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Abstract: In order to meet the requirement of secure image communication in a resource-constrained
network environment, a novel lightweight chaotic image encryption scheme based on permutation
and diffusion has been proposed. It was claimed that this scheme can resist differential attacks,
statistical attacks, etc. However, the original encryption scheme is found to be vulnerable and
insecure to chosen-plaintext attack (CPA). In this paper, the original encryption scheme is analyzed
comprehensively and attacked successfully. Only by choosing a full zero image as the chosen-plaintext
of the diffusion phase, the encrypted image can be restored into permutation-only phase, and by
applying the other chosen images as the chosen-plaintexts of the permutation phase, the map matrix
which is equivalent to the secret key of the permutation phase can be further revealed. Experiments
and analysis verify the feasibility of our proposed attack strategy.
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1. Introduction

With the development of Internet and information technology, ever-increasing multimedia data
is emerging in our daily lives. Among multimedia data, digital image carrying information in a
visualized manner has become a widely used data format. Many of these digital images in networks
may be involved in personal privacy, military secrets, trade secrets, and even national security. If such
digital images are intercepted by some unauthorized users, serious security disasters can occur. Thus,
it is essential to protect private images with some effective solutions [1–4]. Image encryption [5–7],
which aims at preventing unauthorized access by converting the data into an unrecognized form,
has been a well-known effective and popular method to secure them.

Among different types of image encryption algorithms, the Chaos-based cryptosystem is
particularly efficient and popular in image processing fields as it has many significant characteristics
such as ergodicity, unpredictability, and initial state sensitivity [8–11]. In general, the existing
chaotic systems can be partitioned into two primary types: one dimension (1D) maps [9] and high
dimension (HD) maps [11]. 1D chaotic maps often have simple structures and low computational
complexity; thus, it is efficient and easy to generate pseudorandom sequence during image
cryptography. However, they face some potential drawbacks like vulnerability and limited chaotic
ranges [12,13]. The demanding for higher level of security of image cryptosystems motivates
researchers to extend 1D maps to HD chaotic maps. Generally speaking, HD maps have larger
chaotic ranges and at least two variables to acquire better chaotic behaviors. These properties also
make their chaotic orbits more unpredictable, and thus lead to a higher security for cryptosystems.
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However, higher computational overhead and implementation difficulty of these HD chaotic maps
make them impractical for resource-limited devises as well [14–16]. Thus, to balance chaotic behaviors
and computational cost, it is necessary and vital to develop such a scheme, which not only ensures
larger key space to resist brute attack and key sensitivity to control parameters, but also can be
implemented in a low computational overhead.

To meet the demanding for practical scenarios, a novel and lightweight chaotic image encryption
scheme using 2D dimension Baker’s map has been proposed for secure communication [17]. The image
cryptography algorithm [17] under study, involves the use of Permutation–Diffusion based on
Fridrich’s structure. First, based on the two sets of initial settings—(α, x0, y0) and (α′, x′0, y′0)—of
2D Baker’s map, the key matrices X and Y, both used for the permutation phase, and the diffusion
key R (random number), used for the diffusion phase, are obtained. Then, in the permutation phase,
the original plaintext is permuted based on the generated key matrices X and Y; the permuted
plaintext is further diffused by the XOR operation between the matrix r and the permuted plaintext
P. The original cryptosystem can provide good security for image to some degree; nevertheless,
the simple XOR operation of the diffusion phase is insecure enough since it can be completely cracked
by using only one time of CPA. In turn, the permutation phase can be further broken with the other
CPA attack proposed by the state-of-the-art works [18]. Based on the above, the original encryption
design may be not suitable for privacy protection with higher level of security requirements.

The main contributions of this paper are as follows.

(1) We propose a feasible attack strategy that can completely break the original
Permutation–Diffusion based image cryptosystem with high security and low computational
overhead, which is especially applicable for secure image communication in the
resource-constrained modern network environment.

(2) Our cryptanalysis is also efficient with little computing, especially in the case of attack
permutation phase where the equivalent rule for any complex scrambling method can be obtained.
The proposed method is instructive for cryptanalysis researches of other image encryption
schemes with a structure of permutation–diffusion.

(3) The corresponding improvements are proposed by analyzing the complexity and security of the
original encryption scheme [17], which will provide a useful reference for the development of
image cryptosystem.

The rest of this paper is presented as follows. Section 2 presents a simple review of the original
scheme. Section 3 discusses the cryptanalysis on the basis of CPA attack. Section 4 concludes this paper.

2. Review of the Original Scheme

A general flowchart of the original scheme is presented in Figure 1. As shown in Figure 1,
the encryption design of the original scheme is composed of two processes: the permutation phase and
diffusion phase. The permutation phase scrambles the original pixels by swapping the pixel values
in the original image with the element values in the key matrices X and Y, which can be carried out
due to the superiority of the 2D Baker’s map, i.e., it can perform one-to-one the unit square onto itself.
The diffusion phase further diffuses the permuted pixels by XORing a random matrix r that depends on
a random number R generated by the initial setting, constant value matrix T(i, j) = ((M/i) + (N/j))
of the permuted plaintext P.
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In the following, we discuss the permutation and diffusion phases of the original scheme in 
detail. Let I  denote a grayscale plaintext image with the size of ×M N  and let ζ  and ϑ  denote 
the 2D Baker’s map function and the swap function, respectively. The details of the pixel scramble 
and diffusion of the original plaintext are as follows. 
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According to Kerchoff’s principle [19], the security of a cryptosystem only relies on the secret 
keys, regardless of the algorithm design and complexity of the cryptosystem. From the perspective 
of cryptanalysts, they know everything about the cryptosystem except for the secrecy of the key. 
Thus, after knowledge of the cryptographic algorithm, one can easily carry out cryptanalysis if there 
exist some possible loopholes in original cryptosystems. 

In order to collapse the encryption scheme [17], a general framework of the proposed attack 
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In the following, we discuss the permutation and diffusion phases of the original scheme in detail.
Let I denote a grayscale plaintext image with the size of M× N and let ζ and ϑ denote the 2D Baker’s
map function and the swap function, respectively. The details of the pixel scramble and diffusion of
the original plaintext are as follows.

Step 1: Input the plaintext image I and compute the key matrices X and Y using the map function ζ.

X, Y = ζ(α, x0, y0). (1)

Step 2: Scramble the original plaintext I(i, j) by swapping it with I(x, y) to generate the permuted
image P, as shown in (2).

P = ϑ(I(i, j), I(x, y)), (2)

where x and y meet the conditions x ∈ X(i, j) and y ∈ Y(i, j), respectively; i and j satisfy the
conditions i = 1, 2, · · · , M and j = 1, 2, · · · , N.

Step 3: Compute the random number R by using the map function ζ again, and compute the
matrix r used to diffuse the permuted plaintext P.

R = ζ(α′, x′0, y′0), (3)

r = mod((P(i, j) + R), 256). (4)

Step 4: Diffuse the permuted image P by performing XOR operation on the permuted image P,
the matrix r, and the constant value matrix T(i, j) = ((M/i) + (N/j)) controlled by the image sizes
and the position of each pixel directly.

C = mod((r⊕ P(i, j)⊕ T(i, j)), 256). (5)

Until now, we have obtained the permuted and diffused image, i.e., the final ciphertext image C.

3. Cryptanalysis of the Original Scheme

According to Kerchoff’s principle [19], the security of a cryptosystem only relies on the secret
keys, regardless of the algorithm design and complexity of the cryptosystem. From the perspective of
cryptanalysts, they know everything about the cryptosystem except for the secrecy of the key. Thus,
after knowledge of the cryptographic algorithm, one can easily carry out cryptanalysis if there exist
some possible loopholes in original cryptosystems.

In order to collapse the encryption scheme [17], a general framework of the proposed attack
strategy is presented in Figure 2. As presented in Figure 2, the total cryptanalysis processes of the
presented attack strategy include Attack 1 and Attack 2. Attack 1 is used to acquire the secret key R
of the original diffusion phase so as to retrieve the permutation-only image P; with the help of the
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revealed diffusion key R, Attack 2 is further adopted to obtain the permutation rule lp of the original
permutation phase. If one has knowledge of the permutation rule lp, he/she can recover the plaintext
image accurately, i.e., the deciphering image; as such, the original cryptosystem can be completely
collapsed. In the following, we will discuss the cryptanalysis process in detail.
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3.1. Obtain the Equivalent Secret Key R

In this section, we discuss how to obtain the secret key R of the original diffusion phase in detail.
For the original diffusion process, even if it employs the superiority, such as larger key space and key
sensitivity of the 2D Baker’s map to diffuse the permuted image, the key equivalent that is functionally
equal to the secret key of the diffusion phase can be easily obtained with a CPA attack (called the zero
image I0 as the chosen plaintext), as shown in the flowchart of Figure 3. Furthermore, the cipher image
C0 generated by encrypting the full zero image I0 is exactly the key equivalent of the original diffusion
phase, which will be discussed in detail next. With the help of the known constant value matrix T,
the correct secret key R can be revealed completely.
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According to the assumption of chosen-plaintext that the plaintext is chosen in advance and its
corresponding ciphertext can be generated from the chosen-plaintext, let a full zero image act as the
chosen-plaintext image I0. Note: all of the existing permutation algorithms will lose their efficacies if a
full zero image is used to act as the plaintext image. Therefore, after the original permutation phase,
the permuted image of the chosen-plaintext image I0 is still itself. For the diffusion phase, although we
do not know the secret key used in the diffusion phase, the diffusion algorithm is public and available.
Thus, according to (3), (4) and the permuted image I0, we have

r = mod((I0 + R), 256) = mod(R, 256). (6)

Based on the above (6), the matrix r has become a matrix in which all element values equal to
the random number R generated by Bake’s map or its equivalent; in other word, the plaintext-related
process of the original scheme has become invalid. Then, with the assistance of (5), the matrix r and
the permuted plaintext image I0, the ciphertext image C0 can be obtained as

C0 = mod((r⊕ I0 ⊕ T(i, j)), 256) = mod((r⊕ T(i, j)), 256), (7)
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where T(i, j) = ((M/i) + (N/j)) is a constant value matrix relying on an image size and its pixel
position; or rather, it can be available by anyone who wants to know the content of the matrix.
The obtained ciphertext image C0 is the final encryption resultant of the chosen-plaintext image I0, and
it is known and available according to the assumption of chosen-plaintext. Apparently, the ciphertext
image C0 only relies on the matrix r; also, the matrix r is exactly decided by the random number R or its
equivalent. Thus, ciphertext image C0 is the key equivalent of the diffusion phase. By further XORing
the known constant value matrix T(i, j) = ((M/i) + (N/j)), as show in (8), the correct diffusion key
R of the original diffusion phase can be completely revealed.

C0 ⊕ T(i, j) = mod((r⊕ T(i, j)), 256)⊕ T(i, j) = r (8)

For clarity, we also provide the process of revealing the diffusion key R. As depicted in Algorithm
1, the diffusion key R can be easily obtained by using the full zero plain image I0 and the constant value
matrix T, which also provides the indicator of a large loophole existing in the original cryptosystem.

Algorithm 1 Obtain the secret key R

Input: Full zero plain image I0

Output: The secret key R
1: procedure Key(I0)
2: M, N← size(I0) // Get the size of the plain image
3: T← zeros(M, N)
4: for i from 1 to M
5: for j from 1 to N
6: T(i, j)←mod(M/i + N/j, 256) // Obtain the constant matrix
7: end
8: end
9: C← encryption(I0) // Obtain the ciphertext image
10: R← bitxor(T, C)
11: end procedure

After revealing the diffusion key R, the permutation-only image can be obtained by decrypting
the final ciphertext image C, which is the encryption resultant of the exploited test image I in the
original cryptosystem. Algorithm 2 depicts the generation of permutation-only image P in detail.
Apparently, the permutation-only image P can be successfully obtained.

Algorithm 2 Obtain the permutation rule lp

Input: N pairs of permutation-only images of chosen images
Output: Permutation rule lp and B
1: procedure Rule(P1, P2, . . . , Pn) // Define a function to obtain the permutation rule
2: M, N← size(P1) // Get the size of the image
3: B← zeros(M, N)
4: for i from 1 to M
5: for j from 1 to N
6: B(i, j)← P1(i, j) * 256 + P2(i, j)
7: end
8: end
9: lp ← reshape(B, 1, M * N) // Turn the matrix into a vector
10: end procedure
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3.2. Obtain the Permutation Rule lp

Having attacked the diffusion phase of the original scheme, the final encrypted resultant generated
by the original cryptosystem could be restored into permutation-only phase. In this section, we further
analyze and attack the permutation phase of the original scheme so as to retrieve the original plaintext
image. The flowchart structure of revealing the permutation rule lp is presented in Figure 4. First,
n pairs of plain images I1, I2, · · · , In are chosen as the n chosen-plaintext images. Based on the
original cryptosystem, we can easily obtain their corresponding final cipher images C1, C2, · · · , Cn.
With the help of the diffusion key R revealed in the previous section, we can obtain the permutation
rule lp, which is composed of P1, P2, · · · , Pn. Next, the detailed analysis process of revealing the
permutation rule will be described.
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For the permutation process of the original cryptosystem, both the key space and key sensitivity
are reliable and effective; it is almost impossible to obtain the key directly from the permutation phase.
Nevertheless, the map matrix which is equivalent to the secret key of the permutation phase can be
revealed by using the state-of-the-art work [18], which will be discussed in the following. Note that for
any of the existing scrambling algorithms, they cannot modify the pixel values of an image, but merely
scramble the pixel positions. Therefore, if one can utilize some possible means to uniquely identify a
pixel position, the permutation rules of all permutation-only cryptosystems will be revealed accurately
and efficiently under any conditions (regardless of the cryptosystem structures). The assumption has
been successfully implemented in recent proposed the state-of-the-art work [18], which can completely
determine the correct plaintext elements by utilizing a deterministic method. For a plain image I of size
M× N, which acts as the test image in original cryptosystem, the position of each pixel row by row in
the plaintext image can be determined by a dimension vector posp =

{
posp(i)

}M×N−1
i=0 . According to

the Lemma 1 of Jolfaei et al.’s work [18], the number of the chosen-plaintext images to break any of the
existing permutation-only cryptosystems is n, which can be formulized as follows.

n ≥ dlogL(M× N)e, (9)

where M× N denotes the number of locations, i.e., the size of an image; L denotes the number of all
entries, and there will be 256 entries for an image of 8 bit in depth. In the following, we will discuss
two concrete cases to completely determine the correct plaintext elements of the permutation-only
cryptosystem on the basis of (9).

Case 1: If the size of a plaintext image I is 256× 256, only two chosen plaintext images—I1 and
I2—will be chosen to obtain the permutation rule. The following will give some related analyses.

For the plaintext image I of size 256× 256 which will be restored using the two chosen plaintext
images I1 and I2, the position vector posp =

{
posp(i)

}M×N−1
i=0 of all pixels in the plaintext image can be
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rearranged row by row in the matrix A, as shown in (10), where each element includes two digits in base
256 across the character set [0, 1, 2, · · · , 255] to express the position of [0, 1, 2, · · · , 256× 256− 1].

A =


(0)(0) (0)(1) (0)(2) · · · (0)(255)
(1)(0) (1)(1) (1)(2) · · · (1)(255)

...
...

...
. . .

...
(254)(0) (254)(1) (254)(2) · · · (254)(255)
(255)(0) (255)(1) (255)(2) · · · (255)(255)


256×256

, (10)

where the element (pi)(qj) is exactly the position 256× pi + qj of the position vector posp.
Since the pixel value in the original plaintext image I varies from 0 to 255, i.e., all of the entries

L = 256 in (9), we can obtain the two matrices with entries [0, 1, 2, · · · , 255] by splitting matrix A
into two bit-plane images. Actually, the bit-plane images are exactly the chosen plaintext images I1

and I2 mentioned above, as shown in (11,12).

I1 =


0 0 0 · · · 0
1 1 1 · · · 1
...

...
...

. . .
...

254 254 254 · · · 254
255 255 255 · · · 255


256×256

, (11)

I2 =


0 1 2 · · · 255
0 1 2 · · · 255
...

...
...

. . .
...

0 1 2 · · · 255
0 1 2 · · · 255


256×256

. (12)

Based on above, the pixel position vector posp =
{

posp(i)
}M×N−1

i=0 of the original plaintext image
I has completely relied on I1 and I2. In the following, we only need to generate the pixel position vector
posp =

{
posp(i)

}M×N−1
i=0 of the permutation-only image P by recovering the final ciphertext image C

of the original plaintext image I into the permutation-only phase, the permutation rule of the original
permutation phase will be able to be revealed. Here, the final ciphertext image—C—includes two
parts—C1 and C2 (encrypted by the original permutation and diffusion phases). Furthermore, the pixel
position vector posp =

{
posp(i)

}M×N−1
i=0 of permutation-only image P is indirectly determined by

C1 and C2. With the help of the generated diffusion key R, the ciphertext images C1 and C2 can be
easily restored to the permutation-only images P1 and P2; the position vector posp =

{
posp(i)

}M×N−1
i=0

of permutation-only image P is exactly the combination resultant of the two obtained P1 and P2

is exactly the position vector pose = {pose(i)}M×N−1
i=0 of the permutation-only image P. Therefore,

the permutation rule lp has been revealed, which can be seen in Algorithm 3.
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Algorithm 3 Proposed diffusion attack algorithm

Input: A known ciphertext image C, full zero plain image I0

Output: The permutation-only image P of known ciphertext image C
1: procedure De_ diffusion(C, I0)
2: M, N← size (C) // Get the size of the image
3: R← Key (I0) // Invoke algorithm 1 to obtain the key R
4: r← 0
5: for i from 1 to M
6: for j from 1 to N
7: r←mod(C(i−1, j−1) + R, 256)
8: P(i, j)← bitxor(r, C(i, j))
9: T(i, j)←mod(M/i + N/j, 256) // Obtain the constant matrix
10: end
11: end
12: P← bitxor(P, T) // Return the permutation-only image
13: end procedure

In Algorithm 3, one can easily find that a one-to-one map between the permutation rule lp

and the position vector posp =
{

posp(i)
}M×N−1

i=0 of the original plaintext has been established. For
clarity, Figure 4 further illustrates the map between permutation rule lp and the position vector

posp =
{

posp(i)
}M×N−1

i=0 of the original plaintext image. As depicted in Figure 5, we reshape the

chosen-plaintext images—I1 and I2—into the position vector posp =
{

posp(i)
}M×N−1

i=0 of the original

plaintext image in the top half part, and P1 and P2 into the position vector posp =
{

posp(i)
}M×N−1

i=0 of
the permutation-only images in the upper half part, respectively. Obviously, one can deterministically
find out all of the correct plaintext elements by one-to-one mapping all pixels of the permutation-only
image into the original plain image.
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Case 2: If the size of a plaintext image I is 512× 512, only three chosen plaintext images will
be required to obtain the permutation rule lp. For the plaintext image I of size 512× 512 which will

be restored using three chose plaintext images, the position vector posp =
{

posp(i)
}M×N−1

i=0 of all
pixels in the plaintext image can be rearranged row by row in the matrix A, where each element
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includes three digits in base 256 across the character set [0, 1, 2, · · · , 255] to express the position of
[0, 1, 2, · · · , 512× 512− 1].

A =



(0)(0)(0) · · · (0)(0)(255) (0)(1)(0) · · · (0)(1)(255)
...

. . .
...

...
. . .

...
(0)(254)(0) · · · (0)(254)(255) (0)(255)(0) · · · (0)(255)(255)
(1)(0)(0) · · · (1)(0)(255) (1)(1)(0) · · · (1)(1)(255)

...
. . .

...
...

. . .
...

(3)(254)(0) · · · (3)(254)(255) (3)(255)(0) · · · (3)(255)(255)


512×512

. (13)

In a similar manner, the permutation rule of the original cryptosystem can also be revealed by the
three chosen-plaintext images. Here, we will not describe the similar process again.

Once permutation rule lp is accurately revealed, the exploited test image—I—in the original
cryptosystem can be restored by decrypting the permutation-only image P. Algorithm 4 also describes
the generation of the exploited test image I in the original cryptosystem in detail. Apparently,
the permutation-only image P can be successfully obtained.

Algorithm 4 Proposed confusion attack algorithm

Input: The permutation-only image P, and n pairs of permutation-only images of chosen images
Output: The deciphering image I
1: procedure De_ confusion(P, P1, P2, . . . , Pn)
2: M, N← size(P) // Get the size of the image
3: I← zeros(M, N)
4: lp, B← Rule(P1, P2, . . . , Pn) // Invoke algorithm 2 to obtain the permutation rule
5: x, y← 0
6: for i from 1 to M
7: for j from 1 to N
8: x← floor(B(i, j) / M) + 1 // Obtain the original row number
9: y←mod(B(i, j), M) // Obtain the original column number
10: I(x, y)← P(i, j) // Return the permutation-only image
11: end
12: end
13: end procedure

For clarity and the ease explanation, Figure 6 shows the process of chosen-plaintext attack for
obtaining the permutation rule lp. In Figure 6, the first, second, and third columns represent plaintext,
final ciphertext, and permutation-only images, respectively; Figure 6(a1,b1) represents the two original
chosen-plaintext images; Figure 6(a2,b2) represents the final ciphertext image of Figure 6(a1,b1)
encrypted by the original cryptosystem; and Figure 6(a3,b3) is the permutation-only images obtained
by decrypting the final ciphertext images Figure 6(a2,b2) with the revealed diffusion secret key R in
the previous section. Once the permutation-only images are obtained, the original plaintext image can
be found by one-to-one maps the permuted positions into the original positions, as mentioned above.
In addition, the element of the first pixel position (1, 1) of the original plaintext image is also marked
for analyzing the permutation rule of the original scheme. After obtaining the permutation-only image,
the element of the first pixel position (1, 1) of the original plaintext image has been scrambled into
position (93, 45) in the permutation-only image, indicating that based on Jolfaei et al.’s work [18],
a one-to-one map can be successfully established.
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3.3. Summary of the Attack Strategy

In this section, the total attack process, including revealing the diffusion key R and the permutation
rule lp, is briefly summarized as follows.

Step 1: According to Algorithm 1, obtain the secret key or equivalent key R via a known full zero
image (Attack 1) as stated in Section 3.1.
Step 2: Obtain permutation rule lp using the following substeps.

• Determine the number n of chosen images I1, I2, · · · , In (Attack 2) according to (9).
• According to Algorithm 2, obtain the permutation-only images P1, P2, · · · , Pn of chosen images

with the diffusion key R.
• According to Algorithm 3, obtain the permutation rule lp with the permutation-only images.

Step 3: Invoke Algorithm 3 to obtain the permutation-only image of the final ciphertext image.
Step 4: Invoke Algorithm 4 to obtain the deciphering image of the final ciphertext image.

In addition, the effectiveness of the proposed attack strategy is verified by a series of simulation
experiments. All of the experiments were executed on a personal computer equipped with an Intel(R)
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Core(TM) i7-7500U 2.90 GHz CPU and 8 GB memory capacity. MATLAB R2016b was used for the
simulations. The most typical representatives with the size of 256× 256, including ‘Lena’, ‘Peppers’,
‘Chemical plant’, complete black, and complete white image, were tested for verification. The original
test images in Figure 7(a1–e1) were firstly encrypted by the original cryptosystem, and the final
encrypted resultants are shown in Figure 7(a2,b2,c2,d2,e2), respectively. Based on this, we can attack
the final encrypted resultants step by step by using the obtained diffusion key R and the permutation
rule lp. Specifically, by utilizing CPA, i.e., the Algorithm 1 mentioned above, the final the final encrypted
resultants can be restored into the permutation-only images, as shown in Figure 7(a3–e3). With the help
of the obtained permutation rule lp, i.e., the Algorithm 2 mentioned before, these permutation-only
images can be further restored the original plaintext images, as shown in Figure 7(a4–c4), which are
completely identical the original plaintext images by observing the XOR operation resultants between
the original images and the restored ones, as shown in Figure 7(a5–d5). Therefore, the proposed attack
strategy is effective.
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For the solid gray image that has the same pixel value such as complete black image shown
in Figure 7(d1) and complete white image shown in Figure 7(e1), their ciphertext images shown in
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Figure 7(d2,e2) show a hierarchy of symmetry from the diagonal. Additionally, their permutation-only
images shown in Figure 7(d3,e3) are the same as the final recovered images shown in Figure 7(d4,e4).
Therefore, it is proved that the original encryption scheme does not applicable to this kind of solid gray
images. Because scrambling does not work on images with the same pixel values, it is easy to obtain
the secret key. Nevertheless, our proposed strategy is still effective for this kind of solid gray images.

3.4. Computational Complexity Analysis

In the proposed cryptanalysis structure, the original diffusion phase can be cracked with
only one full zero image, and the original permutation phase can be broken by dlogL(M× N)e
chosen-plaintext images. Thus, the total plaintext images 1 + dlogL(M× N)e are required to collapse
the original cryptosystem, which is acceptable for the requirements of the computational complexity
and cryptanalysis feasibility. In addition, The running times of attacking permutation and diffusion
phases for different sizes of images, including 256× 256, 512× 512, and 1024× 1024, are also shown in
Table 1. From Table 1, one can easily find that given an image size 256× 256 (512× 512), the average
running times for attacking permutation and diffusion are 0.4249 and 2.4225 (1.6362 and 8.2446),
respectively; the average running times for breaking the total cryptosystem is 2.8473 (9.8808 for
512× 512). Therefore, the proposed attack strategy is satisfactory in terms of executive efficiency. In
addition, as expected, the running time is increased with the increase of the size of an image; in other
words, the proposed attack strategy can be applicable for breaking the cryptosystem with an image of
any size.

Table 1. Execution time (seconds).

Image Size Image
Encrypted Attack

Permutation Diffusion Total Permutation Diffusion Total

256 × 256
Lena 0.0654 0.1445 0.2099 0.4619 2.4130 2.8749

Peppers 0.1285 0.1359 0.2644 0.3859 2.4044 2.7903
Chemical plant 0.0691 0.1343 0.2034 0.4268 2.4500 2.8768

Average running time 0.0877 0.1382 0.2259 0.4249 2.4225 2.8473

512 × 512
Lena 0.3460 0.5924 0.9384 1.8203 8.2682 10.0885

Peppers 0.3620 0.5283 0.8903 1.6024 8.0715 9.6739
Chemical plant 0.3739 0.6094 0.9833 1.4860 8.3940 9.8800

Average running time 0.3606 0.5767 0.9373 1.6362 8.2446 9.8808

1024 × 1024
Lena 1.3516 2.3106 3.6622 0.4619 32.7784 33.2403

Peppers 1.2991 2.2230 3.5221 6.6447 34.2910 40.9357
Chemical plant 1.3232 2.3558 3.6790 6.0613 32.3943 38.4556

Average running time 1.3246 2.2965 3.6211 4.3893 33.1546 37.5439

4. Conclusions

This paper has proposed a novel means of attacking the recent proposed 2D chaotic encryption
scheme. The original cryptosystem is based on permutation–diffusion structure, and its security
merely relies on two permutation key matrices—X and Y—and an diffusion key R. We found the
cryptosystem has potential vulnerability for resistance against CPA attacks. In this paper, the total
1 + dlogL(M× N)e chosen-plaintext images can completely collapse the original cryptosystem: one
full zero image was used for breaking the original diffusion phase and dlogL(M× N)e plaintext images
used for cracking the original permutation phase. Experiments has verified the feasibility the proposed
attack strategy, especially applicable for images with any sizes.

Additionally, it is clear from the above discussion that the methods may be effective to improve
the security of the original encryption scheme. (1) Associate the key with the plain image closely to
reduce the possibility of violent attacks; the key is dynamic, and each plain image corresponds to a
set of keys. (2) Add a substitute phase before the original diffusion phase to protect against chosen
plaintext attacks to a certain extent. (3) Improve encryption structures, such as diffusion between row
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circular shift and column circular shift, increasing the number of pixels for boundary substitution and
so on. Actually, the complexity and security of encryption schemes mainly depends on the structure
of the encryption scheme and the choice of the key, which are difficult to preserve at the same time.
Therefore, sometimes there is a trade-off between the security and complexity of encryption schemes.
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