
applied
sciences

Article

Incremental Algorithm for Association Rule Mining
under Dynamic Threshold

Iyad Aqra 1,*,† , Norjihan Abdul Ghani 1,*,† , Carsten Maple 2,3,‡, José Machado 4,‡ and
Nader Sohrabi Safa 5,‡

1 Department of Information Systems, Faculty of Computer Science & Information Technology, University of
Malaya, Kuala Lumpur 50603, Malaysia

2 Cyber Security Centre at WMG, University of Warwick, Coventry EC4A 3BZ, UK; cmaple@turing.ac.uk
3 The Alan Turing Institute, The British Library, London NW1 2DB, UK
4 ALGORITMI Research Center, University of Minho, 4710-057 Braga, Portugal; jmac@di.uminho.pt
5 Faculty of Engineering, School of Computing, Electronics and Mathematics, Coventry University,

Coventry CV1 5FB, UK; sohrabisafa@yahoo.com
* Correspondence: i_aqra@siswa.um.edu.my (I.A.); Norjihan@um.edu.my (N.A.G.)
† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Received: 19 November 2019; Accepted: 4 December 2019; Published: 10 December 2019 ����������
�������

Abstract: Data mining is essentially applied to discover new knowledge from a database through an
iterative process. The mining process may be time consuming for massive datasets. A widely used
method related to knowledge discovery domain refers to association rule mining (ARM) approach,
despite its shortcomings in mining large databases. As such, several approaches have been prescribed
to unravel knowledge. Most of the proposed algorithms addressed data incremental issues, especially
when a hefty amount of data are added to the database after the latest mining process. Three basic
manipulation operations performed in a database include add, delete, and update. Any method
devised in light of data incremental issues is bound to embed these three operations. The changing
threshold is a long-standing problem within the data mining field. Since decision making refers to
an active process, the threshold is indeed changeable. Accordingly, the present study proposes an
algorithm that resolves the issue of rescanning a database that had been mined previously and allows
retrieval of knowledge that satisfies several thresholds without the need to learn the process from
scratch. The proposed approach displayed high accuracy in experimentation, as well as reduction in
processing time by almost two-thirds of the original mining execution time.

Keywords: data mining; knowledge extraction; association rule mining; incremental mining; dynamic
threshold

1. Introduction

This study addresses association rule mining (ARM), which refers to a widely known data mining
technique. Data mining extracts useful patterns that are hidden in a huge database. The reckoned
forms for the knowledge are a frequent pattern (frequent itemset) and a rule set. Nevertheless,
acquiring hidden knowledge from a massive database is a complicated process [1]. Some of the
proposed data mining strategies and techniques are ARM [2–8], classification rules [9,10], clustering
rules [8], and sequential patterns [11,12]. The ARM, in particular, unravels correlations between
various attributes (items) in transaction databases [2,5,6,8,13]. Applications of ARM include the
market basket and a great deal of issues that demand discovery of hidden knowledge, such as protein
sequences [14], medical diagnosis [14], energy [3,15,16], smart homes [11], and other vast industrial
fields [17]. The Apriori algorithm has been acknowledged as an icon implementation for the ARM

Appl. Sci. 2019, 9, 5398; doi:10.3390/app9245398 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0735-6600
https://orcid.org/0000-0002-0804-3916
https://orcid.org/0000-0003-4121-6169
https://orcid.org/0000-0003-4897-0084
http://dx.doi.org/10.3390/app9245398
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/24/5398?type=check_update&version=2

Appl. Sci. 2019, 9, 5398 2 of 22

technique [11]. The Apriori algorithm generates a frequent itemset that is determined by testing the
candidate itemsets. When an itemset within the candidate itemset has weight exceeding the minimum
support threshold, it is considered as a frequent itemset. After generating all frequent itemsets,
the association rules are retrieved from the gathered frequent itemsets. Since rules have confidence and
a user defines the minimum confidence threshold, any rule with confidence exceeding its minimum
level is considered as a strong rule set. Data mining is a highly attractive field and has become an even
more popular topic amongst researchers since the introduction of ARM in the work carried out by
Agrawal (see [2,13]). The data mining processes have been continually improved and developed by a
substantial number of studies. In fact, a significant correlation has been established between ARM
and other fields [6,8], namely machine learning [18], association rule discovery, clustering rules [19,20],
classification rules [6,19,21], associative techniques [19], sequential patterns [21], and decision trees [22].
Amidst these, looking for common itemsets within a massive database has become a rather common
method in data mining, where the preponderance of data mining techniques is associated with
discovering frequent patterns, which serve as the main output for ARM. These techniques arrange
the frequent itemsets and rules in a timely manner. Data mining has been implemented in the high
business domain to increase its value, such as Internet of things and sensors [3]. One popular area in the
domain of ARM refers to data stream and control of sensors [3]. The relationship between data mining
and other artificial intelligence involving machines and network sensors is extendable, along with
increasing opportunities [23]. Data representation and coverage may be insufficient when the mined
knowledge is limited. Hence, the discovered knowledge typically encloses a set of rules. One feature
of the discovered knowledge is that it should retain its validity when the database experiences nil
change. However, the question that arises is: ‘How does one extend the validity of knowledge with
less processing time?’ Precisely, knowledge represents the present state of the processed data with
limited change in the data, inclusive of added, updated, or deleted transactions. The two commonly
used approaches to maintain the legitimacy of knowledge are:

1. Rediscovery of knowledge from scratch upon changed state of the database.
2. Consideration of the impact of change on the database in terms of knowledge.

Upon database manipulation (adding, deleting, or updating transactions), the changes should
be reflected in the elicited knowledge. While Apriori is the most common approach for ARM,
other prominent algorithms do exist, such as Eclat [24], DHP [7], AprioriTID [25], McEclat [26],
and MsApriori [5], which enhance collection of rare frequent items. Generally, the ARM process line
mainly refers to the following two processes [13]:

1. The discovered large itemsets, also known as frequent itemsets, have more occurrences in the
database than a pre-defined confidence threshold.

2. The frequent itemset generates strong association rules. A rule is considered strong and serves as
output list if it satisfies the pre-defined confidence threshold.

Despite the existence of numerous techniques, ARM is the most widely used method for data
mining. The analysis of market basket appears to be the most popular case study for association rules.
The items in a market database are saved in a single record (transaction), along with customer ID,
transaction time, and other imminent details. The discovering ARM includes rules, such as follows:
let us assume a customer takes products x and y, but he is highly expected to purchase product w;
where x, y, and w are initially unknown. The customized promotional marketing program can be
designed based on useful discovery rules. Apart from devising effective marketing plans, the data
mining methods can be applied to both control and minimize consumption, such as energy and carbon
dioxide (see [15,27]. The Apriori algorithm can effectively extract a frequent itemset from a massive
dataset. Based on the discovered itemset on certain step (n), the algorithm generates an itemset
called candidate itemset in the next step (n + 1) [2]. In each step, the algorithm checks the support
counting for the candidate itemset using a vital scan database. The itemset generation process in a

Appl. Sci. 2019, 9, 5398 3 of 22

level-by-level manner leads to level-wise problem. In fact, many algorithms have been introduced
to address the multiple defects found in Apriori algorithm [10,24]. These algorithms are aimed at
minimizing mining costs, apart from generating consistent and stable outcomes. In order to meet this
goal, vast amount of data should be gathered and analyzed. One of the many mining issues refers
to database size, as new transactions are dynamically updated and removed frequently. The already
discovered rule sets need to be updated, or the rule set would not reflect the database. As such,
maintaining ARM result incrementally has been examined in this study by placing focus on vertical
mining. The proposed algorithm can overcome several existing drawbacks by reducing mining time
and incorporating all manipulative operations. Minimizing database scan frequency is one of the
proposed algorithm objectives. First, the algorithm builds a complete itemset, and later updates the set
without rebuilding it to hinder level-wise issue. The paper is organized as follows. In the following
section, the related terms are listed and defined. Section 3 presents the review of some past studies.
In Section 4, the incremental Apriori (IApriori) is elaborated, and Section 5 describes the dataset.
Section 6 presents the empirical outcomes and the comparison of the 7findings is depicted in Section 7.

2. Association Rule Terms

This section introduces and defines the important key terms used in ARM domain and the
approach proposed in this study. The market basket was applied to clarify the terms and to illustrate
the meaning. All the terms employed in this study are defined as follows:

Definition 1. The ‘set of items’ was given in the following:

I = {i1, i2, i3, ..., im}

where i refers to the attribute in the database. In market basket analysis, it denotes the product. It is a chance for
the set of items to function as the range pool of attributes value in the database transaction. Based on the case
study of ARM, the set of items refers to product found in the supermarket. Grounded on Definition 1, the term
‘transaction’ is defined as follows in the next definition:

Definition 2. The transaction, T: It is known as the main element of the database with a pair structure:
T = (tid, I′) , Where tid is the transaction identifier, while I′ is a subset of I. The purchase of a set product by
a customer is stored on a record or transaction market database. This operation is composed of two essential
aspects; the ID for this record , and the items bought (I′).

From Definition 2, the ‘transaction database’ is defined as follows:

Definition 3. Transaction database (DB) refers to a collection of transactions {T} over I. DB is the source
database that is scanned for the first time to generate new knowledge. From Definition 3, a special definition is
derived for the modified database.

Definition 4. The modified transaction database (db+) is a collection of transactions {T} over I, whereby
{T} is manipulated after mining DB. Simply put, the new transactions are transactions that have been either
updated or deleted. Based on Definitions 1–4, the term ‘itemset’ is given in the following:

Definition 5. Itemset In the core point of ARM, the itemset is characterized as x = {i1, i2, i3, ..., im}, where x
refers to a set of items that is supposed to befall frequently in a database as a pattern. The itemset has several
features with ‘support’ being the most important one, defined as follows:

Definition 6 (itemset support). The itemset x support denotes the counting of T in D that contains the
itemset x, such as:

Support(x, D) = |tid|(tid, i′)D, X ⊆ I′, I ⊆ I′|

Appl. Sci. 2019, 9, 5398 4 of 22

Further clarification regarding the term ‘itemset support’ is related in the following example:

Example 1. If x = i1, i2, i3 is an itemset in a D database that has 10 rows and x can be found in four
transactions, then we have the following support of x:

Support(x) = 4/10 = 0.4

Based on Definitions 5 and 6, ‘support threshold’ is described as given in the following:

Definition 7. Support threshold (MinSupp) is the number or the ratio of itemset occurrence. If the itemset
set has occurrence count exceeding α, it is considered as a frequent itemset. Nonetheless, the value of α is
0 ≤ α(x) ≤ |D|, with |D| reflecting the database size. α(x) refers to the count of T that contains x itemset in
the item set.

Definition 8. X ⇒ Y represents the association rule form, where X, Y and X ∩Y = ∅. X is the body or the
antecedent, whereas Y is the head or the consequence of the rule.

Definition 9. The confidence of an association rule X ⇒ Y is the conditional probability of having Y embedded
in a transaction, given that X is contained in that transaction.

Con f idence(X ⇒ Y, D) = Supprt(X ∪Y, D)/Support(X, D)

The concept of association rule confidence is drawn in the following example.

Example 2. Let D = T be a database of transactions. If a, b, c are itemsets, then the rule a, b ∪ c in D has the
following confidence:

Con f idence(a, b⇒ c, D) = (Supprt(a, b, c, D))/(Support(a, b, D))

The above definitions are linked with the ARM technique, and they are useful for most ARM
algorithms. The following terms and definitions are applied to describe the proposed approach in
this study.

Definition 10. Log file (Log F) states the changes that occur in a database. Generally, the database management
system has a log file that states all actions that happen in the database. In the proposed method, three attributes
are necessary to keep track of the database; transaction ID, action ID, and action date. Based on Definition 11,
data mining is required to collect the target database.

Definition 11. The knowledge date (KD) stores the last mining date. For the next mining, KD is used to collect
all manipulated transaction IDs, which were altered after the last mining. Based on the above two definitions,
the following terms have been derived.

Definition 12. LTA is the list of transaction IDs that were added to the database (db+) after the KD date.

Definition 13. LTU is the list of transaction IDs that were modified in the DB after the KD date.

Definition 14. LTD is the list of transaction IDs that were deleted from the DB after the KD date.

Definition 15. The list of all item sets, Ln, in the proposed method, whereby the structure of the itemset has
changed, and it is defined as a set: Ln = itemset, Support, tid where itemset is a subset from I, support refers to
support for the itemset, tid is the list of transaction IDs that contain the itemset, and n represents the length of
the list.

Appl. Sci. 2019, 9, 5398 5 of 22

Definition 16. Candidate set (Cn) refers to the intermediate list that combines an item in L(n−1).

Definition 17. Frequent item set (L f) is a subset of (Ln), which contains all itemsets that satisfy the specific
MinSupp. Section 3 presents the literature review, along with the criticism related to the existing approaches.

3. Literature Review

This section introduces the review of related research studies within two sub-sections. The first
sub-section describes the Apriori algorithm, which is one of the leading approaches in the ARM
domain. Next, the second sub-section depicts the incremental problem.

3.1. Apriori Algorithm

The Apriori algorithm is an icon algorithm in the ARM field [2,13]. Basically, this algorithm is
employed to collect the frequent itemset based on pre-defined minimal support threshold. All parts
(subsets) of the frequent itemset are frequent, whereby the itemset is considered frequent by the
algorithm only when all subsets are frequent; otherwise the itemset is considered infrequent.
The frequent pattern discovery process is described as an iterative process [28]. At the start of
the iteration process, the algorithm counts the 1-itemsets. The algorithm seeks for the itemsets within
the 1-itemsets to generate candidate 2-itemsets. The algorithm retrieves the database to count the
support of 2-itemsets. Subsequently, the algorithm moves on to 3-itemsets, 4-itemsets, and K-itemsets.
The algorithm derives a k-itemset candidate itemset from a k-1-itemset frequent itemset. Since the
Apriori algorithm adheres to the downward closure lemma, all the candidate itemset subsets should
be frequent. Generation of candidate sets continues until it is impossible to generate a new candidate
itemset. Another essential algorithm for ARM is FP-growth [29]. The FP-growth determines both
growth pattern and data structure based on FP-tree, which varies from the approach of Apriori that
applies itemset data structure [29,30]. One of the many strategies on pattern discovery refers to the
search for frequent patterns without specific support threshold, as employed in ARMGA [31] and
G3PARM [32]. This strategy addresses one of the long-time standoff issues, which is support threshold
parameter. However, this strategy is time consuming as it enters a specific threshold for every itemset
to generate the rule, as well as to calculate the confidence for the rule and the support for the itemset.
The next sub-section presents a review for incremental approaches.

3.2. Vertical Layout

The data layout in the database application is in horizontal format; this is because every record
possesses numerous features that are not usually applied in a descriptive data mining process. Apriori
TID [2] presented the vertical layout, where the data layout was changed from the horizontal to
vertical layout, subsequently the vertical layout was applied to solved different issues in data mining
field [24,26]. The layout employed intersection between the transaction ID lists to compute the support
of a candidate’s itemset. However, the algorithm proposed in the present research is an improvement
because it reduces the number of times a database is scanned. In the proposed algorithm, a database
is covered to only represent transactions in a vertical format in a TID list. Hence, mining efficiency
is increased.

3.3. Incremental Problem

Data within a database are bound to change continuously. Simultaneously, the knowledge reflects
the state of the database at the time of mining. Changes that take place in the data signify the losing
potential for the knowledge to reflect the database. Therefore, updating discovered knowledge is an
important task to ascertain that knowledge continues to reflect the state of the database. This strategy of
updating the existing knowledge is called incremental learning within the search domain. Although a
substantial number of methods have been proposed to overcome this incremental issue, they tend
to display certain shortcomings, including time consuming, rebuilding knowledge, and selective

Appl. Sci. 2019, 9, 5398 6 of 22

manipulation operations. As the databases are manipulated by time, the mining process becomes more
complex than the mining of static dataset. Several problems may arise due to changes in the database,
such as the generation of candidate itemset, and the scanning of the original database to validate the
frequency of an itemset after database manipulation. The primary purpose of an incremental approach
is to update the existing knowledge, so as to reflect the updated database state. This process should be
carried out without the need to rebuild knowledge from scratch and without need to scan the entire
database.

Fast Update Algorithm (FUP): Cheung, Han, Ng, and Wong (1996) initiated the first algorithm
in the incremental ARM field area, known as fast update algorithm (FUP) [33]. This algorithm
efficiently updates the existing association knowledge from the updated database. The FUP is similar
to the Apriori algorithm, and it enhances the Apriori in generating a solution for issues related to
incremental mining. Nevertheless, this FUP algorithm processes only recently added transactions on
the manipulated database. Simply put, assume DB as the original database that requires data mining,
while database with transactions added to it after mining is marked as db. Now, DB+ refers to both db
and DB. The FUP algorithm mines only db. Consider x is an itemset, so x has a chance to be frequent
or perhaps not in one or both of the DB and db databases. In this case, as tabulated in Table 1, x has
four possibilities.

Table 1. The possibilities of itemset over DB and db.

db
DB Frequent Infrequent

Frequent 1—Frequent 2—Need to be check
Infrequent 3—Need to be check 4—Infrequent

As shown in Table 1, the itemset has four possibilities for an x itemset to be frequent. In the first
case (1-Frequent), x is frequent in both DB and db, while in case 4 (4-Infrequent), x is infrequent in both
databases; signifying nil issue for both cases. As for the other two cases, the FUP has to determine
the support for the itemset over the entire database. The worst case is block 3, where the algorithm
has to rescan the entire database to ascertain if the itemset is frequent or infrequent throughout the
databases. Here, the FUP does not reduce the database scanning frequency. In the initial pass, the FUP
scans the db to calculate the support count of each 1-itemset. After determining the support count of
itemset in DB, the support of an itemset x is easily calculated if x is in block 2. If x appears in the third
set, the whole DB must be scanned again to count the support of item x. The frequency of scanning
cannot be reduced in FUP because all DBs demand multiple rescanning. Many studies have looked
into the issue of discovery of ARM incrementally. One approach refers to NFUP [34] that serves to
enhance the FUP algorithm. However, it targets only new transactions. The IMSC [35] is another
approach that is meant to improve the FUP algorithm by addressing the constantly changing support
threshold. The popular techniques in light of ARM algorithms, particularly Apriori-like algorithms,
reflect downward closure in building an itemset. The MAAP [36], however, takes a different approach
to build the frequent itemset. Where most ARM algorithms apply the bottom-up level, the MAAP
starts from the top level, and based on definition, all subsets of the long frequent itemset become
frequent as well. It is essential to develop an ARM algorithm that minimizes the number of database
scans. This is a consequence of spending too much time while mining knowledge. The next section
elaborates the proposed algorithm in detail, along with an example.

4. The Proposed Algorithm

The proposed algorithm, incremental Apriori (IApriori), is described in this section.
The incremental learning approaches are explained in the previous sections. The defects of incremental
algorithms were identified from the literature review. Apparently, two manipulation operations have
been omitted during incremental learning, namely update and delete. These defects, thus, have

Appl. Sci. 2019, 9, 5398 7 of 22

motivated this study to propose a method that embeds all manipulation operations when knowledge is
learnt incrementally. A large size of itemsets are extracted from the transactions of the database by the
Apriori algorithm, with each element in the itemsets having real support value. However, the expected
size for itemset generation reflects an exponential growth to the size of the list of attributes in the
database, thus it is impractical to count every subset found in the database transactions. The generation
of candidate itemset is an iterative process with a combinatorial method that causes explosion on
the itemset size (n). Reducing the frequency of database scan increases the algorithm performance,
while increment in scanning frequency decreases the algorithm efficiency. One solution is to generate
measured itemsets so that support can be counted earlier. Association rules are determined using
three main steps in IApriori algorithm. First, the algorithm gathers all itemsets (Ln), where the length
of each item is equal to one item and has support greater than zero. The next step is to combine the
items in (Ln) to produce the all-possible frequent itemset (L f) based on user requirements. Lastly,
the association rule is generated only after creating the frequent itemset. The itemset structure created
by IApriori is depicted in definition 15 (Ln = itemset, Support, tid). Each element in the Ln list has
three attributes, namely itemset, support, and transaction ID list.

The main body of the IApriori algorithm is presented in Algorithm 1 pseudocode. The first
line reads the last obtained result, while the second line categorizes the transaction IDs into three
categories using the Proper Transaction List method. Note that these transaction IDs have been
manipulated after the last mining. This particular method has many parameters: two and three as
input and output parameters, respectively. As for the input parameters, the first is KD that refers
to the last mining date, and the second is log file. This file contains every manipulation event over
the transaction. Each record in the log file has three essential attributes: transaction ID, action ID,
and time. A sample of the log file given in Table 2 shows that transaction ID refers to the manipulated
transaction ID. The action ID is a code that reflects the manipulation operation. The output of the
Proper Transaction List refers to three lists (LTA, LTU, and LTD) described in Definitions 13, 14,
and 15, respectively. The process prior to mining new data should start after discarding the effects of
deleted and updated transactions. The discard transaction isolates the effect of removed transactions,
as presented in Algorithm 2. The preview instructions point out the specific target of the database for
mining. The following describes the generation of the first itemset from new changes in the database,
as illustrated in Algorithm 3. First, IApriori fetches the old discovered knowledge (if it exists) and
places it in a list. The algorithm collects the target database transactions and formats them in the
list. Next, two scenarios are bound to occur depending on the final outcome. In the first scenario,
the presence of old result indicates that the algorithm has to update the value of the itemset attribute
in the list. Otherwise, the entire itemset must be initialized and built from scratch. As for the second
scenario, both the (generate candidates) and (get itemset) methods are applied, as given in Algorithms
4 and 5, respectively. Otherwise, the (update Ln itemset) is executed, as detailed in Algorithm 7.
The algorithm should have a full itemset in this step. Based on the ARM concept, threshold is required.
Hence, the next step is to apply minsupp in the get frequent itemset, as portrayed in Algorithm 8,
to isolate all the itemsets that satisfy the Minsupp threshold. Finally, as a result of the previous step,
the algorithm can generate the final output of the entire process, which is the association rule set.

Appl. Sci. 2019, 9, 5398 8 of 22

Algorithm 1: IApriori Main Body.

Ln ← read(Ln)

ProperTransactionList(LTA, LTU, LTD, LogF, KD)

DiscardTransaction(LTU, LTD)

L1 ← GetL1 Items();
IfLn = Null
do
{
CL ← GenerateCandidate(Ln);
Ln ← GetItemset(CL);
}
whileCL!Empty
else
updateLn Itemset(Ln, L1);
L f ← GetFrequentset(Minsup, Ln);
rule← StrongRules(Mincon f , L f);

Algorithm 2: IApriori- Discard Transaction Function.

ForEach(iteminLn)

ForEach(TIDin(LTU, LTD))

If(item.transaction.exist(TID))

{
item.support−−;
item.transaction.remove(TID);
}

Algorithm 3: IApriori- GetL1 ItemsFunction.

Itemset← Database.GetItem();
ForEach(IteminItemset)
{
Item.Transaction← Database.Read(tidcontainsItem);
L1.merge(item);
Item.transaction.remove(tid);
}

Algorithm 4: IApriori- Generate candidates function.

ForEach(IteminLn)

{
Candidateitem.itemset = Ln[Item.Location].itemset ∪ Ln[Item.Location + 1].itemset
Candidateitem.Transaction = Ln[Item.Location].TList ∪ Ln[Item.Location + 1].TList
Candidateitem.support = Ln[Item.Location].TList ∪ Ln[Item.Location + 1].TList
CL.add(candidateitem);
}

Appl. Sci. 2019, 9, 5398 9 of 22

Algorithm 5: IApriori—get itemset function.
ForEach(Item in CL)
IF(Item.support > 0)
Ln+1.merge(item);

One fundamental method for the proposed algorithm is the Proper Transaction List, as displayed
in Algorithm 6. This method gathers the transaction ID, which has been manipulated. The data for
this method derive from the log file of the database management system (Log F) and the KD, which
signify the latest date for updating the knowledge. This method generates three transaction ID lists for
the transactions that have been manipulated after the KD date. The first list gathers the transactions
IDs that have been added to the mined database (LTA), while the second list updates the transactions
IDs (LTU), and the third list deletes transactions IDs (LTD). All log F records are collected using this
method, and the transactions IDs are categorized on the list based on the manipulation operation type
stored in the log file for each record.

Algorithm 6: IApriori—proper transaction list function.

OpenFile(LogF);
ForEach(rowinLogF|row.date > KD)

if(row.actionType = add)
LTA.add(row.TID);
Elseif(row.actionType = update)
LTU.add(row.TID);
Elseif(row.actionType = Del)
LTD.add(row.TID);

Table 2. Set of rows from the database log file.

Date Action ID TID

02/01/2018 12:35 3 t3
02/01/2018 12:40 2 t4
29/12/2018 12:42 1 t5
02/01/2018 12:52 1 t6

Action ID: 1 Add, 2 Update, 3 Delete

Table 2 presents the sample from log file records. The latest changes on the database can be
identified by using this log file. Upon detecting the changes made to the transactions, it facilitates
mining to target the affected transactions. Typically, a log file is built in the management system to
monitor changes that occur in the database. This database management system registers any operation
that takes place in the database. Otherwise, a log file is created.

Algorithm 2 shows a vital feature of IApriori, which is the discard transaction method.
The importance of this function stems from eliminating the manipulated transaction effect on the result
obtained earlier. The effects of both deleted transactions (LTD) and updated transactions (LTU) are
excluded from the result. The updated transactions are trained again with the added transaction to
weigh in their new effect. The code for handling the excluded effect is given in Algorithm 2 pseudocode,
whereby the method gathers the itemsets in Ln and determines if each item has one of the IDs of LTU
and LTD in the itemset transactions list.

Algorithm 3 presents instructions of the GetL1 item method. As the primary step in IApriori,
the algorithm converts the present transaction to vertical layout view, thus changing the form of the
items in the transaction to where the items occur in the database transactions. Clearly, the figure
displays three attributes, namely the item element itself, the transaction IDs list, and the support of

Appl. Sci. 2019, 9, 5398 10 of 22

the itemset. Algorithm 4 shows the generate candidates method in the proposed approach. The main
variance between this method and the equivalent enhancement algorithm method lies in the pruning
strategy. The IApriori offers the itemset some real support until the end of the generation process,
due to two reasons: (1) the algorithm processes incremental learning so that the itemset can gain
additional support in the next training and cumulate with the old one; and (2) the algorithm gives
a chance for the users to filter the intermediate itemsets based on any threshold parameter without
rebuilding knowledge from scratch. Despite its advantages, it is yet to be implemented as it has to
filter the whole itemset based on specific attribute value to check if the attribute is linked with other
attributes, regardless of the actual support value. Another vital aspect of the proposed approach is
that the algorithm avoids infrequent issue (see Cases 2 and 3 in Table 1).

The IApriori considers all real itemsets with support value greater than zero. In Algorithm 5, this
function isolates itemset that have never occurred in the database. Any itemset with a chance in the
database is included in the next level of generating candidate itemsets.

The IApriori has its own characteristics, with one of them stated in Algorithm 7 pseudocode.
It introduces the updateLN itemset method, which updates the whole intermediate itemset at once.
This method is based on Algorithm 3, for the incremental training to gather the latest update from the
database. After updating the first itemset list, this method performs intersection of the first itemset
elements. For instance, x is an itemset that consists of three items i1i2i3, and in order to collect both
x support and tid, the algorithm intersects the tid for the items from L1 : i1, i2, and i3. From the L1

itemset, the algorithm can maintain that Ln is collected in parallel.

Algorithm 7: IApriori—update Ln itemset function.
List < ID > IDNew
ForEach(m in CL)
{
IDNew = L1.itemset[1].TID ∩∩ L1[m.itemset[n].TID;
m.TID.merge(IDNew);
m.support=m.TID.count();
}

Algorithm 8 presents the GetFrequentItemset function, where many of the frequent itemsets
are driven by this method based on the input threshold without the need to rebuild the itemset.
Algorithm 9 shows the generation of strong rule method that is completely identical to the original
method without making any change. Example 3 describes the proposed algorithm based on dual
sections: the first phase demonstrates the creating and building of the intermediate itemset from the
starting point, while the second phase displays the process of updating the incremental training.

Example 3. As presented in Table 3, a database contains four transactions. There is no obtained knowledge
from this database. The demand has discovered the relationships between the items and found all the itemsets.
The mining parameters; MinSupp and Miscond, are 50% and 60%, respectively. Table 4 shows the log file of
the database and the action that occurred in the database transaction.

Algorithm 8: IApriori—get frequent itemset function.
ForEach(Item in Ln)
IF(Item.support ≥ MinSupp)
L f .add(Item);

Appl. Sci. 2019, 9, 5398 11 of 22

Algorithm 9: IApriori- Get Strong Rules Function.
ForEach(Item in L f) {
LHS=item.subList(0,item.lenght-1);
RHS=item.subList(item.lenght-1,item.lenght);
Rule = LHS⇒ RHS;
Rule.confidence = item.support / RHS.support;
IF (Rule.confidence ≥MiConf)
RuleList.add(Rule);
}

Table 3. A sample for database’s transaction.

TID Items

t1 ab
t2 bc
t3 ac
t4 abc

Table 4. Log File 1.

TID Action ID Items

t1 1 2017/06/18 12:30
t2 1 2017/06/18 12:30
t3 1 2017/07/09 12:40
t4 1 2017/07/15 12:42

The main goal for the IApriori is to update the existing knowledge, thus the algorithm should
possess the ability to read current knowledge. Since this is the very first time the algorithm is applied in
a database, the algorithm built the knowledge from scratch. Typically, the absence of old result leads to
the step where manipulated transactions are discarded. The following task prepares the transaction ID
lists (LTA, LTU, and LTD), where LTA is {t1, t2, t3, t4}, LTU, and LTD are empty. However, under any
case, the next step is to generate the first itemset by applying the GETL1 items method. Table 5 shows
the outputs of this step.

Table 5. Getting L1 by IApriori.

List Index Itemset Support < tid >

1 {a} 3 {t1, t3, t4}
2 {b} 3 {t1, t2, t4}
3 {c} 3 {t2, t3, t4}

After the first intermediate itemset has been built, the complete intermediate itemset is generated.
Generating the whole intermediate itemset in this case refers to creating due to empty obtained
knowledge. In the next level, the itemset has a size 2. The C2 is {ab, ac, bc}. The support of C2 is
calculated by intersecting the first itemset, as given in the following:

ab.TID = a.TID ∪ b.TID = {t1, t3, t4} ∪ {t1, t2, t4} , then support of {ab} is 2.
ac.TID = a.TID ∪ c.TID = {t1, t3, t4} ∪ {t2, t3, t4}, then support of {ac} is 2.
bc.TID = b.TID ∪ c.TID = {t1, t2, t4} ∪ {t2, t3, t4}, then support of {bc} is 2.

Table 6 shows L2, along with support and TID. After completing the generation of L2, the IApriori
moves on to create L3, whereby the creation and collection of the actual support are made by crossing
the TID list. It is important to highlight that L3 is limited to {abc}.

Appl. Sci. 2019, 9, 5398 12 of 22

Table 6. Generate second itemset (L2).

List Index Itemset Support < tid >

1 {ab} 2 {t1, t4}
2 {ac} 2 {t3, t4}
3 {bc} 2 {t2, t4}

Table 7 shows the final and compete Ln itemset. At this end, the end-user can apply multiple
parameters to arrive at vast knowledge, wherein this deriving process requires minimal time.
For instance, based on the threshold Minsupp 50%, the frequent itemset is driven and is presented in
Table 8.

Table 7. Complete itemset (intermediate itemset) (Ln).

List Index Itemset Support < tid >

1 {a} 3 {t1, t3, t4}
2 {b} 3 {t1, t2, t4}
3 {c} 3 {t2, t3, t4}
4 {ab} 2 {t1, t4}
5 {ac} 2 {t3, t4}
6 {bc} 2 {t2, t4}
7 {abc} 1 {t4}

Table 8. Frequent itemset.

List Index Itemset Support < tid >

1 {a} 3 {t1, t3, t4}
2 {b} 3 {t1, t2, t4}
3 {c} 3 {t2, t3, t4}
4 {ab} 2 {t1, t4}
5 {ac} 2 {t3, t4}
6 {bc} 2 {t2, t4}

The association rules based on the frequent itemset presented in Table 8 are driven and listed in
Table 9.

Table 9. Generated rule set.

List Index Rule Confidence

1 a⇒ b 66.6%
2 a⇒ c 66.6%
3 b⇒ a 66.6%
4 b⇒ c 66.6%
5 c⇒ a 66.6%
6 c⇒ b 66.6%

Finally, the mining process is completed for this example; the knowledge is built for the first
time. In order to fully demonstrate the IApriori approach, the next example describes the incremental
process. The subsequent example uses the latest example. Consider that the database in Table 10 is
complete for the database presented in Table 3. With MinSupp parameter being 50%, the last result
exists in the complete itemset list (Ln) (see Table 7). The tracked changes of the database are displayed
in Table 11.

Appl. Sci. 2019, 9, 5398 13 of 22

Table 10. An example of a transaction database.

TID Items

. .
t4 ac
t5 ab
t6 abc

Table 11. Log File 1.

TID Action ID Date

. . .
t3 3 2016/05/19 12:35
t4 2 2016/05/19 12:40
t5 1 2016/05/19 12:42
t6 1 2016/05/20 12:42

Table 7 tabulates the final outcomes, whereby the algorithm reads the previous result. The next
step is to collect LTA, LTU, and LTD; LTA is {t5, t6}, LTUist4, and LTDist3. The ensuing step discards
the effects of LTD and LTU from the latest results. Table 12 presents the complete itemset after removing
the deleted and updated transaction effects.

Table 12. Complete itemset Ln after discount support and remover TID in (LTA and LTU).

List Index Itemset Support < tid >

1 a 1 {t1}
2 b 2 {t1, t2}
3 c 1 {t2}
4 ab 1 {t1}
5 ac 0 {}
6 bc 1 {t2}
7 abc 0 {}

The IApriori targets both LTA and LTU to update the first itemset from the target transactions of
the database, so as to generate an updated full itemset. LTA ∩ LTU = {4, 5, 6}

The updated first itemset is presented in Table 13. Next, the IApriori updates the complete itemset.
Table 14 tabulates the final fully updated itemset list.

Table 13. 1-itemsets (L1).

List Index Itemset Support < tid >

1 a 3 {t4, t5, t6}
2 b 2 {t5, t6}
3 c 2 {t4, t6}

Table 14. Final complete itemset Ln.

List Index Itemset Support < tid >

1 {a} 4 {t1, t4, t5, t6}
2 {b} 4 {t1, t2, t5, t6}
3 {c} 3 {t2, t4, t6}
4 {ab} 3 {t1, t5, t6}
5 {ac} 2 {t4, t6}
6 {bc} 2 {t2, t6}
7 {abc} 1 {t6}

Appl. Sci. 2019, 9, 5398 14 of 22

The previous step may derive numerous knowledge sets based on varying thresholds.
The requirement in the example is Minsupp = 50% (three transactions). Based on that threshold value,
the frequent itemset is listed in Table 15, while the final generated association rule for incremental
example is presented in Table 16. The next section briefly describes the dataset.

Table 15. Frequent itemset L f .

List Index Itemset Support < tid >

1 {a} 4 {t1, t4, t5, t6}
2 {b} 4 {t1, t2, t5, t6}
3 {c} 3 {t2, t4, t6}
4 {ab} 3 {t1, t5, t6}

Table 16. Generated rule set.

List Index Rule Confidence

1 a⇒ b 75%
2 b⇒ a 75%

5. Dataset

The set of benchmark datasets were mined in numerous experiments to assess the proposed
algorithm. The first was the Apriori dataset, which was evaluated using the proposed algorithm,
wherein the ability to derive the same output in a specific threshold by the original Apriori algorithm
was tested. It contained 75K records for supermarket database transactions with the dataset having
49 items. The dataset served as the benchmark dataset as it was produced by the Integrated and Project
Management [37]. The second dataset refers to chess, whereby the dataset was obtained from the
sports discipline with 3196 games and 36 attributes. Since the values of the attributes were categorized
and the records had class attributes, they were suitable for classification mining. These were retrieved
from fimi [38]. The third dataset refers to mushrooms, which contained imageries of hypothetical
samples that matched 23 mushroom species designed specifically from mushroom hunters. Each item
was labelled as edible, toxic, unknown, and unusable. The latter classification was combined with
that of toxic. The dataset had 23 attributes and 8124 cases [38]. The dataset is available online at [38].
The fourth dataset refers to T10|4D100K dataset, which can be retrieved at [38]. The dataset is a
market basket that contains 100K transactions with 1000 items. The fifth dataset is composed of breast
cancer dataset, which was generated and published by the University Medical Center, Institute of
Oncology. The breast cancer dataset contained 286 instances of medical cases. The dataset schema
had nine attributes, which were split into linear and nominal attributes. The nominal attribute was
categorized using the discretization method. The dataset is available online at [39]. Finally, the last
dataset refers to the acute inflammations dataset, which resulted from the collaboration between the
Laboratory of Intelligent Systems on Polish Academy of Sciences and medical expertise. The purpose
of this dataset is to test the expert systems in performing a presumptive medical diagnosis for two
diseases of the urinary system. This dataset had eight attributes, and 120 instances with each instance
reflecting a patient’s case. The dataset is available at [39].

6. Results and Discussion

This section presents the empirical outputs derived from IApriori algorithm, along with
comparison of the results with those obtained from baseline algorithm and AprioriTID.
The experiments were performed to test and compare the scalability of the IApriori algorithms.
The experimental work evaluated the changes noted in the threshold for the chess dataset. Table 17
and Figure 1 present the retrieved results. The knowledge from the output appeared similar for both
algorithms. The IApriori displayed exceptional achievements in light of execution time, whereby

Appl. Sci. 2019, 9, 5398 15 of 22

IApriori algorithm had successfully decreased the processing time between 25% and 50%. Meanwhile,
the Apriori algorithm took between two and four times longer processing time to perform the same
tasks. The results clearly exhibit the potential of IApriori algorithm in terms of speed, when compared
to other algorithms. The time values portrayed in the table are in milliseconds.

Table 17. The result of experiments over the chess dataset (executing time).

Support Apriori AprioriTID IApriori Improvement (%)

0 699 702 705 0.64
1 675 502 170 246.18
2 635 328 49 882.65
3 575 389 49 883.67
4 585 309 66 577.27
5 575 339 58 687.93
6 525 419 75 529.33
7 485 389 80 446.25
8 475 339 59 589.83
9 465 319 90 335.56

10 462 309 100 285.50

Figure 1. Experimental results for chess dataset (execution time).

The next experiment involved the mushroom dataset with under different values of support
threshold, whereby outcomes retrieved from the two algorithms were compared. The IApriori
algorithm displayed improvement for execution time from 15% to 80%. Table 18 and Figure 2, which
present the empirical findings for the mushroom dataset, show that the improvement rates were rather
high.

Appl. Sci. 2019, 9, 5398 16 of 22

Table 18. The result of experiments over mushroom dataset (executing time).

Support Apriori AprioriTID IApriori Improvement (%)

0 632 801 518 38.32
1 709 526 70 782.14
2 655 617 58 996.55
3 488 591 57 846.49
4 578 466 59 784.75
5 539 488 61 741.80
6 426 434 69 523.19
7 253 362 72 327.08
8 306 399 65 442.31
9 415 395 70 478.57

10 351 264 69 345.65

Figure 2. Experimental results for mushroom dataset (execution time) .

The T10|4D100K dataset was used to test the IApriori algorithm, whereby the results were
compared with those obtained from AprioriTID and Apriori. Figure 3 and Table 19 tabulate the
experimental results involving T10|4D100K dataset. The results of both IApriori and AprioriTID
algorithms appeared logical and reasonable, while the outcomes retrieved from Apriori took longer
time. It is emphasized here that the experimental setting was retained similar for all algorithms.

Appl. Sci. 2019, 9, 5398 17 of 22

Figure 3. Experimental results for T10|4D100K dataset (execution time).

The following table presents the numerical outputs from experiments using the T10|4D100K dataset.

Table 19. The result of experiments over T10|4D100K Dataset (Executing Time).

Support Apriori AprioriTID IApriori Improvement (%)

0 20,000,000 386 509 1,964,574
1 19,604,746 408 87 11,267,230
2 19,205,401 386 151 6,359,432
3 18,785,613 374 92 10,209,676
4 18,423,390 404 107 8,609,150
5 18,031,557 460 111 8,122,430
6 17,654,125 456 70 12,610,315
7 17,240,452 427 87 9,908,451
8 16,901,257 438 102 8,285,045
9 16,571,963 458 100 8,286,111
10 16,212,692 396 84 9,650,548

Figure 4 clearly presents the recorded findings. Figure 4 portrays the comparison of results
obtained from IApriori algorithm with those of other tested algorithms on the breast cancer dataset.
Apparently, IApriori achieved the best execution time. For the first experiment (when threshold was
zero), the IApriori demanded additional time, but was still less when compared to the other Apriori
algorithms. The following experiments required no time less than 100 ms. For instance, when the
support threshold was 4, IApriori recorded 95 ms, whereas 350 and 550 ms for AprioriTID and Apriori,
respectively. This achievement reflects outstanding improvement up to 300%.

Appl. Sci. 2019, 9, 5398 18 of 22

Figure 4. Experimental results for breast cancer dataset (execution time).

Figure 5 shows the experimental results obtained from the algorithms for Acute Inflammations
dataset. Again, the IApriori displayed excellent execution time. The time required to mine the dataset
by IApriori (support threshold = two) was 98 ms, while 395 and 605 ms for AprioriTID and Apriori,
respectively.

Figure 5. Experimental results for Acute Inflammations dataset (execution time).

The next experimental work captures the ability of the IApriori Algorithm to process different
dataset sizes, as well as the effect of dataset size on execution time. Additionally, the IApriori
incorporated the changing threshold. Figure 6 presents the outcomes of mining experiments with a
set of database sizes (1K, 5K, 20K, and 75K) (Management, 2009). The execution time was about the
average time for 10 experiments for each threshold value, whereby the support threshold changed
from 0% to 10%. It appeared that addition time was required for the first experiment only, which was
710 ms, for the dataset with 75K transactions.

Appl. Sci. 2019, 9, 5398 19 of 22

Figure 6. Execution time (ms) under different thresholds for the same transaction size (Apriori dataset).

The above figures portray the outstanding ability displayed by IApriori in substantially
minimizing the execution time. This achievement was tested on various types of datasets across
multidisciplinary domains, along with the standard case study for ARM, namely basket market
analyses, medical, and game datasets mined by IApriori. The IApriori performed rather exceptionally
well for different types and sizes of datasets, as well as for different values of support threshold
parameter. Overall, IApriori has achieved remarkable outcomes.

6.1. Comparison

This section discusses the theoretical comparison between IApriori and other algorithms.
This comparison is divided into two parts: IApriori is compared with the baseline algorithm in
the first part, while on the incremental domain in the second part.

6.2. Apriori

The IApriori algorithm seemingly managed to enhance the Apriori algorithm, which is attributed
to their shared similarities. The variances are as listed in the following:

• IApriori algorithm retrieved the data from the database once; it collected the first itemset.
Subsequently, the algorithm collected the support count for the candidate itemset by intersecting
the first itemset. The original algorithm had to check the database for every single itemset.

• The Apriori algorithm applied the pruning strategy to exclude itemsets that did not satisfy the
Minsupp threshold. In the proposed method, the algorithm retained all itemsets.

• The Apriori algorithm built the whole knowledge-based over the specific threshold, and the
output knowledge appeared to be invalid for other thresholds. Upon a change in the threshold,
the mining had to restart from the beginning point of building valid knowledge. On the contrary,
many instances can be arrived at using the proposed algorithm in the case of changing threshold.

6.3. Incremental Algorithms

Many algorithms have been proposed in the field of incremental learning for ARM. They make
sense in the process of solving standoff problems. The method proposed in this study presents an
improved set of features. However, several variances were noted, as listed below:

Appl. Sci. 2019, 9, 5398 20 of 22

• IApriori weighed in all manipulated data found in the database, including added, updated,
and deleted data. On the contrary, the remaining algorithms that dealt with the incremental issue
considered only the add operation, while neglecting both update and delete operations.

• As for the other algorithms, there were cases in which the algorithm had to rebuild the itemset
from scratch. This, nonetheless, was not required for the proposed algorithm.

• IApriori offered credible support and confidence for itemset and rule set, respectively. IApriori
updated the support value, thus reflecting the itemset to the database transactions. Additionally,
IApriori filtered the itemset within the changeable threshold setting.

The next table (Table 20) summarizes the features of the reviewed incremental ARM Algorithms.

Table 20. Comparison between the proposed method and incremental algorithms.

Algorithm Add Update Delete Rescan Solved Support Accuracy Threshold Changes

FUP [33] D X X X X X
NFUP [34] D X X X X X
IMSC [35] D X X X X D

MAAP [36] D X X X X X
IApriori D D D D D D

7. Conclusions

This study has addressed the ARM incremental problem by enhancing the popular Apriori
algorithm [2,13]. The ARM algorithms extract knowledge from the database, where the extracted
knowledge reflects the database when no change is introduced. Indeed, the database status in real-time
applications is changeable, and the database can be manipulated by numerous database operations
(add, update, and delete). Many algorithms have been proposed to overcome this issue in the ARM
incremental field. Nevertheless, several weaknesses and defects exist and remain, such as the following:
the present approaches target, in the mining, the newly extended database only for those transactions
that were added after the last mining, and they suppose, with the passage of time, that the state of the
old database is constant and that no change has been made; neither deleted nor updated transactions.
Based on Table 1, many cases demand rescanning all databases, particularly when there is a frequent
itemset in the new database, but infrequent in the old database. In this case, scanning the database
demands checking if the new itemsets are frequent over the entire database. Moreover, thresholds are
one of the most popular problems in most learning techniques. In ARM, knowledge discovery relies
on specific thresholds; so any changes in threshold indicate that the discovered knowledge does not
reflect the database anymore. The proposed algorithm allows change in the thresholds and retrieves
new knowledge based on the new thresholds without rescanning the database.

The proposed algorithm perfectly managed to overcome the previous outstanding issues, apart
from providing effective and viable solutions for a range of domains. The IApriori algorithm was
tested in many experiments by placing focus on two specific features: execution time, and the similarity
of extracted knowledge between the proposed algorithm and the others, as results showed the
improvement made by the IApriori on Tables 17–19 and Figures 1–5. This was performed to ascertain
the accuracy attained in extracting knowledge.

Author Contributions: Methodology, software, and orginal draft preparation, I.A. Validation and supervision
N.A.G. Editing C.M. Editing and review J.M. Review and testing N.S.S.

Funding: This research was funded by University Malaya through a postgraduate research grant (PPP) grant
number PG106-2015B.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2019, 9, 5398 21 of 22

References

1. Hashem, T.; Ahmed, C.F.; Samiullah, M.; Akther, S.; Jeong, B.S.; Jeon, S. An efficient approach for mining
cross-level closed itemsets and minimal association rules using closed itemset lattices. Expert Syst. Appl.
2014, 41, 2914–2938. [CrossRef]

2. Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases.
Acm sigmod record. ACM 1993, 22, 207–216.

3. Chen, Q.; Fan, Z.; Kaleshi, D.; Armour, S. Rule induction-based knowledge discovery for energy efficiency.
IEEE Access 2015, 3, 1423–1436. [CrossRef]

4. Djenouri, Y.; Djenouri, D.; Belhadi, A.; Fournier-Viger, P.; Lin, J.C.W. A new framework for
metaheuristic-based frequent itemset mining. Appl. Intell. 2018, 48, 4775–4791. [CrossRef]

5. Lee, Y.C.; Hong, T.P.; Lin, W.Y. Mining association rules with multiple minimum supports using maximum
constraints. Int. J. Approx. Reason. 2005, 40, 44–54. [CrossRef]

6. Nguyen, D.; Vo, B.; Le, B. CCAR: An efficient method for mining class association rules with itemset
constraints. Eng. Appl. Artif. Intell. 2015, 37, 115–124. [CrossRef]

7. Park, J.S.; Yu, P.S.; Chen, M.S. Mining Association Rules With Adjustable Accuracy; IBM Thomas J. Watson
Research Division: Armonk, NY, USA, 1997.

8. Usman, M.; Usman, M. Multi-Level Mining and Visualization of Informative Association Rules. J. Inf.
Sci. Eng. 2016, 32, 1061–1078.

9. Nguyen, L.T.; Nguyen, N.T.; Vo, B.; Nguyen, H.S. Efficient method for updating class association rules in
dynamic datasets with record deletion. Appl. Intell. 2018, 48, 1491–1505. [CrossRef]

10. Li, W.; Han, J.; Pei, J. CMAR: Accurate and efficient classification based on multiple class-association
rules. In Proceedings of the 2001 IEEE International Conference on Data Mining, Washington, DC, USA, 29
November–2 December 2001; pp. 369–376.

11. Lin, C.W.; Hong, T.P.; Lan, G.C.; Wong, J.W.; Lin, W.Y. Efficient updating of discovered high-utility itemsets
for transaction deletion in dynamic databases. Adv. Eng. Inform. 2015, 29, 16–27. [CrossRef]

12. Soysal, Ö.M. Association rule mining with mostly associated sequential patterns. Expert Syst. Appl. 2015,
42, 2582–2592. [CrossRef]

13. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB, San Francisco, CA, USA, 12–15 September 1994; Volume 1215,
pp. 487–499.

14. Ogbah, H.; Alashqur, A.; Qattous, H. Predicting Heart Disease by Means of Associative Classification. Int. J.
Comput. Sci. Netw. Secur. (IJCSNS) 2016, 16, 24.

15. De Oliveira, E.F.; de Lima Tostes, M.E.; de Freitas, C.A.O.; Leite, J.C. Voltage thd analysis using knowledge
discovery in databases with a decision tree classifier. IEEE Access 2017, 6, 1177–1188. [CrossRef]

16. Yassine, A.; Singh, S.; Alamri, A. Mining human activity patterns from smart home big data for health care
applications. IEEE Access 2017, 5, 13131–13141. [CrossRef]

17. Lee, S.; Ryu, K.; Shin, M.; Cho, G.S. Function and service pattern analysis for facilitating the reconfiguration
of collaboration systems. Comput. Ind. Eng. 2012, 62, 794–800. [CrossRef]

18. Bose, I.; Mahapatra, R.K. Business data mining—A machine learning perspective. Inf. Manag. 2001,
39, 211–225. [CrossRef]

19. Chen, F.; Wang, Y.; Li, M.; Wu, H.; Tian, J. Principal association mining: an efficient classification approach.
Knowl.-Based Syst. 2014, 67, 16–25. [CrossRef]

20. Kumara, B.T.; Paik, I.; Siriweera, T.; Koswatte, K.R. Cluster-based web service recommendation.
In Proceedings of the 2016 IEEE International Conference on Services Computing (SCC), San Francisco, CA,
USA, 27 June–2 July 2016; pp. 348–355.

21. Rashid, M.M.; Gondal, I.; Kamruzzaman, J. Dependable large scale behavioral patterns mining from sensor
data using Hadoop platform. Inf. Sci. 2017, 379, 128–145. [CrossRef]

22. Sheu, J.J.; Chen, Y.K.; Chu, K.T.; Tang, J.H.; Yang, W.P. An intelligent three-phase spam filtering method
based on decision tree data mining. Secur. Commun. Netw. 2016, 9, 4013–4026. [CrossRef]

23. Gandhi, N.; Armstrong, L.J. A review of the application of data mining techniques for decision making in
agriculture. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and
Informatics (IC3I), Noida, India, 14–17 December 2016; pp. 1–6.

http://dx.doi.org/10.1016/j.eswa.2013.09.052
http://dx.doi.org/10.1109/ACCESS.2015.2472355
http://dx.doi.org/10.1007/s10489-018-1245-8
http://dx.doi.org/10.1016/j.ijar.2004.11.006
http://dx.doi.org/10.1016/j.engappai.2014.08.013
http://dx.doi.org/10.1007/s10489-017-1023-z
http://dx.doi.org/10.1016/j.aei.2014.08.003
http://dx.doi.org/10.1016/j.eswa.2014.10.049
http://dx.doi.org/10.1109/ACCESS.2017.2778028
http://dx.doi.org/10.1109/ACCESS.2017.2719921
http://dx.doi.org/10.1016/j.cie.2011.11.034
http://dx.doi.org/10.1016/S0378-7206(01)00091-X
http://dx.doi.org/10.1016/j.knosys.2014.06.013
http://dx.doi.org/10.1016/j.ins.2016.06.036
http://dx.doi.org/10.1002/sec.1584

Appl. Sci. 2019, 9, 5398 22 of 22

24. Zaki, M.J.; Parthasarathy, S.; Ogihara, M.; Li, W. Parallel algorithms for discovery of association rules.
Data Min. Knowl. Discov. 1997, 1, 343–373. [CrossRef]

25. Li, Z.C.; He, P.L.; Lei, M. A high efficient AprioriTid algorithm for mining association rule. In Proceedings of
the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August
2005; Volume 3, pp. 1812–1815.

26. Schlegel, B.; Karnagel, T.; Kiefer, T.; Lehner, W. Scalable frequent itemset mining on many-core processors.
In Proceedings of the Ninth International Workshop on Data Management on New Hardware, New York,
NY, USA, 24 June 2013; p. 3.

27. Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data mining and analytics in the process industry: The role of machine
learning. IEEE Access 2017, 5, 20590–20616. [CrossRef]

28. Wu, X.; Fan, W.; Peng, J.; Zhang, K.; Yu, Y. Iterative sampling based frequent itemset mining for big data.
Int. J. Mach. Learn. Cybern. 2015, 6, 875–882. [CrossRef]

29. Han, J.; Pei, J.; Yin, Y. Mining frequent patterns without candidate generation. In Proceedings of the 2000
ACM SIGMOD international conference on Management of Data, New York, NY, USA, 15–18 May 2000;
Volume 29, pp. 1–12.

30. Ramya, V.; Ramakrishnan, M. FP-growth algorithm based incremental association rule mining algorithm for
big data. Int. J. Adv. Res. Comput. Sci. 2018, 9, 886. [CrossRef]

31. Yan, X.; Zhang, C.; Zhang, S. Genetic algorithm-based strategy for identifying association rules without
specifying actual minimum support. Expert Syst. Appl. 2009, 36, 3066–3076. [CrossRef]

32. Luna, J.M.; Romero, J.R.; Romero, C.; Ventura, S. Reducing gaps in quantitative association rules: A genetic
programming free-parameter algorithm. Integr. Comput.-Aided Eng. 2014, 21, 321–337. [CrossRef]

33. Cheung, D.W.; Han, J.; Ng, V.T.; Wong, C. Maintenance of discovered association rules in large databases:
An incremental updating technique. In Proceedings of the Twelfth International Conference on Data
Engineering, New Orleans, LA, USA, 26 February–1 March 1996; pp. 106–114.

34. Chang, C.C.; Li, Y.C.; Lee, J.S. An efficient algorithm for incremental mining of association rules.
In Proceedings of the 15th International Workshop on Research Issues in Data Engineering: Stream Data
Mining and Applications (RIDE-SDMA’05), Tokyo, Japan, 3–4 April 2005; pp. 3–10.

35. Bachtobji, M.A.; Gouider, M.S. Incremental maintenance of association rules under support threshold change.
In Proceedings of the IADIS International Conference on Applied Computing, San Sebastian, Spain, 25–28
February 2006; IADIS Press: San Sebastian, Spain, 2006.

36. Zhou, Z.; Ezeife, C. A low-scan incremental association rule maintenance method based on the apriori
property. In Proceedings of the Conference of the Canadian Society for Computational Studies of Intelligence,
Ottawa, ON, Canada, 7–9 June 2001; Springer: Heidelberg, Germany, 2001; pp. 26–35.

37. Integrated & Project Management. Available online: https://wiki.csc.calpoly.edu/datasets/wiki/apriori
(accessed on 15 October 2019).

38. Frequent Itemset Mining Dataset Repository. Available online: http://fimi.ua.ac.be/data/ (accessed on 15
October 2019).

39. UC Irvine Machine Learning Repository. Available online: https://archive.ics.uci.edu (accessed on 15
October 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1009773317876
http://dx.doi.org/10.1109/ACCESS.2017.2756872
http://dx.doi.org/10.1007/s13042-015-0345-6
http://dx.doi.org/10.26483/ijarcs.v9i2.5712
http://dx.doi.org/10.1016/j.eswa.2008.01.028
http://dx.doi.org/10.3233/ICA-140467
https://wiki.csc.calpoly.edu/datasets/wiki/apriori
 http://fimi.ua.ac.be/data/
https://archive.ics.uci.edu
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Association Rule Terms
	Literature Review
	Apriori Algorithm
	Vertical Layout
	Incremental Problem

	The Proposed Algorithm
	Dataset
	Results and Discussion
	Comparison
	Apriori
	Incremental Algorithms

	Conclusions
	References

