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Abstract: This paper analyzes the use patterns of a residential smart grid pilot in the Netherlands,
called PowerMatching City. The analysis is based on detailed monitoring data measured at 5-min
intervals for the year 2012, originating from this pilot which was realized in 2007 in Groningen,
Netherlands. In this pilot, smart appliances, heat pumps, micro-combined heat and power (µ-CHP),
and solar photovoltaic (PV) systems have been installed to evaluate their efficiency, their ability to
reduce peak electricity purchase, and their effects on self-sufficiency and on the local use of solar
electricity. As a result of the evaluation, diverse yearly and weekly indicators have been determined,
such as electricity purchase and delivery, solar production, flexible generation, and load. Depending
on the household configuration, up to 40% of self-sufficiency is achieved on an annual average basis,
and 14.4% of the total consumption were flexible. In general, we can conclude that micro-CHP
contributed to keep purchase from the grid relatively constant throughout the seasons. Adding to
that, smart appliances significantly contributed to load shifting in peak times. It is recommended that
similar evaluations will be conducted in other smart grid pilots to statistically enhance insights in the
functioning of residential smart grids.

Keywords: smart grids; renewable energy; flexibility; demand shifting; photovoltaic systems;
smart appliances

1. Introduction

Residential photovoltaic (PV) installations are one of the promising options to locally generate
and consume sustainable and cost-effective energy [1]. One of the major technical issues related to
the integration of renewable energy systems into local electricity networks is balancing the mismatch
between demand and supply of power [2]. Daily and seasonable meteorological conditions significantly
affect renewable energy production [3] as well as demand patterns. 100% matching of the residential
consumption with renewable energy can be achieved by PV systems in combination with residential
storage systems such as batteries [4,5], vehicle to grid technologies [6], or by using community-based
storage systems [7]. Although batteries may be required to maintain a high quality of the power fed
into local electricity networks, alternative solutions for the realization of flexibility may need to be
evaluated because of the high environmental impact of batteries [8]. For instance, one can think about
other types of storage systems or optimizing the capacity of batteries.

Rather than self-consumption with flexible loads or temporary storage of the PV infeed to the
grid, an efficient and sustainable integration of renewable energy is only possible if the network is
flexible and resilient [9]. Electric flexibility can be defined as a power adjustment sustained at a given
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moment for a given duration from a specific location within the network [10,11]. Thus, a flexibility
service is characterized by five attributes: its direction, its electrical composition in power, its temporal
characteristics defined by its starting time and duration, and its base for location [10]. To enable all the
potential flexibility, the organization and functioning of electricity grids will require more intelligence
and complexity, for which reason they are called ‘smart grids’. Smart grids balance variations of the
energy production in renewable energies with regards to energy demand and regulate the demand
side via, for instance, shiftable loads with respect to time and quantity [12].

Firstly, sustainable supply flexibility might be offered by the network itself through storage
systems (hydroelectricity, fuel cells, and hydrogen). Hydrogen technologies and fuel cell–powered
electric vehicles may provide a balanced energy system [13]; however, such systems are still quite
expensive [14]. Therefore, one of the most promising solutions to increase flexibility is the use
of combined distributed energy resources (DER), such that they will jointly produce electricity
on moments of demand. In this scope, micro-combined heat and power (µ-CHP) units could be
complementary to residential PV systems by offering both electricity and heating, especially if the
electricity prices are fairly high or natural gas prices are relatively low [15,16]. Therefore, we would
like to evaluate the efficient integration of PV systems into a local network that comprises different
configurations of DER.

Secondly, residential homes with various smart appliances may contribute to the load
flexibility [17] together with home energy management systems and demand response [18,19]. In the
literature [20], domestic cleaning practices by use of smart washing machines and smart dishwashers
are described as the most favorable residential consumption practices for demand side response [21].
Heating and lighting practices have a medium flexibility potential, according to the same social
study. Moreover, in terms of the price responsiveness of electricity users, dishwashers are qualified as
significant drivers in time-of-use tariffs [22]. By means of these smart appliances, this study aims to
evaluate the flexible load in a smart grid pilot, particularly its temporal characteristics and average
electrical composition in power.

In this paper, flexibility in both supply and demand is analyzed by means of detailed monitoring
data of PowerMatching City (PMC), which is a residential smart grid pilot which got realized in the
year 2007 in the City of Groningen in the Netherlands [23]. This pilot includes 22 households (HH) with
PV systems and different configurations of their energy systems with µ-CHP, smart hybrid heat pumps
(SHHP), and also smart appliances, as illustrated in Figure 1a and detailed in Table 1 [24]. An energy
management software, PowerMatcher, has been used to operate power flows on this pilot [25].
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Figure 1. PowerMatching City: (a) scheme of the system, (b) energy consumption (blue line), energy
production (red line), and power flow (blue area) for a household with photovoltaic (PV) systems and
Micro-combined heat and power (µCHP) jointly producing energy, in the winter of 2012. Negative
power flows indicate that power is fed to the grid.
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Table 1. Summary of the smart grid pilot settings and photovoltaic (PV) energy production for 2012 in
PowerMatching City.

Distributed Energy Sources Details of PV Systems PV Production Smart App.

10 Households with µ-CHP
(1kW Electric, 6 KW

Thermal)

2 Households:
Rooftop PV

500 Wp, 4 m2 150 kWh No
2200 Wp, 18.7 m2 1835 kWh Yes

8 Households:
Virtual PV

1590 Wp, 11 m2 (on average
per household)

880 kWh (on
average per
household)

4 Households out
of 8

12 Households with Hybrid
Heat Pump (4.5 kWh

Thermal)

2 Households:
Rooftop PV

500 Wp,4 m2 350 kWh Yes
3840 Wp, 16 m2 1858 kWh No

10 Households:
Virtual PV

1590 Wp, 11 m2 (on average
per household)

880 kWh (on
average per
household)

5 Households out
of 10

Our analysis will quantify the electricity consumption of households, purchase of power from
the grid, and feed-in of electricity from households to the grid, as well as PV and µ-CHP energy
production during 2012, in order to analyze self-sufficiency of residential electricity networks with PV
systems in combination with other distributed energy systems. The shiftable load is also quantified to
put this analysis in a more complete perspective. In recent EU reports, one of the most dense areas in
terms of the investment in smart grids was the Netherlands, and the peak year of the investment was
2012 [26]. The investigated final phase (phase 2) of the pilot duration is January 2012 through January
2015, and the available data for our research was limited to January 2012 until January 2013.

This paper is structured as follows. The pilot configuration, energy tariffs, the data, the data
processing methods, data quality, and equations applied to determine energy indicators are presented
in Section 2. The results are presented in Section 3 and discussed in Section 4. The paper is completed
by conclusions presented in Section 5.

2. Materials and Methods

2.1. PMC Configuration

Main features of PMC households are summarized in Table 1 [24,27]. Ten out of twenty-two
households owned a µ-CHP unit with a nominal power of 1 kW of electrical energy. Adding to that,
a µ-CHP unit was able to produce 6 kW thermal energy to heat the house, using a hot water buffer
of 210 L. Four of the households had rooftop PV installations with an area and nominal power given
in Table 1. Through the local smart grid, 18 other households virtually shared a PV system on a
farm located 2.3 km from Groningen, the actual location where this smart gird pilot is installed. Each
household received a nominal power of 1590 Wp from this farm.

The smart appliances installed in this pilot were smart washing machines, smart dishwashers,
and smart hybrid heat pumps (SHHP) with a condensing boiler. The SHHPs contained heat pump
units with a thermal power output of 4.5 kW and a condensing boiler with a thermal power output
of 20 kW. Additionally, a 210-L hot water buffer was used in these systems. In this pilot, the smart
washing machines and smart dishwashers were programmable by time so that users could program it
to their needs or comfort expectancies. Half of the households had been equipped with these two smart
appliances. The expected outcome of experiments with PMC household smart energy systems matched
the time of use of smart appliances with PV power production by a smart algorithm. Figure 1b shows
the household consumption and production of a PMC household equipped with PV and µ-CHP in
the winter, when irradiance levels are low. It gives an example of how PV and µ-CHP jointly produce
electricity to meet the demand, aiming at minimizing the power flow from the grid.

The activation of µ-CHP was organized by PowerMatcher, which not only took into consideration
the self-sufficiency of the households but also the neighbors’ demand, the dynamic price signal,
and the heating requests. Moreover, we were able to see the help of µ-CHP in instantaneously
counter-balancing high demands, especially visible in the evening, where usually peak hours occur in
the Netherlands (example in Figure 1b is a weekday). The purchase from the grid was brought down
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to less than 500W by µ-CHP, and the electricity plus including PV production was either delivered to
the grid or served for smart appliances, heating, neighbors, etc. Therefore, our aim was to analyze the
overall system performance, including DER and smart appliances.

2.2. Household Characteristics

The socio-economic features of households participating in this pilot, such as the education degree
and income, was above the average for households in the Netherlands. For instance, the number
of residents per household in PowerMatching City (PMC) was 3.1 versus 2.2, which is the average
number in the Netherlands [24]. Table 2 gives details about the household sizes. The different shares of
single resident households cannot be neglected. Adding to that, the surfaces of the households of PMC
were larger than the Dutch average, which may have had an effect on the homes’ energy consumption
in terms of air conditioning, water heating, and lighting [28]. However, smart appliances and other
efficient devices were expected to have a positive effect on the reduction of energy consumption [29].

Table 2. Number of residents per household in PowerMatching City (PMC) vs. the Netherlands
[adapted from [24]].

PMC Households The Netherlands

Household Size Number of Households Distribution (%) Number of Households Distribution (%)

1 person 2 9% 2,761,764 37
2 persons 5 22% 2,455,421 33
3 persons 2 9% 909,274 12
4 persons 7 31% 971,486 13
5 persons 2 9% 414,879 6
Unknown 4 18% - -

Total 22 100% 7,512,824 100%

2.3. Energy Tariffs

In the Netherlands, electricity prices for households vary according to the amount of consumption.
In 2012, the costs of electricity were [30]:

• 11.5 c€/kWh for 1000–2500 kWh
• 18.7 c€/kWh for 2500–5000 kWh
• 22.3 c€/kWh for 5000–15000 kWh

These numbers include VAT and taxes. Although dynamic prices were applied, we did not have
access to real-time prices managed by PowerMatcher [31]. The data meters were also tracking the
time-of-use price tariffs, defined as follows. The low-electricity tariff (low rate) was available weekdays
from 23:00 to 7:00 and on weekends, beginning on Friday at 23:00 and finishing on Monday morning
at 7:00. At other times, the normal electricity tariff (normal rate) applied. The natural gas price was
26 c€/m3 [32], where 10.6 m3/m2 (house surface) was the average Dutch household consumption
in 2012.

2.4. Data Processing and Equations

PMC households were equipped with smart meters, which measured the electricity and gas
consumption and the production of diverse appliances [33]. Data was stored on a server in the form
of cumulative and instantaneous values. Before further processing, the data quality of ~80% of the
data was assessed for most of the households for the instantaneous consumption, and values were
cross-checked with cumulative values. For the missing 20%, derivatives of cumulative values were
employed to fill subsequently missing instantaneous values of more than 15 min to boost the data
quality. We excluded only one household with heat pump because of the significantly low data quality,
around 50% overall across the year. The power data includes the losses. We processed the 29 variables
that were measured for the whole year at a 5-min resolution, using MatLab (2017b). To summarize,
these variables consisted of energy delivery and purchase according to two tariffs (shown above in
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Section 2.3), PV system power production and µ-CHP power production, the ambient temperature,
the status of smart appliances, and several other variables. Table 3 summarizes the equations that have
been used to determine energy indicators on the basis of this data set, in which E stands for energy, P
for power, t for time, n for number of appliances, m for number of energy sources, n.r. for normal rate,
and l.r. for low rate. In this Table 3, to analyze the load flexibility, equations for the status of smart
appliances are mentioned in at last three columns, in which S is a logical array of activation time and F
is a logical array of flexibility time.

Table 3. Energy indicators and equations used to determine them; E, energy; P, power; t, time; n,
number of appliances; m, number of energy sources; n.r., normal rate; l.r., low rate; S, logical array of
activation time; and F, logical array of flexibility time.

Real-Time Cumulative

Power flow (Pf)
n
∑
i

Papp.i(t)−
n
∑
i

Psource k(t) EP − ED

Electricity purchase (Ep) Pf (t) > 0, rate according to t (see II.C) EP_l.r + EP_n.r.
Electricity delivery (Ed) Pf (t) < 0, rate according to t (see II.C) ED_l.r + ED_n.r.

Electricity generated (Eg) PPV(t) + Pµ-CHP(t) EPV + Eµ-CHP
Self-consumption (Es) PPV(t) + Pµ-CHP(t) − |Pf (t) < 0| EG − ED

Electricity consumption (Ec) |Pf (t) > 0| + PPV(t) + Pµ-CHP (t) − |Pf (t) < 0| EP + ES

Smart appliance’s activation time (S) Si(t) = 1, smart appliance running
Si(t) = 0, smart appliance is not active

n
∑
i

Si(t)

Smart appliance’s flexibility time (F) Fi(t) = 1, smart appliance is waiting to run
Fi(t) = 0, smart appliance is not available for flexibility

n
∑
i

Fi(t)

Smart appliance’s number of cycles Si(t)/Average cycle time (∑n
i Si(t))

Average cycle time

Smart appliance’s electricity consumption
n
∑
i

Si(t)× Average consumtion Number of cycle × Average consumption
per cycle

Heat pump electricity consumption Php(t)
∫

Php(t)

In most of the cases, the consumption of the smart appliances varies significantly with the setting
of the program which is used to run them, and their specific consumption curve over time. Hence,
the most precise way to determine the power consumption is obviously to measure the consumption
of the appliance directly. The power consumption data of the heat pumps helped us to directly obtain
this information, processed as in the last row in Table 3.

High-potential flexible loads in this study were dishwashers and washing machines. The power
consumption was not measured directly for these two appliances because only smart appliances’
activation times (S) were given in the data. To accurately predict the electricity consumption just by
activation parameters, two parameters have to be known: the consumption profiles of all use modes
that are possible for the specific model of the appliance and its various program (use) cycle times.
Moreover, the cycle time of the different programs or combinations of programs of the appliances
should not overlap in the time resolution given (here, 5 min). Otherwise, a running program has to be
coded as well. Because we did not have information about the specifications of the activated program
or the specific consumption profiles and cycle times, we chose to proceed with average values of power
consumption within the data set and to consider average cycles. Moreover, the efficiency and energy
consumption of the appliances in 2012 are not same as nowadays.

A medium-potential flexible load in this study were heat pumps, as the temperature inside the
house had to be kept within the temperature range that users indicated. In fact, indoor temperature
is highly dependent on many parameters, such as household orientation, surface, isolation, outside
temperature, etc. Adding to that, surveys also indicate a medium potential on behavioral change
regarding heating habits [21]. Nevertheless, we still indicate this medium potential of flexible load
amount in the results section, including gas consumption in the case that temperatures were too low.
This also includes the amount of electricity spent on heating and boiler functions, as the heat pumps
provided both. For the performance analysis of the heat pumps and PowerMatcher supervision, please
refer to [34].

For the two smart appliances that were analyzed, data from the selected 9 households covered
97.8% of the year on an average. The average cycle of washing machines and dishwashers (2 h and
2 h 15 min, respectively) and the energy consumption per cycle (0.88 kWh and 1.19 kWh respectively)
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are constants which have been found in the literature, which allowed to calculate the total amount of
energy consumed by those two appliances [35,36].

3. Results

From our data analysis it can be seen that the average electricity consumption of the households
in PMC in 2012 was 57% higher (5.2 MWh) than the average energy consumption of households in the
Netherlands (3.3 MWh) [37]. The higher amount of consumption of PMC can be partially explained
by the number of residents per household (40% higher than the Dutch average). PMC households
purchased on average 4.3 MWh of electricity. 10 households were able to deliver 0.6MWh of electricity
to the grid, while 12 households could not deliver any electricity at all because the configurations
of their energy systems did not allow them to produce more than what was consumed at any given
moment and because their PV panels were virtual.

On an average, 0.9 MWh of produced energy was self-consumed for households in PMC. Figure 2
illustrates the percentages of energy consumption and production, taking into account different tariffs.
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Figure 2. PowerMatching City electricity purchase, self-consumption, and production in 2012:
(a) Electricity generated by PV and µCHP; percentages of self-consumption and electricity delivery
depending rates; (b) Self consumption and electricity purchased from the grid, with purchase
percentages depending on rates.

In total, all households in PMC produced more than 17 MWh with their PV systems and 9.5 MWh
with their µ-CHP units, and 7.2 MWh of electricity was sold, with 42% at a normal tariff. In total, for
21 households, 90 MWh electricity was purchased from the grid with 46% at a low tariff.

3.1. Electricity Consumption and Production Characteristics of PMC Households

Figure 3 and Table 4 provide an energy summary per household for the year 2012, for 5 different
energy features mentioned: purchased electricity, electricity production, electricity delivery,
self-consumption, and electricity consumption. They vary by up to 400% depending on household
size and human behavioral changes from one household to other.

The values are expressed in Table 4, with supplementary values on PV output and µ-CHP.
The large range of sample highlights the different groups included in the pilot, which gives more
cases and scenarios; however, this might have an effect on average values as the sample is limited to
21 households.
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Table 4. Minimum, average, and maximum values for the PMC Households for the year 2012.

kWh/HH Min Average Max

Production

Delivery Low rate 144 350 937
Delivery Normal Rate 32 247 427

µ-CHP 292 950 1396
PV 152 866 1858

Total Production 350 1277 2832

Consumption

Purchase Low rate 712 1997 3587
Purchase Normal rate 964 2291 3332

Self-Consumption 247 935 1626
Total Consumption 2193 5183 8188
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3.2. Monthly and Weekly Energy Balance of the Households

As heat pumps were employed in PMC, the electricity consumption obviously increased
considerably in winter, and the PV production decreased, as shown in Table 5. In January,
the production of µ-CHP was highest and decreased until September (except April). This highest
peak seems to be the first trial of µ-CHP for the pilot, as afterwards the values settled between 85 and
105 kWh/household for the winter. Despite the fact that the highest PV production occurred in May,
the lowest grid import happened in April, taking into account µ-CHP, otherwise in August for the
group of households with only heat pumps.

To focus on the import from the grid, given as averages with higher resolution, Figure 4 shows the
weekly variations of electricity purchase, PV, and µ-CHP output in Figure 4a–c, respectively. Figure 4a
shows that the average weekly electricity purchase per household (households with HP and µ-CHP)
varied slightly throughout the year, except for holiday weeks, as the last week of December and the
beginning of the August, where the users were expected to be away. The average value of weekly
electricity purchased is 78 kWh per household vs. 96 kWh consumed, which shows the amount of
self-consumption. The PV output (Figure 4b) and µ-CHP (Figure 4c) succeeded relatively to keeping
the electricity purchase from the grid relatively constant although the seasonal consumption varied a
lot in PMC and in most western countries such as the Netherlands.
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Table 5. Monthly electricity consumption, production, and grid import on average per household for
12 households with heat pumps and 10 households with µ-CHP.

kWh/HH Consumption Production Grid Import *

Month Min. Mean Max PV µ-CHP Only PV PV + µ-CHP

Jan 167 516 824 27 217 489 271
Feb 148 466 633 28 90 438 347
Mar 89 479 561 66 69 413 344
Apr 152 347 645 96 92 251 159
May 99 346 512 137 26 209 183
June 96 326 473 95 20 231 211
July 121 330 708 109 17 221 205
Aug 55 296 509 113 17 183 166
Sep 149 321 637 83 52 238 186
Oct 146 529 570 44 88 485 398
Nov 146 520 579 25 106 495 389
Dec 125 561 640 9 102 552 451

* according to the production subtracted from the mean consumption value.

Appl. Sci. 2018, 8, x FOR PEER REVIEW    9  of  15 

 

(a) 

 

(b) 

 

(c) 

Figure 4. PowerMatching City (PMC) weekly values of (a) electricity purchase, (b) PV output, and (c) 

μ‐CHP (micro‐combined heat and power) power generation. 

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

kW
h

Week

Weekly electricity purchase of the average household of 
PMC

PMC min PMC max PMC avg

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

kW
h

Week

Weekly PV output of the average household of PMC

PV min PV max PV avg

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

A
xi
s 
Ti
tl
e

Week

PMC Weekly µ-CHP power generation of the average 
household of PMC

µCHP min µCHP max µCHP avg

Figure 4. PowerMatching City (PMC) weekly values of (a) electricity purchase, (b) PV output, and (c)
µ-CHP (micro-combined heat and power) power generation.



Appl. Sci. 2019, 9, 581 9 of 14

3.3. Flexibility with Smart Appliances

On average per household, 408 h of dishwasher activity and 297 h of washing machine activity
were recorded during the year of 2012. By using the equations mentioned in Table 2, the average
consumption of the washing machine per household in 2012 is 130.83 kWh. This value is 10% lower
than the average Dutch laundry electricity consumption and 25% lower than in the EU-15 [35], which
clearly shows the efficient use of smart washing machines comparing to classical machines, despite the
greater number of household residents. The same methodology is applied for the smart dishwasher.
The total consumption of the dishwasher for 2012 was 215.7 kWh per household. This value is 8%
lower than the average value for the EU-15 [36]. In total, these smart appliances brought 346.5 kWh of
load flexibility to the grid per household, which corresponds to 10.5% of the average Dutch household
electricity consumption in 2012, and to 6.8% of the average household electricity consumption in PMC.
Table 6 summarizes the average consumption of smart appliances based on the equations presented in
Table 2 and compares those consumptions to average values of different countries.

Table 6. Smart appliance electrical consumption.

PowerMatching City (2012) Comparing to

Smart Appliance Type Data Fraction (%) Annual Energy Consumption Dutch Average [6] (%) EU-15 Average [7] (%)

Dishwasher 97.8% 215.7 kWh N.A. −8%
Washing Machine 95.2% 130.8 kWh −10% −25%

4 out of 9 washing machine data were recorded without any activation during a considerable period, making their
consumption abnormally close to zero, they were excluded from the analysis.

On average per household, 408 h of dishwasher activity and 297 h of washing machine activity
were recorded during the year of 2012. By using the equations mentioned in Table 2, the average
consumption of the washing machine per household in 2012 is 130.83 kWh. This value is 10% lower
than the average Dutch laundry electricity consumption and 25% lower than in the EU-15 [35], which
clearly shows the efficient use of smart washing machines comparing to classical machines, despite the
greater number of household residents. The same methodology is applied for the smart dishwasher.
The total consumption of the dishwasher for 2012 was 215.7 kWh per household. This value is 8%
lower than the average value for the EU-15 [36]. In total, these smart appliances brought 346.5 kWh of
load flexibility to the grid per household, which corresponds to 10.5% of the average Dutch household
electricity consumption in 2012, and to 6.8% of the average household electricity consumption in PMC.
Table 6 summarizes the average consumption of smart appliances based on the equations presented in
Table 2 and compares those consumptions to average values of different countries.

Those percentages should be considered with the semi-automatic flexibility that it could contribute
by users entering a latest run time. By using the same equations presented in Table 2, we considered
this time how much the two smart appliances were shifted compared to their use time. The flexibility
period offered by smart washing machines (WM) was similar to the usage time in median value and
60% for the smart dishwasher (DW) in comparison to the usage time (Figure 5).

Defining peak hours as 17:00–23:00 on weekdays, we found that on average, 60% of the DW peak
hours were shifted with the latest runtime option and, similarly, 20% for WM, comparing again the
actual runtime in the same year.

As providing full-automatic flexibility, the heat pumps with electric water boiler option consumed
400 kWh on average per household. Heating was mainly done by gas consumption, which is detailed
in the discussion.
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4. Discussion

As the number of residents, their socio-economic status, educational level, and the surface of
the households are above the Dutch averages, and the sample is limited to 21 households and one
single year, results should be considered with caution with respect to the average values. However,
these results indicate to which extend PV infeed can be applied and how much self-sufficiency or
energy savings may be obtained with the combination of technologies such as µ-CHP and heat pumps,
knowing that using only PV will not be appropriate for the grid in northern countries such as the
Netherlands. Yearly and weekly results highlight the benefits of DER combination in the seasonal
variabilities of renewable energies. In this section, we present a simplistic energy bill analysis and
discuss the flexibility before stating our conclusions.

4.1. PV and µ-CHP: Electricity Production

Figure 4b indicates the weekly PV output in mean value with an average of 37 kWh, which is
the same for µ-CHP power generation, shown in Figure 4c. The winter atmospheric conditions in the
Netherlands have a consequent impact on the PV output, and µ-CHP power generation shows a good
way of balancing the seasonal renewable energy output. This energy comes at an additional cost of gas
consumption, which can be provided from sustainable sources such as biogas.

Gas consumption was 1700 m3, which is higher than the Dutch average (1400 m3) [38], but
considering the surfaces varying between 150 and 199 m2 in the PMC, this values gets close to the Dutch
average: 10.6 m3/m2 household surface. As the PV and µ-CHP provided a part of the consumption, the
households could decrease their bill considerably, especially when they were potentially purchasing
one electricity rate category lower. µ-CHP gas consumption costs 390€/year on average, similar to
other heating means, and helps to maintain the seasonal electricity balance. Moreover, in time of use or
dynamic tariff scenarios, their role will be much more important, as the peak hour purchase will vary.

4.2. Self Sufficiency

The households equipped with PV and µ-CHP had a self-sufficiency of 40.7% over the year,
contrary to those furnished with PV and SHHP (20.3%). As presented in Figure 4, even in the worst
weeks, µ-CHP had a self-sufficiency of over 20%, except for one week when it dropped to 12%. SHHP,
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which drops rapidly to under 5% for many winter weeks, even saw 1%, as it was only related to
PV generation.

4.3. Energy Bill

To simplify and not take into account different prices and tariffs that different electricity providers
offer, we will use the most common tariff in the Netherlands, net metering. The installation costs will
be excluded from our analysis, as such information is difficult to access in hindsight. Only data on the
difference between the total consumption and total purchase, and what is saved from the electricity
bill has been considered.

For obvious reasons, the installation capacities of PV Wp played a major role in the savings.
Up to 640 €/year were saved with µ-CHP and PV installations, with mean savings of 510 €/year
in this group. The group without µ-CHP but with PV infeed saved 336 €/year on average, and the
minimum savings were 40 €/year, because of a very small PV installation. Although savings are quite
considerable, the real installation costs and maintenance costs have to be taken into consideration in
order to conclude the real economic benefits of the smart grid for the prosumers.

4.4. Flexibility and Smart Washing Machine and Dishwasher

We observed that, despite the high number of residents per house and an energy consumption
which was higher than the national average, the smart appliances in the PMC pilot were consuming
less energy than the traditional ones. However, the arguments are not strong enough to draw the
conclusion that smart appliances reduce the energy consumption, as the number of households was
too low to be statistically significant (11). Additionally, there might be a bias in user behavior and the
activation frequency of the appliances due to the Hawthorne effect (see [39]). More multidisciplinary
studies as mentioned in [12] on the subject are needed, especially regarding user behaviors [40–42].

Current machines have become much more efficient, and accordingly, the residential electricity
consumption has been decreasing since 2012. To respect the conditions at the time of data collection
and to analyze the ratio between the overall electricity consumption and the smart appliances’ role, we
have chosen literature from the same period, which we estimated being more significant in percentages.
The amount of electricity and the existing ratio should be approved with current machines and ongoing
smart grid initiatives.

5. Conclusions

To sum up, we compared the different configurations of a smart grid pilot in the Netherlands
in order to identify the demand–supply balance of the configurations. Energy consumption and
energy production is classified in three groups: low rate, normal rate, and energy self-consumption.
The weekly purchase, PV output, and µ-CHP power generation is shown to highlight the seasonal
complexity. The impact on the energy bill is discussed in the previous section, as well as the flexibility
provided by smart appliances and heat pumps, which together corresponds to 14.4% of the electricity
consumption for an average household.

In conclusion, µ-CHP might be a good solution for northern countries such as the Netherlands
to provide heat and electricity when PV infeed is weak. The installation costs and the complexity to
integrate this kind of equipment in existing buildings, as well as the insulation class of the household
might be the barriers in those configurations. Regarding flexibility contributions, we support the
findings of the social scientists that cleaning practices are potentially highly flexible for residential
consumptions, which we demonstrated in this work to be as flexible as their usage time across the
whole year.
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