity between the Pan sharpened

and reference MS image using the average
spectral angle

Lower
(near to zero) [36]

RASE
Relative average spectral error (RASE) is an error
index to calculate average performance of Pan

sharpening algorithm into spectral bands.
RASE = 100

µ

√
1
b

b∑
i=1

RMSE
Lower

(near to zero) [46]

PSNR
Peak signal-to-noise ratio is widely used metric
for comparison of distorted (Pan sharpened) and

original (reference) image.

PSNR =

20 log10

[
L2

1
MN
∑M

i=1
∑N

i=1 (Ir(i,j)−Ip(i,j))
2

]
Higher Value [47]

QAVG

The Average Quality index based on quality
index is used to model the difference between

reference and Pan sharpened images as a
combination of three different factors: loss of

correlation, luminance distortions and contrast
distortion. As QI can only be applied to one

band, the average value of three or more bands
(QAVG) is used for calculating a global spectral

quality index for multiband images.

QI =
4σxyxy

(σ2
x+σ

2
y)[(x)

2+(y)2]
Higher Value
(Close to 1) [48]

SSIM

Structural Similarity index (SSIM) is a method for
measuring the structural similarity between
reference and Pan sharpened images. This

method compares the local patterns (luminance,
contrast and structure) using means and

standard deviations of two images.

SSIM =
(2µIrµIp+C1)(2σIrIp+C2)

(µ2 Ir+µ
2Ip+C1)(σ2Ir+σ

2 Ip+C2)
Higher Value [2]

CC

To assess the spatial quality of Pan sharpened
images, the correlation coefficient between the
Pan image and the intensity component of the

Pan sharpened image is used.

CC =
2Cr f

Cr+C f

Higher Value
(Close to 1) [49]

ZHOU
index

Zhou’s spatial index uses a high frequency
Laplacian filter for extracting high frequency

information from both Pan and Pan sharpened
images. Correlation coefficient is then calculated
between filtered Pan image and each band of Pan
sharpened image. The average of calculated cc is

considered as spatial quality index.

Laplacian Kernel = −1 −1 −1
−1 8 −1
−1 −1 −1

 Higher Value
(Close to 1) [50]

SRMSE

Sobel based RMSE (SRMSE) is an index for
spatial accuracy assessment that uses absolute

edge magnitude difference of Pan and Pan
sharpened image. This index utilizes 3 × 3

vertical and horizontal Sobel filter kernels for
calculating the gradient of edge intensities.

RMSE then calculated between Pan and Pan
sharpened edge magnitude images.

M =
√

M2
x + M2

y

Where Mx =

 −1 0 1
−2 0 2
−1 0 1

× image

And My =

 −1 −2 −1
0 0 0
1 2 1

 × image

Lower
(near to zero) [51]

Sp-ERGAS

Spatial ERGAS (Sp-ERGAS) is an index for
spatial quality assessment of Pan sharpened

image, which uses spatial RMSE for assessment
procedure

Spatial ERGAS =

100 dh
dl

√
1
n

n∑
i=1

(
Spatial_RMSE(i)

Pan(i) )
2 Lower

(near to zero) [52]
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4. Experimental Results

4.1. Dataset

The primary product of Pléiades satellite images were used for performing experimental analysis
of the proposed method. The Pléiades program, which was launched by CNES (the French space
agency), is the optical Earth imaging component of French–Italian ORFEO (Optical and Radar Federated
Earth Observation). The Pléiades constellation consists of two satellites with VHR optical sensors.
The Pléiades 1A launched on 17.12.2011 and Pléiades 1B launched on 2.12.2012. Both of the satellites
provide 0.5 m spatial resolution for the Pan sensor and 2 m for MS sensor with 20 km swath width and
12 bit radiometric resolution [44].

The dataset used in this research consists of three Pleiades image scenes, which cover different
landscape characteristics (Table 3). The locations of scenes are provided in Figure 3. Ten different sub
frames were selected from these image scenes, in order to evaluate the performance of Pan sharpening
methods for varying landscape characteristics and seasonal conditions (Table 4).
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Table 3. The description of three datasets.

No Location Acquisition Data Platform

D1 Istanbul 2017-04-09 PHR 1A
D2 Izmir 2015-12-04 PHR 1B
D3 Aydin 2018-04-10 PHR 1B
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Table 4. The description of ten selected data frames.

Image Location Type Objects

F1 Istanbul Rural Trees, Vegetation, Bare roads, Bare soil
F2 Istanbul Urban Buildings, Roads, Squares, Trees, Bare soil
F3 Istanbul Suburban Vegetation, Roads and highways, Buildings, Bare soil, Industry buildings, Green fields.
F4 Izmir Urban Buildings, Roads, Vegetation, Bare soil
F5 Izmir Rural Agricultural fields, Bare roads
F6 Izmir Rural Trees, Mountain, Bare roads
F7 Izmir Suburban Industry buildings, Agricultural fields, Roads, Bare soil
F8 Aydin Suburban Agricultural fields, Roads, Bare roads, Trees, Buildings, Bare soil
F9 Aydin Urban Buildings, Roads, Trees, Bare soil, Green fields

F10 Aydin Rural Trees, vegetation, agricultural fields, buildings, roads, Bare roads

Four sub frames cover rural areas that contain forests with different types of trees with varying
heights and barren roads between them, and mountains and agricultural fields. Three sub frames
cover urban areas that include complex buildings, roads and highways. Finally, three sub frames cover
sub-urban areas that include all the complex buildings, factories, vegetation, roads, trees and bare soil
parts to perform a precise survey on effects of the proposed method in Pan sharpening of vegetation,
impervious and soil surfaces simultaneously.

4.2. Performing the Algorithm and Accuracy Assessment

To measure the performance of Pan sharpening results using the metrics that were presented
in Section 3.3, the Wald protocol was used, due to lack of reference a high-resolution MS image [53].
According to Wald protocol, all Pan sharpening experiments were done using degraded datasets,
which are produced by decreasing spatial resolution of the original dataset (reduce MS and Pan,
respectively, to 8 m and 2 m). The Pan sharpening results obtained that way, can be compared with
the original MS images for an accuracy assessment procedure. In this paper, six Pan sharpening
methods and eleven accuracy indexes are evaluated to perform a comparative accuracy assessment of
the proposed method. The numerical results of the accuracy indexes are presented in Tables A1–A6.
The visuals belonging to Pan sharpening results of ten frames are presented in Figures A1–A10. In each
figure, parts a and b are the original Pléiades MS and Pan images, respectively. Parts c, d and e are
the Pan sharpened results from the CIElab, GIHS and GS methods, respectively. The Pan sharpened
images from the HCS, IHS, NNDiffuse and Ehlers methods are shown in parts f–i, respectively.

4.3. Experimental Results from Rural Areas

Figures A1–A4 belongs the Pan sharpening results of the rural test sites (frame F1 from D1 dataset,
frames F5 and F6 from D2 and Frame F10 from D3 datasets). Each figure belongs to a representative
part from the whole image focusing on rural areas and presents visual comparison different Pan
sharpening techniques.

The visual comparison of the Pan sharpening methods reveals that spatial resolution of MS images
improved significantly in all methods. As for spectral information, parts c, e and h show that the
CIELab GS and NNDiffuse methods protect the spectral characteristics better; specifically, for the
bands belonging to the visible region. The color-based visual interpretation in vegetated and forest
areas in Figures A2–A4 inform us that the Pan-sharpened and original MS images are very similar to
each other for GS and CIELab methods. Similar comments can be made on NNDiffuse and CIELab
methods in Figure A1. On the other hand, visual comparison of part a with parts d, f, g and i reveals
that the remaining four methods were not able to preserve the spectral characteristics of vegetated
and forest areas. Particularly, IHS, Ehlers and HCS methods inherited the high frequency impact
over vegetated area and could not preserve original spectral/color information for the first test site.
In addition, the result of the HCS method is more blurred than the others. The GIHS and—in some
cases—the NNDiffuse methods, preserved the color information better than the IHS, Ehlers and HCS;
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nevertheless, observable spectral distortion is apparent in their resulting products. The GS method has
good performance in the case of vegetation except Figure A1 part e, while results are not satisfactory in
pathways and their surroundings. In addition, obvious distortions are apparent in the shadowed areas.
Detailed investigation on Figure A3 (e) reveals that there is an obvious distortion in snowy parts of the
frame almost in all methods except the proposed CIELab, which resulted in a nearly blue color instead
of white snow color. However, CIELab method could be able to preserve the texture and keep the
small variances in the color when compared to original MS image. Besides, visual interpretation of the
CIELab Pan sharpening results (part c in all figures) demonstrated that use of this color space for Pan
sharpening could help to distinguish different tree types and vegetation from each other in the absence
of NIR band.

The seven quality metrics, which were presented in Table 2, were used for spectral quality
assessment of the Pan sharpening results. Numerical results from these metrics for the rural frames (F1,
F5, F6 and F10) are presented in Table A1. The metric values were calculated band by band, and the
average values of three bands were used for the accuracy assessment procedure. Numerical results
of ERGAS, RASE, RMSE and SAM metrics indicated that the proposed CIELab method produced
better results than the remaining methods and was followed by the GS method for most of the metrics.
Metric-based results were in line with the visual interpretation. The CIELab method also provided
the highest accuracies according to the QAVG and PSNR metrics. In addition, the proposed method
provides the value 1 for the SSIM metric, which is the best possible value. Moreover, the IHS method
provides worst results for all quality indexes, with respect to Table A1. Lastly, Ehlers, GIHS and
HCS methods provide lower accuracies in some cases. This unstable manner of these methods across
different scenes is another problem that should be considered.

To assess the spatial quality of Pan sharpened images, the CC, the Zhou index, Sobel RMSE
and spatial ERGAS indexes that are presented in Section 3.3, were calculated by comparing the Pan
image and the intensity component of the Pan sharpened images. Numerical results of these metrics
are presented in Table A2. According to comparative evaluation, the Pan sharpened image from the
proposed CIELab method provided the highest spatial CC and Zhou values and lowest SRMSE and
SP ERGAS values. These results indicate that the proposed method has the best spatial performance
among all methods tested. Ehlers, HIS and HCS methods provided the lowest spatial performances
according to the values presented in Table A2.

As a result, the proposed CIELab method provided the best performance for the rural scenes
based on the visual interpretation and spectral and spatial quality metrics results.

4.4. Experimental Results from Urban Areas

Figure A5 through Figure A7 belongs to the Pan sharpening results of the urban test sites (frames F2,
F4 and F9 from D1, D2 and D3 datasets respectively). Each figure belongs to a representative part
from the whole image focusing on the buildings and roads, and presents visual comparison between
different Pan sharpening techniques on the differently sized and oriented buildings and roads in the
urban areas.

Visual comparison results of urban areas revealed that all the Pan sharpened images inherited
the high spatial information from the Pan image, and likewise, the results of rural areas. Roads and
buildings could be better identified in all Pan sharpened images compared to original MS image. As for
spectral information, Figure A5 c,e,h, informed us that CIELab, GS and NNDiffuse methods preserved
the spectral characteristics and color information in urban areas. In particular, the color information
from the buildings with brick rooves are similar to the original MS image. Visual comparison of
Figure A5 part a with parts d, f, g and i illustrated that of IHS, HCS, GIHS and Ehlers methods are not
able to preserve the original spectral characteristics of buildings as well as the other three approaches
did. In particular, Ehlers, HCS and IHS methods provided blurred and smoggy results with faded
and paled colors. Parts g and I from Figures A6 and A7 support that HIS and Ehlers methods provide
worst visual results among all methods tested. Part e in Figures A6 and A7 reveals the weakest side of
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GS method; that is, the poor performance in the Pan sharpening of white tones. White colors tend to
seem blueish in results of this method. It is obvious from part f in Figures A6 and A7 that the HCS
method provided the most blurred result. GIHS and NNDiffuse methods have acceptable results in
comparison with the results from other methods (except CIELab method). Detailed investigation of
Figures A6 and A7, parts d and h, prove that NNDiffuse method produces distortion in the shadowed
areas and GIHS method has poor performance in vegetated areas and trees. Visual interpretation of
Figure A5(c), Figure A6(c) and Figure A7(c) reveal the fact that the proposed CIELab method protected
spectral properties of original MS image more than the other methods.

Numerical results of spectral quality assessment of Pan sharpened images belonging to the urban
test sites (F2, F4 and F9) are presented in Table A3. Metric values demonstrated that the CIELab
method provided the most promising results among all Pan sharpening methods used in this research.
This method presented the lowest values for the ERGAS, RASE, RMSE and SAM metrics and highest
values for QAVG, PSNR and SSIM metrics (again, the highest possible value obtained for SSIM).
HCS and IHS methods provided the worst results for most of the metrics. Once again, the second
performance rank for spectral quality was obtained by GS method in most of the metrics.

Table A4 presents the spatial quality metrics results that were calculated from Pan image and the
intensity component of Pan sharpened images for the urban test sites. Similar to the rural test sites,
the proposed CIELab method provided the highest CC and Zhou values alongside of lowest SRMSE
and SP ERGAS values for urban images, which demonstrated the high spatial quality. In particular,
there is great gap between the numeric results of SRMSE and SP ERGAS indexes presented with
CIELab method and other methods. Ehlers, IHS and HCS methods acted as the worst methods in the
case of spatial indexes, which is consistent with the visual results. Consequently, the proposed CIELab
method provided the best performance for the urban test sites (frames F2, F4 and F9) as well, based on
the visual interpretation and spectral/spatial quality metrics.

4.5. Experimental Results from Suburban Areas

Figures A8–A10 present the representative portions of the original images and Pan sharpening
results of the suburban test sites from F3, F7 and F8 frames respectively.

Similar to the urban and rural areas, visual comparison of original MS and Pan sharpened images
of this category revealed that all the Pan sharpened images produced higher spatial information than
original MS image and benefited from Pan image detail level. However, the visual performance of
suburban areas was variable, unlike the urban and rural areas. Results from frame F3 (Figure A8) show
that all methods had acceptable performance except Ehlers and HIS. Nevertheless, small amount of
distortion in vegetation and shadowed areas is apparent in the results of NNDiffuse and HCS methods.

Figure A9 illustrates the effectiveness of the CIELab method in Pan sharpening process. There is
an obvious color distortion in all methods except proposed Lab method’s result. Parts e, g and i
demonstrate similar distortion in the results of Ehlers, GS and HIS methods with a green dominant
color distortion, while other three methods, which are presented in parts d, f and h, have purple
dominant color distortion. These color distortions are apparent for all surface types including roads,
rooves and other objects. The CIELab was the only method that provided acceptable performance for
this test frame. Ehlers and IHS methods could not provide good performance for the last test frame,
as is observable in parts c and g of the Figure A10. Parts d and f prove that the results of the GIHS
and HCS are blurred and not acceptable. Green and white tones distortion is obvious in the result of
GS (Part e from Figure A10). The CIELab method illustrates the best performance again in this frame.
Regardless of the distortion in shadowed areas, NNDiffuse provided most similar results to original
MS image after the CIELab results.

Numerical results of spectral quality assessment of Pan sharpened images belonging to suburban
areas (frames F3, F7 and F8) are presented in Table A5. Once again, CIELab method provides the
highest values for the QAVG, PSNR and SSIM metrics, while it achieves the lowest values for the
ERGAS, RASE, RMSE and SAM metrics. The GS method has the second place again, similar to the
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urban and rural test sites by achieving better numeric values for most of the metrics. Similar to previous
test site results, the Ehlers and IHS methods have the worst performance between all tested methods.

Spatial quality assessment of Pan sharpening results for the frames F3, F7 and F8 are presented
in Table A6. The proposed CIELab method illustrated an unrivaled performance in the case of the
spatial quality metrics. For the CC and Zhou index, the highest correlation values that indicate high
spatial quality are provided by the CIELab method. Moreover, the lowest SRMSE and SP ERGAS
values achieved by the proposed method are another proof of high spatial quality of this method.
Ehlers, HCS and IHS methods present the lowest CC and Zhou values with the highest SRMSE
and SP ERGAS values, which indicate the poor spatial performances of these methods, like their
spectral performances.

4.6. Thematic Accuracy Evaluation with Spectral Index

The performance of the conventional and proposed Pan sharpening methods were evaluated with
several quality indices and visual interpretation in this research. However, the effects of Pan sharpening
on the information extraction, process such as image classification, segmentation and index-based
analysis is another important concern that requires conservation of spectral properties of the MS image
after Pan sharpening. One of the indirect methods frequently used to evaluate the abovementioned
situation is to apply the spectral index on the MS and Pan sharpened images, and investigate their
consistency. As only visible bands of the images were used in this research, the visible atmospherically
resistant index (VARI) proposed by Gitelson et al., 2002 [54] was used for the evaluation as it uses the
all visible bands for calculation.

VARI =
Green−Red

Green + Red− Blue
. (9)

The test site F3 was selected for this evaluation, as it is one of the most challenging sites in the
dataset due to complex and heterogeneous land cover characteristics. The VARI index was applied
on both the MS and CIELab Pan sharpened images, and a binary classification was performed with
the use of the same threshold to map the manmade and natural lands in the region. According to
results presented in Figure 4, same level of information extraction could be achieved with CIELab Pan
sharpened image and it even provided better thematic representation by providing better geometric
representations of the objects and less of the salt and pepper effect observed in the vegetated areas
located in the north and south parts of the image.

4.7. Overall Comments

When the numerical values from the seven spectral metrics for three different test sites (Tables A1,
A3 and A5) were evaluated, the proposed CIELab had a consistent behavior for different metrics
and for different land categories, and ranked as the first among all methods. On the other hand,
for the other Pan sharpening methods, different metrics provided various accuracies and did not
show a consistent manner for different metrics and even, for different images, the same metric. As
an example, the GS method generally had the second ranking for the ERGAS metric for different test
sites. However, in the case of the RASE metric, the GS method had second ranking just for some
images, while the GIHS method took the second rank for the remaining images. This phenomenon
is similar for the worse results; there is no one method that can be mentioned as the worst for all
test sites and all metrics. All facts about the consistent manner of the proposed method can also be
asserted for the spatial metrics. The CIELab method had the best spatial performance for the all ten
test sites, while second through seventh rankings were variable across different metrics and different
images. As an outcome, it is evident that the proposed method presents the best results considering
spectral and spatial quality metrics and visual interpretation for ten different sites having different
landscape characteristics. Moreover, it provided efficient spectral conservation performance according
to comparative evaluation performed with binary classification of VARI index. An overall ranking
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is provided in Table 5, according to expert judgement by considering the quantitative, metric-based
results and visual interpretation results together for different landscapes across spectral and spatial
domains. Lastly, in order to check the consistency of spectral quality indices through each band of the
images, these indices were calculated band-by-band for the test site F3 (Table A7). According to this
evaluation, the averaged values for each index are in accordance with the band-based calculations and
indices, providing consistent characteristics across image bands in most of the cases.
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Table 5. The overall relative ranking of the methods evaluated.

Method Rural Urban Suburban

Spectral Spatial Spectral Spatial Spectral Spatial

CIELab Good Good Good Good Good Moderate
GIHS Moderate Moderate Moderate Moderate Poor Poor

GS Good Good Moderate Moderate Poor Moderate
HCS Poor Moderate Poor Poor Poor Poor
HIS Poor Poor Poor Poor Moderate Poor

NNDiffuse Moderate Moderate Moderate Poor Poor Moderate
Ehlers Poor Poor Poor Poor Moderate Poor
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5. Conclusions

This research proposed an effective, component substitution-based image Pan sharpening method
that uses CIELab color space for Pan sharpening of the VHR Pléiades satellite images. Ten test sites
with different landscape characteristics were selected to evaluate the performance of the proposed
method in conjunction with six common Pan sharpening algorithms; namely, GS, HCS, IHS, EHLERS,
NNDiffuse and GIHS. The comparative evaluation results from Pléiades VHR images supports that
the proposed CS algorithm is powerful and ensures better performance compared to the other Pan
sharpening methods according to the spectral and spatial accuracy assessment procedures and the
visual interpretation. In addition, results indicated that proposed method provided comparatively
consistent results, while the performance of other methods varyied with respect to land surface
characteristics of the region. As an example for RMSE metric, the best values among the all ten
sites were obtained for forest and vegetated areas. Pan sharpening in urban areas resulted in coarser
metric values, which illustrate the impact of different land characteristics on the performance of
Pan sharpening algorithms. Characteristics of unique CIELab color space, led to producing similar
brightness characteristics in Pan sharpened images compared to original MS image. The nature of L*
component of MS image helps to preserve spectral and spatial information of original MS and Pan
images, respectively. Further improvement of the CIELab-based method could be the implementation
of this approach for Pan sharpening of satellite images with more than three bands. In addition,
further studies are planned to evaluate the performance of CIELab in fusions of satellite images from
different sources. Lastly, other accuracy assessment approaches, such as comparisons of classification
and segmentation results of Pan sharpened images, could also help future investigations.
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Figure A1. Result and comparison of the proposed Pan sharpening method for the F1 (zoomed) area, 
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f) 
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A1. Result and comparison of the proposed Pan sharpening method for the F1 (zoomed) area,
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A2. Result and comparison of the proposed Pan sharpening method for the F5 area (zoomed), 
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f) 
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A2. Result and comparison of the proposed Pan sharpening method for the F5 area (zoomed),
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A3. Result and comparison of the proposed Pan sharpening method for the F6 area (zoomed), 
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f) 
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A3. Result and comparison of the proposed Pan sharpening method for the F6 area (zoomed),
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.



Appl. Sci. 2019, 9, 5234 17 of 30

Appl. Sci. 2019, 9, 5234 18 of 32 

 

  
(a) (b) (c) 

 
(d) (e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure A4. Result and comparison of the proposed Pan sharpening method for the F6 area (zoomed), 
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f) 
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A4. Result and comparison of the proposed Pan sharpening method for the F6 area (zoomed),
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Table A1. Numeric results of spectral quality metrics of the Pan-sharpened images produced by
selected algorithms for rural test sites (blue: highest accuracy; red: lowest accuracy).

ERGAS QAVG RASE RMSE SAM PSNR SSIM

F1

Ehlers 8.35973 0.70345 31.03779 0.00169 3.64069 55.45895 0.99423
GS 3.53280 0.72884 12.85721 0.00070 2.17343 63.81712 0.99854

GIHS 9.70735 0.68332 54.94083 0.00299 3.71061 50.49886 0.96170
HCS 3.30104 0.72804 13.12935 0.00071 3.07602 62.93191 0.99913
IHS 10.74394 0.67747 60.82506 0.00331 3.74898 49.61512 0.95743

CIELab 2.07704 0.83561 11.24036 0.00061 1.33832 69.28116 1
NNDiffuse 6.01008 0.68762 29.32491 0.00159 1.68020 55.95203 0.99065

F5

Ehlers 7.62863 0.67932 30.11675 0.00136 2.76553 57.32630 0.99653
GS 3.43803 0.70832 15.06442 0.00069 1.96874 64.58066 0.99909

GIHS 4.68240 0.70403 20.21354 0.00091 1.71451 60.78961 0.99738
HCS 6.04601 0.67023 24.66611 0.00111 1.64450 59.06045 0.98721
IHS 7.58878 0.66419 32.80574 0.00148 2.31403 56.58346 0.98436

CIELab 3.1501 0.81033 12.37956 0.00056 1.25643 75.04835 1
NNDiffuse 6.05444 0.69039 25.02772 0.00117 1.64355 59.53192 0.99658

F6

Ehlers 12.35511 0.68485 44.42476 0.00133 5.60838 57.50393 0.99650
GS 4.95180 0.73240 18.30183 0.00059 2.46646 66.21170 0.99918

GIHS 8.96652 0.71253 36.05239 0.00108 3.84187 59.31775 0.99551
HCS 5.56829 0.71320 22.52386 0.00068 3.70496 63.40357 0.98920
IHS 12.47236 0.68690 50.19509 0.00151 5.41973 56.44320 0.98278

CIELab 4.53026 0.83580 16.05962 0.00048 1.86814 66.34172 1
NNDiffuse 7.74954 0.69166 32.23618 0.00097 2.70472 60.28956 0.99680

F10

Ehlers 9.22107 0.61404 36.48889 0.00316 4.44999 49.99698 0.98567
GS 4.78197 0.63099 18.07030 0.00157 2.86307 56.10088 0.99517

GIHS 6.60284 0.62945 32.99550 0.00286 2.41971 50.87109 0.97682
HCS 9.96965 0.57631 40.17887 0.00348 2.10395 49.16024 0.98781
IHS 9.49649 0.60973 47.55454 0.00412 3.41879 47.69635 0.96361

CIELab 4.3611 0.6478 17.14994 0.00149 1.77264 57.55494 1
NNDiffuse 4.46541 0.63385 17.77395 0.00154 1.50089 56.24451 0.99540

Table A2. Numeric results of spatial quality metrics of the Pan-sharpened images produced by select
algorithms for the rural test sites (blue: highest accuracy; red: lowest accuracy).

CC Zhou’s SP SRMSE SP ERGAS

F1

Ehlers 0.876695 0.939608 0.006527 26.540923
GS 0.970317 0.973490 0.002298 25.222656

GIHS 0.978149 0.979959 0.005213 25.699874
HCS 0.939252 0.963691 0.00293 25.531640
IHS 0.869487 0.929827 0.006592 26.040642

CIELab 0.982436 0.998617 5.19E-08 17.345011
NNDiffuse 0.944022 0.967511 0.003237 24.580730

F5

Ehlers 0.926486 0.92948 0.006241 26.658944
GS 0.989994 0.98932 0.003323 25.503829

GIHS 0.990875 0.989946 0.004153 25.881689
HCS 0.869709 0.914225 0.00467 26.457399
IHS 0.927104 0.989560 0.006261 26.460988

CIELab 0.996861 0.994414 2.22E-08 4.9495726
NNDiffuse 0.971652 0.989410 0.004303 25.740781

F6

Ehlers 0.891415 0.929872 0.006123 29.084361
GS 0.989992 0.989450 0.002473 26.047215

GIHS 0.989997 0.989974 0.004425 28.173902
HCS 0.912241 0.972654 0.002903 26.946861
IHS 0.95928 0.969886 0.006141 29.301514

CIELab 0.997273 0.996194 3.40E-08 11.968807
NNDiffuse 0.969999 0.979946 0.003062 27.901263

F10

Ehlers 0.923442 0.919671 0.014214 28.001920
GS 0.989619 0.989061 0.008828 26.488351

GIHS 0.971429 0.969959 0.008738 26.263696
HCS 0.799403 0.694767 0.012855 28.756548
IHS 0.914264 0.929730 0.014267 27.019798

CIELab 0.997258 0.996956 2.69E-08 8.0781533
NNDiffuse 0.929999 0.929405 0.0067663 26.362095



Appl. Sci. 2019, 9, 5234 19 of 30

Appl. Sci. 2019, 9, 5234 21 of 32 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure A5. Result and comparison of the proposed Pan sharpening method for the F2 test frame, 
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) 
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A5. Result and comparison of the proposed Pan sharpening method for the F2 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A6. Result and comparison of the proposed Pan sharpening method for the F4 test frame, 
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) 
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A6. Result and comparison of the proposed Pan sharpening method for the F4 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A7. Result and comparison of the proposed Pan sharpening method for the F9 test frame, 
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) 
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A7. Result and comparison of the proposed Pan sharpening method for the F9 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Table A3. Numeric results of spectral quality metrics of the Pan-sharpened images produced by select
algorithms for urban test sites (blue: highest accuracy; red: lowest accuracy).

ERGAS QAVG RASE RMSE SAM PSNR SSIM

F2

Ehlers 11.86921 0.53991 47.33854 0.00401 4.71053 47.94083 0.97725
GS 5.23770 0.58263 22.61594 0.00195 2.64855 55.16107 0.99458

GIHS 7.34063 0.57639 33.87054 0.00287 2.46540 50.84869 0.98449
HCS 15.71881 0.48541 62.43752 0.00529 2.73988 45.53622 0.97461
IHS 11.04969 0.54971 51.03739 0.00432 3.46087 47.28736 0.95942

CIELab 4.22351 0.68629 20.75741 0.00176 1.36201 65.10167 1
NNDiffuse 9.43220 0.56867 49.55085 0.00420 3.40818 47.54411 0.96330

F4

Ehlers 22.84143 0.52356 89.68352 0.00405 7.95294 47.84821 0.95598
GS 12.57253 0.42386 65.56001 0.00296 6.13381 50.56968 0.96821

GIHS 15.81385 0.63109 90.10525 0.00407 3.15646 47.80746 0.94837
HCS 23.98628 0.28239 121.71057 0.00550 8.28181 45.19589 0.93994
IHS 19.50133 0.38961 111.13086 0.00502 8.99373 45.98577 0.92838

CIELab 6.86913 0.70144 26.93926 0.00122 1.89738 58.29474 1
NNDiffuse 19.72400 0.63077 98.22609 0.00441 6.13952 50.53176 0.97519

F9

Ehlers 9.89595 0.51189 39.61836 0.00495 4.27519 46.10242 0.97015
GS 4.96528 0.55533 18.29249 0.00256 2.20216 51.30320 0.99273

GIHS 5.40401 0.53562 24.49466 0.00306 1.92496 50.27892 0.98486
HCS 10.02627 0.47659 39.67119 0.00496 2.02550 46.09085 0.93648
IHS 9.55051 0.51220 43.30832 0.00541 3.25101 45.32893 0.92951

CIELab 4.2936 0.6402 17.16686 0.00215 1.12493 54.36654 1
NNDiffuse 8.25412 0.58294 18.91789 0.01112 1.80691 39.08057 0.94984

Table A4. Numeric results of spatial quality metrics of the Pan-sharpened images produced by select
algorithms for urban test sites (blue: highest accuracy; red: lowest accuracy).

CC Zhou’s SP SRMSE SP ERGAS

F2

Ehlers 0.923124 0.939587 0.027718 28.484374
GS 0.985504 0.968697 0.008643 25.816466

GIHS 0.986114 0.989954 0.012513 26.611553
HCS 0.937058 0.949630 0.019802 21.018918
IHS 0.913914 0.929653 0.027772 27.734556

CIELab 0.996129 0.995455 7.17E-08 6.2709053
NNDiffuse 0.960443 0.961942 0.012853 22.490210

F4

Ehlers 0.820014 0.939655 0.017949 31.953533
GS 0.989999 0.989842 0.009369 26.949381

GIHS 0.992001 0.989953 0.012168 28.452035
HCS 0.775576 0.688826 0.018171 33.941348
IHS 0.919941 0.989666 0.018000 31.259808

CIELab 0.997280 0.996187 5.44E-08 5.8158174
NNDiffuse 0.914590 0.888001 0.012253 27.737860

F9

Ehlers 0.924923 0.949622 0.024424 28.179705
GS 0.989237 0.982593 0.014115 26.132656

GIHS 0.978923 0.989960 0.015724 26.434713
HCS 0.860205 0.794738 0.023803 28.880067
IHS 0.912546 0.969662 0.024479 27.533331

CIELab 0.99848 0.998002 5.26E-08 4.4340045
NNDiffuse 0.929067 0.958606 0.021917 25.926934
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Figure A8. Result and comparison of the proposed Pan sharpening method for the F3 test frame, 
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) 
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A8. Result and comparison of the proposed Pan sharpening method for the F3 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.



Appl. Sci. 2019, 9, 5234 24 of 30

Appl. Sci. 2019, 9, 5234 26 of 32 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure A9. Result and comparison of the proposed Pan sharpening method for the F7 test frame, 
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) 
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A9. Result and comparison of the proposed Pan sharpening method for the F7 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A10. Result and comparison of the proposed Pan sharpening method for the F8 test frame, 
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) 
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers. 

  

Figure A10. Result and comparison of the proposed Pan sharpening method for the F8 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Table A5. Numeric results of spectral quality metrics of the Pan-sharpened images produced by select
algorithms for suburban test sites.

ERGAS QAVG RASE RMSE SAM PSNR SSIM

F3

Ehlers 10.98399 0.63217 43.08140 0.00301 4.48411 50.43809 0.98554
GS 5.51194 0.66128 23.69334 0.00154 2.84298 56.80727 0.99542

GIHS 6.97787 0.65746 33.45619 0.00233 2.40080 52.63436 0.98413
HCS 9.58868 0.62070 38.29194 0.00267 2.67967 51.46174 0.99176
IHS 10.61170 0.63204 50.97203 0.00356 3.52966 48.97725 0.97134

CIELab 4.14506 0.77127 20.06662 0.00140 1.84331 67.07440 1
NNDiffuse 6.93153 0.68589 30.69262 0.00214 2.67079 53.38321 0.99047

F7

Ehlers 9.66602 0.58842 38.60687 0.00252 5.34836 51.98700 0.98848
GS 4.43979 0.64207 28.36296 0.00183 2.15986 58.92781 0.99695

GIHS 4.86275 0.61769 19.90348 0.00130 2.39510 57.74171 0.99608
HCS 6.21293 0.59860 24.68755 0.00161 6.57336 55.87073 0.99479
IHS 9.99170 0.58440 40.96218 0.00267 5.54742 51.47263 0.98461

CIELab 3.3780 0.72134 17.43123 0.00114 1.88890 68.89373 1
NNDiffuse 6.00374 0.60227 28.30174 0.00184 2.87237 54.68403 0.98907

F8

Ehlers 7.61492 0.68151 29.46707 0.00217 3.58878 53.26597 0.99194
GS 4.02694 0.70121 14.48671 0.00107 2.77359 59.43332 0.99737

GIHS 5.76109 0.70009 27.24384 0.00201 2.20337 53.94734 0.98655
HCS 6.82371 0.68186 27.87873 0.00205 1.32168 53.74725 0.99579
IHS 8.13416 0.68201 38.54293 0.00284 2.97812 50.93381 0.97920

CIELab 3.5084 0.7133 13.48278 0.00099 1.20401 60.05712 1
NNDiffuse 5.70992 0.69899 14.95033 0.00110 1.31369 59.15970 0.99740

Table A6. Numeric results of spatial quality metrics of the Pan-sharpened images produced by select
algorithms for suburban test sites.

CC Zhou’s SP SRMSE SP ERGAS

F3

Ehlers 0.922299 0.949657 0.012645 28.478359
GS 0.989999 0.979878 0.007121 26.395064

GIHS 0.988664 0.989955 0.00808 26.561586
HCS 0.942661 0.979506 0.01034 26.580025
IHS 0.920211 0.929723 0.012687 27.542710

CIELab 0.996151 0.996340 3.22E-08 7.7739934
NNDiffuse 0.940385 0.972273 0.00683 26.669404

F7

Ehlers 0.940410 0.929782 0.013524 30.304598
GSc 0.989997 0.989956 0.008056 28.497749

GIHS 0.973639 0.978996 0.008367 29.121990
HCS 0.968484 0.962481 0.009486 29.539885
IHS 0.939801 0.964973 0.013591 30.416119

CIELab 0.998630 0.996223 1.66E-08 3.1299142
NNDiffuse 0.996187 0.989929 0.008685 28.273530

F8

Ehlers 0.918887 0.919399 0.009181 26.935703
GS 0.989998 0.989753 0.005542 25.948199

GIHS 0.972152 0.989942 0.005759 25.943732
HCS 0.800374 0.700073 0.006954 27.084421
IHS 0.921523 0.995543 0.009236 26.447253

CIELab 0.997412 0.997655 2.26E-08 8.2907935
NNDiffuse 0.989999 0.969353 0.004198 26.011647
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Table A7. Band-by-band calculation results of spectral quality metrics belonging to test site F3.

Method Band Ehlers GC GIHS HCS IHS CIELab NNDIF

ERGAS

Band 1 13.23542 6.28494 7.53986 11.51714 14.68644 6.19922 9.43229
Band 2 10.86379 5.49824 6.73039 10.62880 10.07883 4.07797 7.66444
Band 3 6.52447 4.08371 4.97720 5.58341 7.75358 2.07075 2.81246

Average 10.98399 5.51194 6.97787 9.58868 10.6117 4.14506 6.93153

QAVG

Band 1 0.86547 1.02826 0.95928 1.02387 0.87788 1.0607 1.03723
Band 2 0.57607 0.65720 0.69449 0.52406 0.56826 0.70848 0.60802
Band 3 0.48901 0.30277 0.36560 0.31617 0.45130 0.54621 0.41064

Average 0.63217 0.66128 0.65746 0.62070 0.63204 0.77127 0.68589

RASE

Band 1 49.91752 30.04186 39.39898 42.79105 54.69452 25.33830 34.82911
Band 2 46.79656 22.35778 35.26309 37.59033 52.26805 21.10608 31.65890
Band 3 34.19874 18.59234 25.44349 36.19742 45.77826 13.75556 25.58183

Average 43.08140 23.69334 33.45619 38.29194 50.97203 20.06662 30.69262

RMSE

Band 1 0.00833 0.00450 0.00525 0.00625 0.01033 0.00413 0.00525
Band 2 0.00040 0.00010 0.00186 0.00156 0.00042 0.00008 0.00106
Band 3 0.00031 0.00002 0.00001 0.00009 0.00001 0.00001 0.00009

Average 0.00301 0.00154 0.00233 0.00267 0.00356 0.00140 0.00214

SAM

Band 1 4.86237 3.61186 3.40619 3.10669 4.08712 2.22633 3.13166
Band 2 4.42003 2.42682 2.50814 2.87424 3.16997 1.82082 2.55769
Band 3 3.95193 2.35714 1.78239 2.20364 3.05983 1.53200 2.21219

Average 4.48411 2.84298 2.4008 2.67967 3.52966 1.84331 2.67079

PSNR

Band 1 56.42695 60.52591 54.16646 54.15527 51.81649 69.90153 57.27461
Band 2 48.08904 59.45342 51.82179 51.08538 47.59585 67.71639 57.20947
Band 3 47.47481 50.38406 50.63450 49.28219 46.97046 65.36066 45.98168

Average 50.43809 56.80727 52.63436 51.46174 48.97725 67.07440 53.383210

SSIM

Band 1 0.99888 0.99702 0.99417 0.99251 0.98071 1 0.99051
Band 2 0.98443 0.99539 0.98407 0.99175 0.97231 1 0.99048
Band 3 0.97331 0.99385 0.97415 0.99108 0.96142 0.9999 0.99042

Average 0.98554 0.99542 0.98413 0.99176 0.97134 1 0.99047

List A1. Definition of Terms in Table 2
RMSE: MN is the image size, PS(i, j) and MS(i, j) represent pixel digital number (DN) at (i, j) ’th
position of Pan-sharpened and MS image.
ERGAS: dh

dl represents the ratio between the pixel size of high resolution and low resolution images;
e.g., 1

4 for Pléiades data, and n number of bands. The RMSE represents root mean square error of
band i.
SAM: The spectral vector V = {V1, V2, . . . , Vn} stands for reference MS image pixels and
V̂ = {V̂1, V̂2, . . . , V̂n} stands for Pan-sharpened image pixels rep reference and both have L components.
RASE: The µ represnts the mean of bth band; b is the number of bands and RMSE represents root mean
square error.
PSNR: The L represents the number of gray levels in the image; MN is the image size, Ir(i, j) is pixel
value of reference image and Ip(i, j) is the pixel value of Pan-sharpened image. A higher PSNR value
indicates more similarity between the reference MS and Pan-sharpened images.
QAVG: The x and y are the means of reference and Pan-sharpened images, respectively; σxy is the
covariance and σ2

x and σ2
y are variances. As QI can only be applied to one band, the average value of

three or more bands (QAVG) is used for calculating a global spectral quality index for multi-bands
images. QI values range between −1 and 1. A higher value indicates more similarity between reference
and Pan-sharpened image.
SSIM: The µ stands for mean, σ stands for standard deviation; Ir and Ip represent reference and
Pan-sharpened image respectively. The C1 and C2 are two necessary constants to avoid the index from
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a division by zero. These constants depend on the dynamic range of the pixel values. A higher value
of the measured index shows the better quality of Pan-sharpened algorithm.
CC: Cr,f is the cross-correlation between reference and fused images, while Cr and Cf are the correlation
coefficients belonging to reference and fused images respectively.
SRMSE: Edge magnitude (M) is calculated via spectral distance of horizontal and vertical (Mx and
My) edge intensities.
Sp-ERGAS: dh

dl represents the ratio between the pixel size of MS and Pan images, and n is the number
of bands. Spatial RMSE is represented as below:

Spatial RMSE =

√√√√
1

MN

M∑
i=1

N∑
j=1

(Pan(i, j) − PS(i, j))2, (A1)

where MN is the image size, PS(i, j) and Pan(i, j) represents the pixel digital number (DN) at (i, j) ’th
position of Pan-sharpened and Pan image.
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