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Abstract: White etching crack (WEC) failure is a failure mode that affects bearings in many applications,
including wind turbine gearboxes, where it results in high, unplanned maintenance costs. WEC
failure is unpredictable as of now, and its root causes are not yet fully understood. While WECs
were produced under controlled conditions in several investigations in the past, converging the
findings from the different combinations of factors that led to WECs in different experiments remains
a challenge. This challenge is tackled in this paper using machine learning (ML) models that are
capable of capturing patterns in high-dimensional data belonging to several experiments in order
to identify influential variables to the risk of WECs. Three different ML models were designed
and applied to a dataset containing roughly 700 high- and low-risk oil compositions to identify
the constituting chemical compounds that make a given oil composition high-risk with respect to
WECs. This includes the first application of a purpose-built neural network-based feature selection
method. Out of 21 compounds, eight were identified as influential by models based on random forest
and artificial neural networks. Association rules were also mined from the data to investigate the
relationship between compound combinations and WEC risk, leading to results supporting those of
previous analyses. In addition, the identified compound with the highest influence was proved in a
separate investigation involving physical tests to be of high WEC risk. The presented methods can be
applied to other experimental data where a high number of measured variables potentially influence
a certain outcome and where there is a need to identify variables with the highest influence.

Keywords: feature selection; premature bearing failure; wind turbine gearbox failure; random forests;
artificial neural networks; association rules

1. Introduction

White etching cracks (WECs) are a phenomenon in industrial gearboxes as well as automotive
applications leading to a yet unpredictable failure called white structure flaking (WSF) or white etching
cracks [1,2]. Such failures are responsible for significant operating and downtime costs, especially for
wind turbine gearboxes [3–5]. To put the importance of WEC failures into perspective, WECs can lead
to bearing failures within 5%–20% of the bearing’s L10 lifespan (DIN ISO 281), leading to unexpected
maintenance costs [6–11]. Several recent investigations aimed at understanding the causes behind
WEC related bearing failure in wind turbine gearboxes [5,11–20]. However, the causes of WEC bearing
failures remain a subject of debate [5,10,21–23].

Several root cause investigations of WEC failures found that lubricants and their components, e.g.,
additives, can play an important role in leading to WECs [22,24,25]. In one investigation, an experiment
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was performed with a lubricant composed of only a base oil (no additives), resulting in no WEC failure
even after 1000 h of testing, while another experiment with a lubricant containing over-based calcium
sulfonates as rust preventers and short-chain zinc dithiophosphates as antiwear additives resulted in
WEC failure after 40 h of testing [22]. Paladugu et al. also performed life tests on cylindrical roller thrust
bearings in different oils [26] A so-called ‘WEC critical oil’ with additives resulted in premature bearing
failure within 5% of the lifetime of another bearing that was lubricated with a mineral oil containing
no additives [26]. These results not only implicate the so-called ‘WEC critical oil’, but also indicate that
oil additives may have an influence on risk of WECs. Similarly, several other investigations used a
specific oil, containing additives, to successfully promote WEC failure [1,10,21,23,27], the most recent
of which is the investigation by Gould et al., where lubricant additives were systematically varied to
study the effect of different additive combinations on bearing time until failure [24]. The investigation
found that the lubricant containing zinc dialkyl-dithiophosphate (ZnDDP) led to WECs sooner than
any other tested lubricant under the test conditions [24].

While WECs were produced under controlled conditions in several investigations in the past,
converging the findings from the different combinations of factors that led to WECs in different
experiments remains a challenge. This challenge could be addressed using machine learning (ML)
algorithms that are able to discover patterns in high-dimensional data belonging to several experiments.
However, ML algorithms are often criticized for a lack of transparency. Transparency into the drivers
of accuracy of ML algorithms are crucial if such algorithms are to be used to identify root causes from
experimental data.

This paper addresses these issues by first developing machine learning models that are able
to learn patterns from experimental data and demonstrate high skill in identifying risky variable
combinations from different experiments. The developed models are then further tested following a
technique designed to reveal the inner-workings of the models driving the accuracy of their judgements.
More specifically, the models were tested to identify which variables are important for the performance
of the models and to what extent, relative to one another.

In order to train and assess the models in identifying risky conditions with respect to WECs from
previous experiments, a dataset containing roughly 700 high- and low-reference oil compositions was
used. The data was provided by Schaeffler on the condition that the identities of the constituting oil
compounds remained anonymized. The dataset was compiled based on physical tests and chemical
simulations performed by Schaeffler in collaboration with 4LinesFusion, a supplier of industrial
analytics solutions [28,29]. Three data analysis methods were designed and applied to the dataset to
identify patterns between high-reference oil compositions leading to knowledge of the constituting
chemical compounds, which made a given oil composition high-reference with respect to WECs.

The methods presented in this paper can be applied to other experimental data where a high
number of measured variables influence a certain outcome and where there is a need to identify
variables with the highest influence. Since this is a common objective of many root-cause investigations
in tribology, the authors aim to support the efforts of a large audience in the field of tribology with the
outcomes of this paper.

2. Data and Methods

2.1. Data Description

Roughly 700 low- and high-reference oil compositions were present in the available dataset.
More specifically, 352 oil compositions were present, which were identified by Schaeffler and
4LinesFusion to be low risk with respect to WECs. Additionally, 327 oil compositions identified to be
high risk with respect to WECs were present in the dataset. Eight oil compositions were identified
as medium risk. These compositions posed a significant class imbalance in the dataset due to their
considerably lower number of examples in the available data set compared to the number of examples
of high and low risk oil compositions. Such a pronounced class imbalance can negatively impact the
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performance and accuracy of the developed ML models later on [30]. Therefore, the 8 oil compositions
were neglected in the subsequent analyses. From here on, low- and high-reference oil compositions are
referred to as high or low risk oils, respectively.

The oil compositions contained either 1 or 2 additives in addition to the base oil. Additives and
base oils, from here on referred to as compounds, were anonymized by compound identification
numbers (IDs), e.g., c1, c2, or c21. In total, 21 compound identification numbers were present in the
dataset. For clarity, Table 1 shows two oil compositions from the dataset.

Table 1. Examples of oil compositions.

Oil c6 c11 c16 Risk

195 0% 98% 2% Low
196 0.5% 99% 0.5% High

The oil compounds selected for this investigation were used in bearing lubricants in several
test benches by project partners to instigate WEC failure. Bearings in wind turbine gearboxes as
well as other industrial applications suffer from costly, unplanned maintenance due to WECs [6–11].
In addition, oil additives have been shown to influence risk of WECs [22,24,25]. Therefore, there is
high interest in identifying the degree to which the selected oil compounds influence WEC risk.

2.2. Methods Overview

Three methods were used to discover patterns in the available data. First, models based on
random forests and artificial neural networks were trained and tested to identify oil compounds that
influence the risk level of a given oil composition with respect to WECs. In addition, association rule
mining was utilized to investigate the relationship between compound combinations and WEC risk,
leading to results supporting those of previous analyses. The methods are explained in more detail in
the following subsections.

2.3. Random Forests

In order to discover the pattern in the available data and correctly classify WEC risk level of a
given oil composition using the percentages of its constituting compounds as input, a random forest
(RF) model was developed. The available data of 679 oils including their respective constituents’
percentages and their risk classification (high or low) were used to train and test the RF models.

The random forest [31] model relies on the collective ability of multiple weak classifiers (decision
trees) to learn to approximate a function. In this case, the desired function should output the risk level
of a given oil composition (high or low) using the percentages of the 21 possible compounds contained
in the oil as input variables. Since a random forest is no more than an ensemble of decision trees,
Figure 1 illustrates how an example decision tree would classify a given oil based on its constituting
compounds. Starting from the root of the tree at the top of the figure, a given oil either follows the left
or right path depending on its percentage of c9. It then follows the appropriate path depending on its
percentage of c6 or c3 to the so-called leaves of the decision tree, illustrated as pie charts in Figure 1.
After a number of oil compositions go from the root of the tree to one of the four leaves depending on
their constituting compounds, each leave would have a ratio of high and low risk oil compositions as
shown in the figure. This process is referred to as training the decision tree. In this example tree, 90%
of the oil compositions that made it to the leftmost leaf are low risk oils. If a new oil composition with
unknown risk level reaches the leftmost leaf, then the decision tree estimates with 90% probability
that the new oil composition is low risk with respect to WECs. A random forest contains a number of
such decision trees with different numbers of branches and different splitting criteria at each branch to
collectively reach a more accurate classification.
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Figure 1. Example decision tree.

To develop a random forest, some design parameters, so-called hyperparameters, need to be
decided by the investigator in a process of tuning the RF to reach optimal performance. Some of the
most influential hyperparameters on RF performance are [32]:

• Sample size: the size of the sample selected from the total number of oils to be the training data
for each tree in the random forest. Decreasing this value will most likely result in less accurate
predictions by the individual trees. However, increasing this value can also result in overfitting,
where the RF achieves significantly higher performance on the training data, but performs poorly
on the test data, i.e., new oil compositions with unknown risk levels.

• Number of tried features at each split (from here on referred to as ftry): the number of randomly
selected candidate variables, in this case compound IDs, for each split in a given decision tree in
the RF when growing it. A split in a decision tree is every point when a given oil either follows a
right or left path. For example, in Figure 1, the first split is performed according to the percentage
of c9 in the oil. If two variables are tried with an ftry = 2, then the variable that best splits high
and low risk oil compositions is selected. For example, if c1 and c2 are tried and c1 results in a
split with the right side of the split containing only high risk oils and the left side containing only
low risk oils, and c2 results in a mixture of high and low risk oils on both sides of the split, then c1
is chosen. This is because the split according to the percentage of c1 in the oils, in this example,
results in a purer separation of high and low risk oils compared to c2. If ftry is equal to 3, then three
compound IDs are instead evaluated at each split. Similar to sample size, decreasing ftry results
in worse performance by the individual trees, but increasing it can result in overfitting. Much like
the case with sample size, the right balance needs to be found where the highest performance by
the RF is reached.

• Node size: the minimum number of oils in a terminal node of any tree in the RF. Without going
into more details, the typically used value for classification problems is 1, which was the value
chosen for developing the RF in this investigation since it generally provides good results [32].
When attempted, increasing the node size did not lead to higher accuracy.

Probst et al. provide more details on random forest hyperparameters as well as some best
practices for tuning RF models [32]. In addition, the pioneering paper by Breiman [31] provides more
information about random forests.

The number of trees in the random forest is also a design decision when developing a random
forest. The degree of influence of this hyperparameter is controversial with the research consensus
favoring setting it to a computationally feasible large number [32,33]. In this investigation, increasing
the number of trees above 500 trees did not lead to higher accuracy, so the number of trees was set
to 500.

In order to identify the optimal ftry and sample size values, hyperparameter tuning was performed
by trying different combinations of the two hyperparameters and assessing the performance of the
resulting random forests. Ultimately, the combination resulting in the random forest with the least
classification error was selected. In case of ties, the parameters requiring less computational effort was
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selected. Since there were only 21 compound IDs present in the data, ftry values could only range
from 1 to 21. For the sample size, it was decided to try the range from 1 to 469 with steps of 26, since
the training set contained 475 oils. All possible ftry values were tried. The combination resulting in the
best performance was ftry = 5 and sample size = 53. This combination led to a 10-fold cross validation
accuracy of 98.51%. The R package by Meyer et al. was utilized for tuning the hyperparameters of the
random forest models in this paper [34].

It is worth noting that the dataset was initially split into a 70%, 30% split before tuning the
RF. The division was performed randomly. The tuning was performed using only the 70% set
(containing 476 oils). Ten-fold cross validation (CV) was used to estimate the error of each RF model.
The benefit of this method is that it allows for testing the machine learning algorithm with the chosen
hyperparameters on every available oil in the dataset. Therefore, this was the method of choice for
validating the generalizability of all machine learning algorithms in this investigation. For a more
detailed explanation of how 10-fold cross validation was applied in this investigation, the reader is
referred to publication [28].

The following steps provide an overview of the analysis performed on the oil compositions using
random forests:

1. Splitting the 679 available oil compositions randomly into two smaller datasets: 70% of oils are
selected as the training set and 30% are selected as the test set.

2. Hyperparameter tuning: different combinations of sample size and ftry are used to train a random
forest model using the training set. Ten-fold cross validation is used to estimate the classification
performance of each resulting random forest model. The combination resulting in the top
performance is identified as the optimal combination.

3. Developing a tuned RF classifier: the optimal hyperparameter combination is used to develop an
RF classifier, trained using the training set.

4. Testing the tuned RF classifier: the developed tuned RF classifier is tested on the test set to verify
its accuracy on unseen data.

5. Reaching a more representative estimate of model accuracy: use the optimal hyperparameter
pair to perform 10-fold cross validation on all 679 oils. This is done to reach an estimate
of accuracy that involves testing every available oil rather than only the 30% of the available oils
in the testing set.

After developing a random forest classifier to accurately classify the WEC risk level of oil
compositions, the focus shifted to reveal the inner workings of the developed ML model and gain an
understanding of what drives the accuracy of its classifications. In other words, the task was identifying
which compound IDs had an influence on WEC risk of a given oil composition and to what extent.
This was achieved by following the Boruta algorithm [35]; 21 randomly shuffled versions (so called
shadows) of the compounds were added to the data, and a statistical test was used to iteratively remove
the compounds proven to be less important in WEC risk classification than the random shadows.
A compound was considered unimportant if, on average over several iterations, it was found to be
less important than the most important shadow compound. Each shadow was a randomly shuffled
copy of one of the 21 compound identification numbers present in the dataset. Kursa and Rudnicki
also provide more details on the Boruta algorithm and the calculation of the importance values [35].

2.4. Artificial Neural Networks

Artificial neural network (ANN) models were trained to classify the WEC risk (high or low) of
an oil, taking the identities of its constituting chemical compounds and their respective percentages
as input. The available dataset of oil compositions and their risk classification were used to train
and test the ANN models. Similar to the random forest model, developing an ANN model involved
selecting and tuning hyperparameter values to improve model accuracy. Eleven neural networks were
developed, gradually increasing the 10-fold cross validation classification accuracy on unseen test oils
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to 99.8% by tuning the hyperparameters of the networks [28]. Changing the following hyperparameters
proved most influential on model performance: the number of hidden layers, the number of nodes
per layer, the types of activation functions, the type and parameters of regularization, the type of loss
function, and the parameters of the optimizer function.

The network delivering the highest accuracy of 99.8% contained 3 hidden layers with L2
regularization applied only after the first hidden layer to help prevent overfitting. Ng provides more
details on L2 regularization [36]. The 3 hidden layers contained 19, 15, and 9 nodes, respectively. The
activation function used after every hidden layer was the leaky rectified linear unit (leaky ReLU) [37]
as a countermeasure against the vanishing gradient problem. The adaptive moment estimation
(Adamax) optimization function [38] was used to optimize the neural network during training with
the exponential decay rates for the first and second moment estimates set to 0.93 and 0.98, respectively,
and the learning rate set to 0.0018. Categorical cross entropy was used as the loss function. Finally,
the output layer consisted of two nodes corresponding to high or low risk with respect to WECs.
Softmax [39] was used as the activation function following the output layer in order to facilitate the
determination of the target classification, high or low risk, of a given oil composition.

ANN models, through the process of training, approximate a desired function taking in the
available input and producing the desired output. In this case, the input was the composition of each
oil under investigation with respect to the 21 possible compounds in the dataset; i.e., there were 21
input variables. The output was the WEC risk level of the lubricant, high or low risk. More complex
problems require more complex neural networks, and the aforementioned hyperparameters allowed
for modularity in constructing the ANN model to meet the required complexity of the problem at
hand. The process of tuning the hyperparameters involved iterations of trial and testing guided by
previous experience and domain knowledge. Schmidhuber provides a more detailed overview of
artificial neural networks and deep learning [40].

The neural networks were tested further to identify the most influential oil compounds in terms
of risk of WECs. Twenty-one compound identities were present in the available data, so 10-fold
cross validation was performed 21 times on each network architecture. Each time, a network with
the previously selected hyperparameters was trained on correct data but tested on data with one of
the compound’s information shuffled. If the average 10-fold cross validation classification accuracy
did not significantly decrease (>97%) as a result of distorting the data of a compound, then it was
concluded that this compound was not influential in classifying WEC risk of an oil. As far as we know,
this method of feature selection was developed during this investigation, inspired by the fundamental
idea of the Boruta analysis. Additional work will be done to test its capabilities with different datasets
before the release of a more detailed publication concerning the method. For ease of reference, this
method is named Neural Network-based Feature Selection (hereafter referred to as “NN-based FS”).

2.5. Association Rule Mining

In addition to identifying individual oil compounds that are influential to WEC risk classification,
an analysis was performed to investigate the relationship between frequently occurring combinations
of compounds in the available data and WEC risk. The motivation behind this analysis came from
previous investigations, such as [5], which concluded that certain additive combinations resulted in
WECs, while others did not. The algorithm used to perform this task is called the Apriori algorithm [41].

The algorithm searches for frequently occurring sets, or combinations of compounds in the oil
dataset in an unsupervised manner based on user-defined minimum criteria. The minimum criteria
ensure a standard for the quality of rules with quality referring to the strength of the identified
associations and their frequency of occurrence in the dataset. The algorithm then generates association
rules based on the identified frequent sets that shed light on which compounds are likely to join which
other compound or which other groups of compounds. For example, the two association rules shown
in Table 2 describe the likelihood of finding c12 in an oil that already has c16 (rule number 1) and
the likelihood of finding c12 in an oil that already has the compound combination of c8 and c9 (rule
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number 2). The four main metrics used to describe the likelihood of a given association rule can also be
used, for example, to define the minimum criteria by the user to filter out rarely occurring associations
or association rules with low confidence.

Table 2. Association rule examples.

Rule No. Association Rules

1 {c16} ≥ {c12}
2 {c8,c9} ≥ {c12}

Several metrics are used to describe the likelihood or the quality of a given association rule.
The metrics of the rules in Table 2 are listed in Table 3. These metrics are explained below [42]:

1. Support: the proportion of oils in the dataset that contain all the compounds in a given association
rule. For example, the support of rule number 1 from Table 3 is calculated by dividing the number
of oils containing both c16 and c12 in the dataset (36 oils) by the total number of oils in the dataset
(679 oils); 36/679 = 0.0530.

2. Confidence: the proportion of oils that contain the compound(s) on the left hand side (LHS) of
an association rule divided by the support of the rule. Using rule number 2 from Table 3 as an
example, confidence is calculated by dividing the proportion of oils in the dataset that contain
both c8 and c9 (0.0133) by the support of the rule (0.0133), which would equal 1. This essentially
means that all oils that contain both c8 and c9 also contain c12.

3. Lift: the confidence of a rule divided by the proportion of oils in the dataset that contain the
compound(s) on the right hand side (RHS) of an association rule. This metric indicates how
surprising an association rule is given the expected probability of finding the RHS compound(s)
in an oil in the dataset. For instance, rule number 3 from Table 3 has a lift of almost 1, which
indicates that the probability of finding c16 in any oil in the dataset is almost identical to the
probability of finding c16 in an oil that already contains c3. This means that the association
suggested by rule number 3 is weak. In contrast, rule number 2 from Table 3 has a lift of 5.853,
which indicates that the association indicated by the rule is strong. For rule number 1, the lift
value is below 1, which means that it is more likely not to find c12 in an oil that contains c16 than
it is to find c12 in an oil that contains c16.

4. Count: the number of oils in the dataset that contain all the compounds in a given association rule.
Using rule number 2 from Table 3 as an example, the count is 9, which means that the number of
oils in the dataset that contain the combination of c8, c9, and c12 is 9.

Table 3. Association rule examples.

Rule No. Association Rules Support Confidence Lift Count

1 {c16} ≥ {c12} 0.0530 0.136 0.798 36
2 {c8,c9} ≥ {c12} 0.0133 1 5.853 9
3 {c3} ≥ {c16} 0.0177 0.4 1.029 12

Hahsler et al. provide more details on the Apriori algorithm used in this investigation and the
metrics of association rules [42].

The defined minimum criteria for this investigation were chosen to be a confidence of 50% and a
support of 0.1%, since confidence and support are the best-known constraints for this algorithm [42].
After identifying association rules from the oils dataset using these criteria, the focus shifted to the
goal of identifying and comparing association rules from low risk oils and high risk oils. This was
performed by splitting the dataset into two datasets consisting of low risk oils and high risk oils,
respectively, and mining each of these two datasets for association rules using the same minimum



Appl. Sci. 2019, 9, 5502 8 of 14

criteria. Finally, the generated rules and their respective metrics were compared to investigate the
relationship between compound combinations and WEC risk.

3. Results

3.1. Random Forests

An RF model was used to classify risk level of oil compositions after the dataset was randomly
split into training (70%) and testing (30%) sets. The accuracy of the test set was 99.03% with two
misclassifications. The chosen combination, which led to the previously mentioned 99.03% accuracy
value, was of ftry = 5 and sample size = 53. Using these hyperparameters, 10-fold cross validation was
applied to the entire dataset leading to a slightly more pessimistic but more representative estimated
accuracy of 98.51%.

The Boruta algorithm [35] was used to identify important compounds for classifying WEC risk
levels of oils. Broadly speaking, the importance of a given variable, in this case compound, relates to
the potential loss in accuracy if that variable was excluded from the input. Kursa and Rudnicki provide
more details on the definition of importance in the context of the Boruta algorithm [35]. That led
to the identification of eight significantly important compounds: c16, c9, c6, c21, c14, c7, c8, and
c11. Shown in Figure 2, 13 of 21 compounds were found to be important. However, the last eight
compounds on the right hand side of the figure (shown in a circle) were clearly significantly important
in comparison with the other compounds. Shown in the figure are also the mean, minimum, and
maximum importance values of the shadows, indicated as s.Mean, s.Min, and s.Max, respectively.
The unimportant compounds were those with less importance than s.Max. Therefore, they are
arranged to the left of the s.Max in Figure 2.
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3.2. Artificial Neural Networks

As mentioned earlier, ANN models were trained to classify the WEC risk (high or low) of an oil.
Eleven neural networks were developed, gradually increasing the 10-fold cross validation classification
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accuracy to 99.8% by altering the networks architecture [28]. In addition to increasing the number
of hidden layers and adjusting the number of nodes per layer, using the leaky rectified linear unit
(ReLU) activation function and an adaptive moment estimation (Adamax) optimizer proved useful in
increasing model accuracy. The top performing ANN consisted of three hidden layers. The R package
by Allaire and Chollet was utilized to implement the neural network algorithms [43].

The ANN models were tested further to identify the most influential oil compounds of WEC
risk following the NN-based FS method described in the methods section. Shown in Figure 3, eight
compounds were found to be influential. Figure 3 shows box plots where the average of each box
represents the 10-fold cross validation accuracy for the respective compound ID.
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In order to verify the importance of the eight identified important compounds shown in Figure 3,
a new ANN classifier was developed. The classifier was trained to classify WEC risk level of oils based
only on the data of the eight identified important compounds. In other words, the input to the new
classifier did not include the composition data of the remaining 13 compounds available in the dataset.
The developed classifier was able to achieve 10-fold CV accuracy of 98.5% [28].

3.3. Association Rule Mining

The Apriori algorithm was used to investigate the relationship between compound combinations
and WEC risk. As discussed in the methods section, the minimum criteria implemented to mine
association rules were a confidence of 50% and a support of 0.1%. Twenty-two rules were mined using
these criteria, and afterwards the available dataset was split into two datasets: a dataset containing
only high risk oils and one containing only low risk oils. Rules were mined from each of the two
datasets separately using the same minimum criteria resulting in 62 rules from the high risk set and
only seven rules from the low risk set. The R package by Hahsler et al. was utilized to implement the
Apriori algorithm [44].

Two main findings were obtained from this analysis. The first finding was that high risk oils were
more heterogeneous than low risk oils. In other words, high risk oils were much more likely to contain
more than two compounds as compared to low risk oils, which almost always contained a maximum
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of two compounds, as shown in Figure 4. This was indicated by the significantly lower number of
association rules obtained from low risk oils (seven rules) compared to high risk oils (62 rules).Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 
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The second finding from the resulting association rules was that occurrence of certain compound
groups in low risk oils was different compared to that of high risk oils. This finding is clearly visible in
Table 4, which lists association rules mined from the high risk oils dataset that were not in common
with the association rules mined from the low risk oils datasets as well as their respective metrics.
Despite relaxing the minimum criteria of low risk oils to attempt to extract more, albeit weaker,
association rules in common with the ones mined from high risk oils, many association rules from high
risk oils were still unique to high risk oils. This further supported the finding that the occurrence of
compound combinations was significantly different in high and low risk oils. Table 4 lists a selection of
these rules with confidence above 80%.

Table 4. Association rules from high risk oils (minimum confidence of 80%).

Rules Confidence

{c15} ≥ {c12} 1
{c17,c21} ≥ {c16} 1
{c19,c21} ≥ {c16} 1

{c3,c16} ≥ {c6} 1
{c3,c6} ≥ {c16} 1
{c4,c16} ≥ {c6} 1
{c4,c6} ≥ {c16} 1
{c5,c16} ≥ {c6} 1
{c5,c6} ≥ {c16} 1
{c6,c10} ≥ {c16} 1
{c8,c9} ≥ {c12} 1
{c9,c17} ≥ {c6} 1
{c9,c19} ≥ {c6} 1
{c9,c18} ≥ {c6} 0.82

4. Discussion

The similar results of different methods help verify the validity of the results reached using the
aforementioned data analyses. The important compounds found using ANNs through the newly
developed neural network-based feature selection algorithm (NN-based FS) and those found using
random forests through the Boruta algorithm are listed in Table 5 in the order of importance. Comparing
the identified important compounds from the two methods, it becomes clear that the two results
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are in agreement with a slight difference in the order of importance towards the relatively less
important compounds. This helps validate the two results since two different methods led to an almost
identical conclusion.

Table 5. Identified important compounds.

Method Important Compounds

Neural Network-based Feature Selection (NN-based FS) c16, c9, c6, c21, c7, c14, c11, c8
Boruta [35] c16, c9, c6, c21, c14, c7, c8, c11

A significant observation was made after reaching the order of important compounds listed in
Table 5 using the NN-based FS method. Based on chemical domain knowledge, if those compounds
were to be ordered based on their respective ability to release hydrogen, that order would match the
order of importance identified using the NN-based FS method, as listed in Table 5. This indicates that
the results of this investigation are in agreement with previous investigations [2,45], which found the
release of hydrogen and its diffusion into the bearing steel to be a driver of WEC formation.

As for the investigation of the relationship between combinations of compounds and WEC risk,
two important observations are visible from the resulting association rules. Firstly, the compound
associations, listed in Table 4, which were found only in high risk oils, had one thing in common: they
almost always, with one exception, contained one or more of the top three important compounds
identified by the other analyses to be influential to WEC risk classification. This result further supports
the results of the other analyses that pointed at these compounds as risky. In addition to the first
observation, the fact that low risk oils generally contain less compounds than high risk oils, as shown
in Figure 4, indicates a possibility that oils with more compounds may be more likely to result in WEC
failure compared to oils with fewer compounds. It may also be the case that having more compounds
in an oil increases the likelihood that a high risk compound is present in the oil. Future investigations
might also use this observation as a starting point to examine these possibilities.

A possibility still remains that certain combinations of compounds that are not risky on their own
may become risky when combined. Since the compounds in the association rules in Table 4 are not
even weakly associated in low risk oils yet strongly associated in high risk oils, they may be, pending
further investigations, risky combinations with respect to WEC failure.

This investigation shows the applicability of data analytics approaches on phenomena where
several factors seem suspicious for having an influence on a certain outcome. With the help of
these methods, it is possible to identify the influential factors out of a number of suspicious factors.
An investigation [24] involving a number of tests with different oils led to a conclusion consistent
with the results of the data analyses presented in this paper. The completed data analyses on the
available dataset pointed to c16 as the most important oil compound for classifying WEC risk of an
oil. The project partner Schaeffler also reported that several tests pointed to c16 as a high risk oil
compound with respect to WECs. This agreement between the results of the analysis performed and
the results from the project partner corroborates the findings and applications presented in this paper.

5. Conclusions

This paper presented applications of three machine learning techniques to tackle the challenge
of pattern discovery in high-dimensional data belonging to multiple experiments on WEC bearing
failure. This includes the first application of the purpose-built Neural Network-based Feature Selection
(NN-based FS) method. The main conclusions are as follows:

1. It is possible to converge findings from multiple experiments using the presented ML models
to discover patterns and conduct root-cause analyses on WECs using only historic data from
previous experiments.
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2. It is possible to reach said patterns via ML models while maintaining transparency into the drivers
of accuracy of the ML models using the techniques presented in this paper.

3. The presented techniques are able to identify patterns to classify a given oil composition as high-
or low-risk with respect to WECs with high accuracy using data from previous experiments.

4. The presented techniques are able to identify influential oil compounds on WEC risk using data
from previous experiments.

5. NN-based FS was developed and applied during this investigation as a method of feature selection
based on neural networks. Since this is the first application of the method, the authors aim to test
its capabilities with different datasets before releasing a more detailed publication of the method.
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