

Supplementary Materials

Tyrosinase/Chitosan/Reduced Graphene Oxide Modified Screen-printed Carbon Electrode for Sensitive and Interference-free Detection of Dopamine

Cheng-You Liu¹, Yi-Chieh Chou¹, Jui-Hsuan Tsai^{2,3}, Tzu-Ming Huang^{2,3}, Jian-Zhang Chen,^{2,3,*}, and Yi-Chun Yeh^{1,*}

- ¹ Department of Chemistry, National Taiwan Normal University Taipei 116, Taiwan; liuorange821028@gmail.com (C.-Y.L.); yichieh840730@gmail.com (Y.-C.C.)
- ² Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan; R05543013@ntu.edu.tw (J.-H.T.); r06543009@ntu.edu.tw (T.-M.H.)
- ³ Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
- * Correspondence: jchen@ntu.edu.tw (J.-Z.C.); yichuny@ntnu.edu.tw (Y.-C.Y.)

Figure S1. The ATR- FTIR spectra of chitosan-modified electrode with tyrosinase (blue line) and spectra of tyrosinase alone (green line).

Figure S2. Contact angles of different electrode surfaces. **(A)** reduced graphene oxide (rGO)/screenprinted carbon electrode (SPCE), **(B)** chitosan/rGO/SPCE, and **(C)** tyrosinase/chitosan/rGO/SPCE.

Figure S3. Cyclic voltammetry (CVs) (at a scan rate of 100 mVs⁻¹) of different electrodes in a standard redox system containing 5 mM Fe[CN₆]⁴⁻ in 0.1 M KCl.

Figure S4. (A) CV curves and (B) current response (at a scan rate of 100 mVs⁻¹) vs. various pH levels of tyrosinase/chitosan/rGO/SPCE. Dopamine (DA) concentration was 1 mM in 10 mM phosphate buffer.

Figure S5. CV curves of chitosan/rGO/SPCE in the presence of DA (100 M), Ascorbic acid (AA) (100 M), Uric acid (UA) (100 M), and a mixture of three.

Figure S6. Stability of tyrosinase/chitosan/rGO/SPCE. Error bars represent the standard deviation from triplicate measurements.

Electrode	Detection method	LOD (M)	Linear range (M)
rGO/GCE ^[1]	DPV	2.64	4–100
rGO/chitosan/GCE ^[2]	DPV	-	5-200
rGO/AuNPs/ GCE [3]	DPV	0.6	0.6–44
rGO/β-CD/GCE ^[4]	CV	0.005	0.9-200
AuNP/β-CD/rGO ^[5]	SWV	0.15	0.5-150
Tyr/TiO ₂ /CeO ₂ /chitosan/CF ^[6]	Amperometric	0.011	0.01-200
APPJ-c/rGO/SPCE [7]	CV	1.00	-
Tyr/chitosan/rGO/SPCE(This work)	CV	0.022	0.1-500

Table S1. Electroanalytical performances of carbon-based sensors for the detection of DA.

DPV = differential pulse voltammetry. CV = cyclic voltammetry. SWV = square wave voltammetry. rGO = reduced graphene oxide. Tyr = tyrosinase. CF = carbon fiber. β -CD = β -cyclodextrin.

APPJ = atmospheric-pressure plasma jet.

Table S2. Kinetics studies of electrode surfaces.

Electrode	Cathodic peak current	Diffusion co-efficient
	(<i>I_{pc}</i> ; mA)	(<i>D</i> ; cm ² /s)
Tyr/Chitosan/rGO/SPCE	41.88	4.93×10^{-6}

 $ip = 2.69 \times 105n3/2AD1/2Cv1/2.$

ip = peak current (A) n = number of electrons transferred in redox reaction A = electrode area (cm²) F = Faraday constant (C mol⁻¹) D = diffusion coefficient (cm²/s) C = concentration (mol/cm³) V = scan rate (V/s) R = gas constant (J K⁻¹ mol⁻¹) T = temperature (K)

Reference

- Kim, Y.R.; Bong, S.; Kang, Y.J.; Yang, Y.; Mahajan, R.K.; Kim, J.S.; Kim, H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. *Biosens. Bioelectron.* 2010, 25, 2366–2369.
- 2. Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Application of graphene-modified electrode for selective detection of dopamine. *Electrochem. Commun.* **2009**, *11*, 889–892.
- 3. Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P.; Du, Y. Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. *Gold Bull.* **2013**, *46*, 137–144.
- Tan, L.; Zhou, K.-G.; Zhang, Y.-H.; Wang, H.-X.; Wang, X.-D.; Guo, Y.-F.; Zhang, H.-L. Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform. *Electrochem. Commun.* 2010, *12*, 557–560.
- 5. Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M.M. Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. *Talanta* **2012**, *93*, 79–85.
- 6. Njagi, J.; Chernov, M.M.; Leiter, J.C.; Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. *Anal. Chem.* **2010**, *82*, 989–996.

·

7. Yang, C.-H.; Chen, C.-W.; Lin, Y.-K.; Yeh, Y.-C.; Hsu, C.-C.; Fan, Y.-J.; Yu, I.-S.; Chen, J.-Z. Atmosphericpressure plasma jet processed carbon-based electrochemical sensor integrated with a 3D-printed microfluidic channel. *J. Electrochem. Soc.* **2017**, *164*, B534–B541.