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Abstract: In order to cope with the energy crisis, the concept of an energy internet (EI) has been
proposed as a novel energy structure with high efficiency which allows full play to the advantages of
multi-energy coupling. In order to adapt to the multi-energy coupled energy structure and achieve
flexible conversion and interaction of multi-energy, the concept of energy routing centers (ERCs)
is proposed. A two-layered structure of an ERC is established. Multi-energy conversion devices
and connection ports with monitoring functions are integrated in the physical layer which allows
multi-energy flow with high flexibility. As for the EI with several ERCs connected to each other,
energy flows among them are managed by an energy routing controller located in the information
layer. In order to improve the efficiency and reduce the operating cost and environmental cost of
the proposed EI, an optimal multi-energy management-based energy routing design problem is
researched. Specifically, the voltages of the ERC ports are managed to regulate the power flow on the
connection lines and are restricted on account of security operations. An artificial neural network
(ANN)-based reinforcement learning algorithm was proposed to manage the optimal energy routing
path. Simulations were done to verify the effectiveness of the proposed method.

Keywords: energy internet; energy routing center; reinforcement learning; artificial neural network;
optimal energy routing design

1. Introduction

With the aggravation of the shortage of fossil fuels and the growing concerns over environmental
pollution, current power grids are caught in a dilemma between the increasing power demand of users
and environmental protection. What is more, users’ demands for energy tend to be diversified and
the efficiency of multiple types of energy needs to be improved. Consequently, the concept of energy
internet (EI) is proposed as a feasible way to solve the existing problems [1,2]. Energy internet can be
assumed as a multi-energy coupled network with high permeability of renewable energy resources.
In addition, to promote efficiency, a distributed energy supply structure is substituted for a traditional
centralized generation structure in the EI [3].

During the pursuit of an economic and environmentally-friendly energy system, energy
management problems were researched. Energy management problems are usually concluded as an
optimization problem with one or more objective functions and several constraints. Many research
works have been conducted under the background of EI. Operating cost is one of most common
objective functions used in energy management problems [4,5]. However, with the growth of attention
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on environmental protection, multi-objective energy management which considers carbon emissions
and operational cost simultaneously has been studied in many research works [6,7].

In order to fit the decentralized structure and realize flexible energy transmission, the concept
of an energy router was first introduced in the smart grid scenario [8], where the structure of the
energy router as proposed and its functions were discussed. As the key device of EI, various types
of studies have been conducted based on energy routers, such as optimal location selection [9,10],
stability control [11], and structural design [12]. There are a few studies conducting research on
energy-router-based energy management. In Reference [13], solid-state transformer was used as an
energy router, and an optimal economic energy-management-based energy routing strategy, which
reduced consumption of grid power, was proposed. In Reference [14], a local area energy network
containing several energy routers was proposed, and the energy routing algorithm was formulated
to find the routing path with the lowest power loss. However, the study only considered the routing
management for electrical energy, and other types of energy were not considered. Thus, this paper
aims to consider various types of energy coupled with EI, such that an energy-management-based
energy routing design for multiple types of energy is studied.

Reinforcement learning as a main class of machine learning has been adopted in various fields
of energy systems including optimal control [15–17], fault diagnosis [18], reactive power control and
optimization [19,20], etc. When it comes to the issue of energy management, as for complex energy
networks with high penetration of renewable energy, challenges brought by its randomness affect
the optimal energy management. Due to the fluctuant characteristic of renewable energy sources,
the existing literature makes forecasts of loads and generation units based on long-term data during
energy management processes. However, acquiring accurate a priori information of generation devices
and loads is not straightforward and restricts its applications. Besides, forecasts based on a large
amount of data brings about an increase on the computational burden. In contrast, reinforcement
learning method shows high efficiency in solving such problems due to its features being model-free.
Reinforcement learning does not rely on a priori knowledge, which increases the flexibility of its
application on energy management in complex energy systems. Therefore, reinforcement learning
has been adapted to energy management in recent years. A dynamic energy management system for
microgrids has been established in Reference [21] and reinforcement learning method has been used
to realize optimal control of the whole system. In Reference [22], by designing a marketing auction
mechanism, a reinforcement learning algorithm was adopted to obtain an energy management strategy
with minimized economic cost. A study of energy management in an office building with renewable
energy resources was carried out in Reference [23], and an echo-state based reinforcement learning
method was used to manage the output power of devices in an office building. In these studies, only
electrical power management was involved and only economical cost was considered. However, as for
multi-energy coupled EI, thermal power is involved so that environmental cost [24] needs to be taken
into consideration in this paper. What is more, considering the physical entities, secure operation of
the system is necessary to be discussed at the same time. Reinforcement learning method is adopted
in this paper to schedule an energy-management-based energy routing path, and an artificial neural
network is combined with reinforcement learning to avoid the curse of dimension.

To summarize, the major contributions of this paper are:

1. In an environment of multi-energy coupled EI, the concept of energy routing center (ERC) is
proposed for the first time. As a core energy interaction entity, a two-layered structure is designed
for ERC and their corresponding functions are depicted in this paper. In the physical layer,
multi-energy conversion devices and connection ports allowing plug-and-play of multi-energy
users are integrated. In the information layer, an energy routing unit is embedded to schedule
energy management and routing design. The ERC provides users with a novel integrated
multi-energy conversion node which improves the flexibility of energy interaction in EI.

2. Considering the physical connections among ERCs in EI, a multi-energy management-based
optimal energy routing design problem considering operating cost, environmental cost, and
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security operation is researched in this paper. Specifically, in order to reduce the difficulty of
control in reality, the voltages of ERC ports are managed to regulate power flow. Considering
reality factors such as physical connection structure makes energy management problems adapt
to the EI circumstances better.

3. Due to the fluctuations of renewable resources and users’ demands, the topological relationship
between load and source in multi-energy system varies frequently, therefore, reinforcement
learning combined with artificial neural network (ANN) is adopted in the optimal energy routing
design to form an energy routing path with high efficiency and lower costs. As a model free
method, reinforcement learning does not rely on the priori knowledge of the environment which
shows high efficiency.

The remainder of the paper is organized as follows. Section 2 establishes a structure of the
EI, which consists of multiple ERCs and identifies the inner structure and functions of the ERCs.
Section 3 defines the connection weights of connection lines between ERCs on account of operating
cost, environmental cost, and power transmission loss. In Section 4, an ANN-based Q-learning
algorithm is adopted to solve energy-management-based energy routing design problems. Simulations
were performed in Section 5 to validate the effectiveness of the proposed algorithm. Section 6 concludes
this paper.

2. Establishment of Energy Internet with Energy Routing Centers

2.1. Structure of Energy Internet with Energy Routing Centers

In the EI, multi-types of energy are coupled together and different energy users bring about
diversified energy demands. In order to promote the flexibility of user side and enhance the absorption
capacity of renewable energy, the EI is divided into several energy regions. Different energy regions
are connected through ERCs. The structure of the EI containing multiple ERCs is shown in Figure 1.
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Figure 1. Structure of energy internet with energy routing centers.

As shown in Figure 1, energy supply facilities including gas-fired combined heat and power
(CHP), gas boiler (GB), photovoltaic, battery, and wind turbine are connected to ERCs. The ERCs are
connected together through power lines and thermal pipelines which allows bi-directional energy
interaction. That is to say, energy regions possess the ability of supplying energy and are able to act
as energy suppliers during the energy interaction process. When a region has excess energy, rather
than store the excess energy in storage devices, it transfers energy to other regions which are in short
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supply of energy first. Therefore, the flexibility of the demand side and the absorption capacity for
renewable energy are promoted at the same time.

2.2. Architecture and Functions of Energy Routing Center

In order to realize flexible energy conversion and power dispatch of multi-types of energy,
a multi-energy coupled network is proposed in this paper. The basic structure of the ERC is shown in
Figure 2.
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As can be seen in Figure 2, an energy routing center is composed of an energy routing control
unit, an energy conversion structure, and several input and output ports. In order to illustrate the
structure of the ERC clearly, the ERC is divided into the information layer and the physical layer.
The energy routing control unit is located in the information layer; it exchanges information with
devices located in the physical layer. The control unit receives information from the exchange structure
and transfers control signals to the input/output ports. What is more, as an indispensable part of
the ERC, the energy routing control unit undertakes functions of energy management and routing
design. Energy management mainly focuses on the energy transmission between different ERCs,
that is to say, each energy routing control unit formulates a scheme of its output energy. As for energy
routing design, due to the restrictions of real topology of the energy network and upper limit of energy
transmission for each connection line, the energy routing path should be carefully designed in order to
meet the user demand.

The energy conversion structures are the basic component of the ERC and the core devices in the
physical layer. In order to make the ERC a platform allowing interaction and transformation of various
types of energy, different conversion devices are integrated. The proposed ERC adopts gas-fired CHP
to realize the conversion from gas to heat and electric, which compensate the demand of thermal and
electrical users. Electrical converters including DC/AC converters and AC/AC converters are also
adopted to take in electrical power of renewable energy such as photovoltaic, wind turbines, etc.

Another important part of the physical layer are the input/output ports. The input ports provide
access for comprehensive power sources. As can be seen in Figure 2, energy storage devices, the main
grid, and renewable energy resources, such as photovoltaic arrays and wind turbines, are connected to
the common AC bus through input ports. What is worth mentioning is that, in the consideration of
saving fossil fuels, the main grid merely serves as a compensation device for electrical power demand.
Additionally, the input ports also absorb power flow from other connected routing centers for the sake
of free energy interaction. As for other types of energy resources, natural gas networks are connected
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to supply heat for thermal loads. The output ports allow plug-and-play of multi-energy users and
exports multi-energy to its adjacent routing centers.

As the bridge connecting inner exchange structures of the ERC and external energy sources
and load, the input/output ports should have the function of condition monitoring. During the
conversion process, current overshooting and voltage mismatch bring danger to the safe operation of
the whole energy routing system and may even cause serious accidents. Thus, before energy sources
are connected, current and voltage checking are carried out at the input ports to enhance stability and
security. As for output ports, conditions of output current and voltage are assessed as well before
being exported from the routing center.

3. Problem Formulation

An important problem which has drawn wide attention from scholars at home and abroad is
energy management. For the pursuit of less carbon emissions and lower operation costs, the problem
studies optimal power outputs of each energy source. However, compared with traditional energy
management problems, there are more factors that should be taken into consideration in this paper.
As for the proposed EI consisting of multiple ERCs, the optimal energy dispatch problem not only
focuses on the assignment of various types of energy of each ERC, but it also takes into consideration
the energy routing path planning and selection. Namely, the amount of energy transferred on each
connection line should be scheduled. In order to form an optimal energy routing strategy with higher
energy transmission efficiency and lower costs, the weights of connection lines are given in this section
on the basis of the definitions of cost functions and energy loss function.

3.1. Definition of Cost Functions, Energy Loss Function

In order to form the optimal route selection strategy, weights for each connection line should be
defined at first. See Figure 3 as a simple example of an EI which consists of multiple ERCs.
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As can be seen in Figure 3, different ERCs are attached to each other by power connection lines and
pipelines for a heat network. Since both electric energy and thermal energy are transmitted through
the connection lines, operating cost, power transmission loss, and carbon emission are taken into
consideration during the weights’ definition. In order to illustrate each connection line conveniently
and clearly, we number the connection line between the ith ERC and the jth ERC as li−j.
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3.1.1. Operating Cost

As for the operating cost, we mainly consider the operating cost of the GB and combined heat
and gas, which can be defined as Equations (1) and (2), respectively:

CO
GB =

NGB

∑
i=1

(
ai × H2

GBi + bi × HGBi + ci

)
, (1)

CO
CHP

=
NCHP

∑
i=1

(
ai × P2

CHPi + bi × PCHPi + ci + di × H2
CHPi

+ei × HCHPi + fi × HCHPi × PCHPi

)
, (2)

where HGB and HCHP are the heat produced by gas boiler and combined heat and gas, respectively,
PCHP is the electrical power produced by CHP.

As for renewable energy resources such as photovoltaic and wind turbine, regardless of
installation cost, the operating cost of renewable energy resources can be defined as follows:

C0
RES = prRESPRES. (3)

where prRES is the operating cost per kilowatt, and PRES is the output power of renewable energy
sources. As photovoltaic is the renewable energy resource used in this paper, the operating cost of PV
is prRES= 0.7 yuan/kWh.

According to Equations (1)–(3), the operating cost function can be defined as:

CO
cost = k1CO

GB + k2CO
CHP + k3CO

RES. (4)

where k1,k2, and k3 are parameters to balance the order of magnitude among operating costs.
Under general conditions, the main grid is used as a supplementary device. However, when the

whole system is under an extremely heavy load, the total output power of devices in the system fails
to meet the load demand of users, and electricity has to be purchased from the main grid. Therefore,
the cost of buying electricity should be added to the cost function. The electricity purchasing cost can
be defined as:

CO
grid = Pgrid × bidgrid. (5)

where Pgrid is the power purchased from the main grid, and bidgrid is the electricity price.
Thus, the cost function of a multi-energy system can be rewritten as:

CO
cost = k1CO

GB + k2CO
CHP + k3CO

grid. (6)

3.1.2. Power Loss

Due to the resistance of connection lines, power transmission loss should also be taken into
consideration. Power transmission loss on li−j is defined as follows:

CLoss
i−j =

P2
i−j

V2
i−j

Ri−j, (7)

where Pi−j,Vi−j and Ri−j are the transmission power, voltage level, and resistance of the connection
line li−j. However, as Pi−j is hard to control, the paper regulates the voltage of the connection port to
determine the transmission power according to the equation as follows:

∆Vi−j =
Pi−jRi−j + Qi−jXi−j

VN
, (8)
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where Qi−j and Xi−j are the reactive power and reactance. As for transmission line R� X, thus the
power transmission loss can be roughly defined as:

CLoss
i−j =

∆V2
i−j

Ri−j
=

(
Vix −Vjy

)2

Ri−j
, (9)

where Vix and Vjy are the voltages of two ends of the connection line.

3.1.3. Environmental Cost

In order to make the energy system more environmentally friendly, pollution during the energy
production process is considered simultaneously. In this paper, as natural gas is burned to supply heat,
pollution mainly refers to greenhouse gases emissions such as CO2 and NOx. Thus, the environmental
cost can be depicted as:

CE
GB =

m

∑
j=1

(
dejvej

NGB

∑
i=1

HGBi

)
, (10)

CE
CHP =

m

∑
j=1

(
dejvej

NCHP

∑
i=1

PCHPi + HCHPi
4

)
, (11)

where dej and vej are emission intensity and environmental value, respectively. According to the
equations above, the environmental cost function can be defined as follows:

CE
cost = k4CE

GB + k5CE
CHP. (12)

where k4 and k5 are parameters to balance the order of magnitude between two environmental costs.
When considering the emission cost of the main grid, coal is considered as the main fuel of the

main grid, thus the environmental cost of the main grid is depicted as:

CE
grid =

m

∑
j=1

dejvejPgrid. (13)

The environmental cost function can be rewritten as:

CE
cost = k4CE

GB + k5CE
CHP + k6CE

grid. (14)

Emission intensities for different devices are shown in Table 1 as below:

Table 1. Emission intensities of different devices.

Types of Greenhouse Gases
Emission Intensity dej (kg/MW·h)

CHP GB Grid

CO2 623.0000 742.6000 643.8900
NOx 2.8800 0.2556 2.8800

In Table 2, environmental values of different greenhouse gases are given as follows:

Table 2. Environmental values of different greenhouse gases.

Types of Greenhouse Gases Environmental Value vej (yuan/kg)

CO2 0.044
NOx 8.000
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3.2. Weights Definition of Connection Lines

During the process of energy transfer and conversion, the efficiencies of energy routing ports
are different. Therefore, to some extent, the conversion efficiency affects the energy output of source,
which affects the operation and environmental costs and line loss of the system as a consequence.
Thus, the efficiencies of ports should be taken into account in the process of weights’ definition of
connection lines.

In this paper, the weight of a connection line is composed of two parts, one part consists of
operating cost, environmental cost, and conversion efficiency, while the other part contains energy loss
on the connection line. The weight W1,i−j is defined as follows:

W1,i−j =
(

1− ηP
ix

)
CO

cost +
(

1− ηH
ix

)
CE

cos t, (15)

where x stands for the numbers of output ports such as a, b, c, · · · . i represents the number of the ERC,
thus ηP

ix and ηH
ix means the electrical and thermal conversion efficiency of the xth ports in the ith ERC,

respectively. According to Equation (15), the connection line li−j is given a smaller weight when it is
connected to a port with higher conversion efficiency.

The weight W2,i−j is defined as follows:

W2,i−j = Closs
i−j . (16)

According to Equations (15) and (16), the weight of li−j can be depicted as:

Wi−j = m1W1,i−j + m2W2,i−j, (17)

where m1 and m2 are parameters to balance the order of magnitude between W1,i−j and W2,i−j.
To summarize, the weight of a connection line reflects its energy transmission efficiency. The

larger the weight is, the more energy is wasted during the transmission process. Thus, in order to
schedule an optimal energy routing path with lower power loss and less operating and environmental
cost, a path with a smaller weight is preferred.

3.3. Constraints

3.3.1. Electrical Power and Thermal Power Constraints

As for the optimal energy routing path design, there are some constraints that should be satisfied.
Firstly, the balance equation between energy users and energy suppliers should be satisfied as follows:

NCHP

∑
i=1

PCHPiηix +
NPV

∑
i=1

PPViηix + PGridηix + (Pch − Pdis)ηix −∑ Closs
i−j = Pload, (18)

where Pch and Pdis are charging and discharging power of battery. What is worth mentioning, as the
main grid is used as a supplementary device in the proposed system, the value of PGrid is zero under
normal condition.

NCHP

∑
i=1

HCHPiηix +
NGB

∑
i=1

HGBi = Hload, (19)

In addition to equality constraints, considering the capacity and the upper and lower bound of
the device, some inequality constraints must be satisfied at the same time.

Hmin
i−j ≤ Hi−j ≤ Hmax

i−j , (20)

0 ≤ PPVi ≤ Pmax
PVi , (21)
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0 ≤ Pchi ≤ Pmax
chi , (22)

0 ≤ Pdisi ≤ Pmax
disi , (23)

Pmin
CHPi ≤ PCHPi ≤ Pmax

CHPi, (24)

Hmin
CHPi ≤ HCHPi ≤ Hmax

CHPi, (25)

0 ≤ HGBi ≤ Hmax
GBi , (26)

Emin
bati ≤ Ebati ≤ Emax

bati , (27)

where Pmax
i−j , Pmax

PVi , Pmax
chi , Pmax

disi , Pmax
CHPi, Hmax

i−j , Hmax
CHPi and Hmax

GBi are the upper limits of the output power
of devices, while those with the superscript “min” are the lower limits of the output power of devices.
Ebati stands for the capacity of the ith battery. What is worth mentioning, for the sake of security
reasons and prolonging the life length of the battery, the battery is partially discharged. Therefore, the
lower limit of battery is restricted to 20% of its full capacity.

3.3.2. Security Constraints

As for each connection port, the voltage deviation should be restricted to a certain range to protect
the inner devices and ensure the security operation of the whole system. Therefore, the security
constrains can be expressed as:

− 7% ≤ Vix −VN
VN

× 100% ≤ +7%, (28)

According to the security restrictions above, by regulating the voltage of each port, the power
transmission on each connection line is determined at the same time.

4. Reinforcement Learning Combined with ANN

Reinforcement learning is a main class of machine learning methods which attracts attention
from many scholars. Reinforcement learning agent forms an optimal policy through a series of
trial-and-error processes with its environment. At each step, the learning agent interacts with the
environment to obtain a current state and then selects a random action from its action set with a certain
probability. After taking an action, the learning agent transform transits its state to the successive state
and receives a reward according to the reward function at the same time. The reward is an important
index that evaluates the effect of a certain action and influences the action policy in the future iteration
potentially. The learning agent can be depicted as a tuple of {S, A, R, P} which represents the state set,
action set, immediate reward, and state transition probability, respectively.

Reinforcement learning is a valid method for solving problems which are difficult to establish
in explicit environmental models. As for the multi-energy system structure proposed in Figure 3,
considering the uncertainties in the energy consumptions of users and fluctuations in renewable
energy generation, the relationship between energy supply and demand in each energy region changes
frequently. These uncertainties lead to frequent changes in the topological relationship between load
and source in multi-energy systems, therefore, it is difficult to establish an accurate model of the
proposed energy system. In order to solve the optimal energy routing problem of the proposed energy
system, reinforcement learning method was adopted.
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4.1. Q Learning

Q-learning is one of the most popular algorithms in reinforcement learning, the Q-learning
algorithm learns the value of each state–action pair, which is defined as the discounted reward over
the future by taking an action from the action set. A single-step Q-learning is defined as [22]:

Qt+1(st, at) = Qt(st, at) + α[rt+1 + γmax
a∈A

Qt(st+1, a)]. (29)

At each step t, the value of state–action pairs (st, at) in the current Q table Qt is recorded. After that,
the environment transits its state to st+1 according to the selected action at ∈ A from the action space,
and the learning agent receives an immediate reward rt+1 at the same time. Additionally, in order to
take the future reward into consideration, γmax

a∈A
Qt(st+1, a) is added to the process of updating the Q

table. By following the mentioned procedures, the Q table Qt is updated to Qt+1.
γ ∈ (0, 1] is the discount factor which reflects the degree of importance of future rewards, the

larger the discount factor is, the learning agent pays more attention to the reward received in the future.
α ∈ (0, 1] is the learning rate which has a significant effect on the learning speed, a large learning rate
makes the learning agent learn faster.

4.2. Q Learning Combined with ANN

The traditional Q learning method uses the Q table to store the corresponding value of each
state–action pair. However, the state space gets larger when the structure of the energy system
is complex, and it may occupy a considerable space to store the Q table. In order to alleviate
computational burdens and improve the efficiency of the algorithm, an artificial neural network
is combined with a Q learning algorithm.

In this section ANN is combined with Q learning, a multi-layer neural network is adopted to
approximate the Q value of each action. The diagram of a multi-layer neural network is proposed in
Figure 4.
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As shown in Figure 4, the input of the neural network is the state of the Q learning state space.
Thus, the value of the state–action pair can be expressed as:

Q =
m

∑
j=1

ω
(2)
j h(2)j , (30)
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where m is the node number of the proposed ANN, h(2)j is the output of the jth node, ω
(2)
j is the

connection weight between the output layer and hidden layer. What is more, h(2)j can be defined by
the sigmoid function as:

h(2)j =
1

1− e−h(1)j

, (31)

h(1)j =
n

∑
i=1

siω
(1)
ij , (32)

where h(1)j is the input of the hidden layer, ω
(1)
ij is the connection weight between the input layer and

the hidden layer.
Therefore, the connection weights of the ANN can be updated by gradient descendent according

to the updating strategy of the single-step Q learning:

ω
(1)
ij,t+1 = ω

(1)
ij,t + α[rt+1 + γmax

a∈A
Qt(st+1, a)−Qt]

∂Qt

∂ω
(1)
ij,t

, (33)

ω
(2)
j,t+1 = ω

(3)
j,t + α[rt+1 + γmax

a∈A
Qt(st+1, a)−Qt]

∂Qt

∂ω
(2)
j,t

, (34)

where ∂Qt

∂ω
(1)
ij,t

and ∂Qt

∂ω
(2)
j,t

are as follows:

∂Qt

∂ω
(1)
ij,t

= ω
(2)
j,t sth

(2)
j,t

(
1− h(2)j,t

)
, (35)

∂Qt

∂ω
(2)
j,t

= h(2)j,t . (36)

4.3. Q learning Combined with ANN Application in Energy Routing Design

In order to apply the proposed algorithm to energy routing design, the state space S, action space
A, immediate reward r, and action selection policy is defined.

4.3.1. State Space

According to the structure proposed in Figure 1, an energy routing center receives energy from
other ERCs if it fails to meet its users’ demands. The difference between its supply and demand can be
expressed as Pload and Hload. The state space of Q learning can be depicted as follows:

S = {Pload, Hload}, (37)

where Pload and Hload are the electrical load and thermal load, respectively.
An electrical load–thermal load pair is sufficient to represent the state, every time the learning

system obtains an electrical load–thermal load pair, an action will be taken to meet the load demand.

4.3.2. Action Space

According to the structure proposed in Figure 1, an energy routing center provides its redundant
energy to other ERCs if necessary. The action space of Q learning can be depicted as follows:

A =
{

PPV , Vix, PCHP, Pbat, Pgrid, HGB, HCHP, Hi−j

}
, (38)



Appl. Sci. 2019, 9, 520 12 of 19

where, PCHP, Pbat and Pgrid are the output electrical power of photovoltaic, CHP, battery, and main
grid, respectively. HGB and HCHP are the output heat of GB and CHP. Pi−j and Hi−j are the electrical
power and thermal power transmitted on connection lines. Vix is the voltage of the ports which are
connected to the connection line.

4.3.3. Reward Function

In Section 3, the operating cost, environmental cost, and power losses are integrated and converted
into the weights of the connection lines. A routing path with smaller weights is preferred in this paper,
thus when the power is transmitted through such a path, the learning agent should receive a larger
immediate reward. Therefore, the reward function is defined as follows:

r =

{
1

Wi−j
, within limits

0 , beyond limits
. (39)

Considering the transmission capability of connection lines and secure operation of the energy
system, upper limits should be satisfied. If the power transmitted is beyond the upper bound, the
immediate reward will decrease to zero.

4.3.4. Action Selection Policy

In order to encourage the exploitation of the learning algorithm, an action selection policy is
proposed as follows:

p(s, ai) =
eQ(s,ai)/τ

∑ai
eQ(s,ai)/τ

, (40)

where τ is a parameter which influences the exploitation process. A larger parameter increases the
randomness of the exploitation, vice versa. In this paper, the initial value of the parameter is large and
it decreases after a period of iteration.

5. Simulations

On the basis of the supply and demand relationship of each energy region, the topology of the
EI with multiple ERCs can be transformed into Figure 5. In this case, multiple types of energy are
integrated and multi-energy networks with different physical connection structures are connected
through ERCs. Energy regions connected with ERCs in this case have diversified energy supply
capacities and energy demands, and they possess the ability of supplying energy through ERCs
according to their inner supply–demand relationship.
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As can be seen in Figure 5, the proposed energy system includes seven energy regions which are
connected through ERCs. Energy regions connected with ERC1, ERC2, and ERC4 produce excessive
energy over users’ demands which are able to act as energy suppliers for other regions. At the same
time, due to the excessive energy demands, energy regions connected with ERC5, ERC6, and ERC7
requires extra energy from the energy internet. Considering the output power fluctuations of renewable
energy sources and the variations of user demands, an energy routing design for both electrical power
and thermal power can be obtained by using the proposed algorithm in MATLAB.

In order to design the energy routing path, the efficiencies of ports in the related routing centers
are proposed in Table 3.

Table 3. Electric conversion efficiency of each energy routing port.

Routing Center Port Efficiency ηP
ix Efficiency ηH

ix

ERC1
a 1 1
b 0.97 0.98

ERC2
a 1 -
b 0.95 -
c 0.95 -

ERC3
a 1 1
b 0.97 0.99
c 0.95 0.98

ERC4
a 1 1
b 0.97 0.98
c - 1

ERC5

a 1 1
b 0.95 0.97
c 0.97 -
d - 0.98

ERC6

a 1 1
b 0.97 1
c 0.97 0.98
d 0.98 -

ERC7
a 1 1
b 1 1
c 1 1

To calculate the power losses on the connection lines, values of resistances and upper limits of
power transfer are provided in Table 4 as follows:

Table 4. Resistances and upper limits of power transfer of connection lines.

Line Resistance Ri−j (Ω) Upper Limits Pi−j (kW) Upper Limits Hi−j (kW)

l1−3 0.24 58.33 50
l2−3 0.37 37.84 -
l2−4 0.54 25.93 -
l3−5 0.41 34.15 80
l3−6 - - 35
l4−6 0.65 21.54 80
l5−6 0.45 31.11 -
l5−7 0.55 25.45 60
l6−7 0.60 23.33 70

The parameter of operating cost is proposed in Table 5
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Table 5. Parameters of operating cost.

Device
Parameters

a b c d e f

Gas boiler (GB) 0.038 2.011 65 - - -
Combined heat and power (CHP) 0.0065 1.21 2 0.003 4 0.61

The capacities of devices in the proposed energy system are shown in Table 6 as follows:

Table 6. Capacities of devices.

Device Lower Bound (kW) Upper Bound (kW)

GB 0 100
CHP (electric) 0 60
CHP (thermal) 0 80

Photovoltaic (PV)#1 0 25
PV#2 0 25

Learning rate and discount factor are two significant parameters which influence the performance
of the learning process. A large learning rate shortens the whole learning process by accelerating
its transformation towards the newly estimated value. However, it brings risks to the convergence
of the algorithm. An excessive large learning rate slows down the convergence process and even
results in divergence. On the contrary, a small learning rate ensures the stability of the convergence
process but prolongs the learning process evidently. In this paper, the selected learning rate ensures
the performance of both the learning speed and convergence process.

As for the problem researched in this paper of which adjacent states correlated, the action of the
former state significantly affects the actions of the following state, a small discount factor may be
harmful. By using a small discount factor, the algorithm risks trapping the local minimum and fails to
get the optimal solution. Therefore, a larger discount factor was selected in this paper. The Q learning
parameters were selected in Table 7 as follows:

Table 7. Selection of Q learning parameters.

Learning Parameters Value

Discounted factor 0.7
Learning rate 0.9

According to the structure proposed in Figure 5, the electrical power demands and heat demands
are shown in Figure 6.
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Figure 6. Users’ demands in a single day. (a) Electrical power demands of ERC6 and ERC7; (b) heat
demands of ERC5 and ERC7.

The output of photovoltaic in ERC1 and ERC2 can be depicted in Figure 7 as follows:
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Figure 7. Power output of photovoltaic in a single day. (a) PV output of ERC1 in a day; (b) PV output
of ERC2 in a day.

The energy routing design for both electrical power and thermal power can be obtained by using
the proposed algorithm. The voltages of the ports connected with connection lines can be obtained
which is illustrated in Figure 8.
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Figure 8. Voltages of the ports connected with connection lines. (a) Voltage of both ends of connection
line l1−3; (b) Voltage of both ends of connection line l2−3; (c) Voltage of both ends of connection line
l2−4; (d) Voltage of both ends of connection line l3−5; (e) Voltage of both ends of connection line l5−7; (f)
Voltage of both ends of connection line l5−6; (g) Voltage of both ends of connection line l4−6; (h) Voltage
of both ends of connection line l6−7.

As shown in Figure 8, the voltage deviation on a transmission line reflects the amount of electrical
power that can be transmitted through the line. More power can be transmitted under a larger voltage
difference between two ports. According to Figure 8, the voltage of each ports can be obtained,
therefore the power transmitting on each connection line can be calculated according to Equation (9)
and the energy-management-based energy routing strategy is shown in Figure 9.
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Figure 9. The energy-management-based energy routing strategy. (a) Electrical power outputs of
devices; (b) thermal power outputs of devices; (c) electrical power transmitting on connection lines;
(d) thermal power transmitting on connection pipelines.

As shown in Figure 9a, the electrical power outputs of different devices are illustrated and
the electrical demands of ERC6 and ERC7 are plotted by dotted lines. During 0:00–8:00 and
16:00–24:00, the output power of PV arrays is zero, and CHP is used to produce electricity. The output
power of PV increases over time; therefore, from 9:00–15:00, renewable energy is given priority in
supplying electricity to meet users’ demand due to its low operating and environmental costs. From
12:00–14:00, the total output power of two PV arrays is able to meet the whole electrical power demand,
consequently, CHP is not involved in the process of supplying energy. While at the other times in a
day, due to environmental factors, the output of PV fails to meet the total electrical power demand.
Therefore, CHP is used to compensate the difference between supply and demand.

As can be seen in Figure 9b, CHP and GB are used to supply thermal power to users of other
energy regions. In most hours of a day, only CHP is used to produce heat. What is worthy of
mentioning, in order to ensure the efficient operation of CHP, the ratio between its output electrical
power and thermal power is limited to a certain range which is defined to be 100–300% in this paper.
During 10:00–12:00, the increase of PV output leads to a reduction of electrical power from CHP.
As a consequence, the thermal output of CHP is restricted, and GB is forced to generate more heat to
satisfy users’ demands. From 12:00–14:00, CHP is not involved in the energy supplying process, and
GB is used to transmit heat to users.

In Figure 9c,d, energy routing paths for different hours are shown, the negative power means
that the direction of power flow is contradicted with the prescribed direction. As for electrical power
transmission, ERC1 tends to transmit its electrical power on the routing path through ERC3 and
ERC5 due to its high conversion efficiency which reduces the operating cost and environmental cost
of CHP. However, a large amount of electrical power transmission on connection lines leads to a
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significant increase in power losses. In order to seek the balance between power losses and operating
cost, electrical power is also transferred through the path composed of ERC3, ERC2, and ERC4. As for
thermal power transmission, in most hours in a day, heat is transmitted mainly through the path
of ERC3 and ERC5 and the path with ERC3, ERC6 and ERC7to the thermal users due to their high
conversion efficiency. However, from 12:00–14:00, GB is used to compensate the total demand of users,
and the energy routing strategy is changed simultaneously. The thermal power is transferred through
the path of ERC4, ERC6, and ERC7, and the path of ERC4, ERC6, ERC3, and ERC5 during the period.

6. Conclusions

In order to realize flexible energy conversion and power dispatch for multi-types of energy, the
concept of ERC is proposed in this paper for multi-energy coupled EI. In the proposed EI, different
energy regions are connected through energy routers and connection lines which allow bi-directional
energy interaction. Based on the proposed structure of EI, a multi-energy management-based optimal
energy routing design problem considering operating cost, environmental cost, and security operation
was studied. Considering the uncertainties of users’ energy consumption and fluctuations in renewable
energy generation, it is difficult to establish an accurate model of the proposed energy system. Thus, a
reinforcement learning algorithm combined with an artificial neural network was adopted to formulate
the optimal energy routing strategy. By using an artificial neural network-based Q learning algorithm,
the optimal output of each device can be scheduled and the optimal energy routing path can be
dynamically managed according to the fluctuations of renewable energy resources and users’ demand.
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