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Abstract: This paper proposes a novel optical time domain reflectometry (OTDR) method based
on the digital linear frequency modulation (LFM) pulse, which can achieve a tradeoff between
maximum measurable distance and spatial resolution. Direct modulation and detection are adopted
at the transmitting and receiving ends, respectively, which is simple in construction and does not
require additional optics. The short-time fractional Fourier transform (STFrFT) is introduced for the
signal processing and noise filtering. The theoretical analysis of the working principle confirmed
that the spatial resolution is determined by the sweep frequency range of the digital LFM signal
rather than the pulse width. The influence of the STFrFT window on the peak sidelobe ratio of
the reflection peak is also studied. By combining STFrFT and sidelobe suppression, the dynamic
range and spatial resolution can be appreciably enhanced simultaneously. In the demo experiments
testing the proposed method on a conventional OTDR development board for comparison, a 7-dB
improvement in the dynamic range and an approximately 10-times improvement in the spatial
resolution are simultaneously achieved.

Keywords: fiber optic sensors; optical time domain reflectometry; Rayleigh scattering; digital
chirping; short-time fractional Fourier transform

1. Introduction

Optical time domain reflectometry (OTDR) is a common technique for measuring the optical fiber
length, attenuation and insertion loss of connectors, splices and breakpoints. It operates by injecting
probe optical pulses into the fiber under test (FUT) and successively detecting the backscattered optical
power with the round-trip time [1,2]. OTDR is widely used in passive optical networks (PONs) for
fault detection, localization and identification [3,4].

With the rapid development of PONs, OTDR methods with high dynamic range and spatial
resolution are crucial for their monitoring. There are three main ways of improving the OTDR dynamic
range: (1) increasing the energy of the probe optical pulse, (2) improving the receiver sensitivity [5–8],
and (3) adopting pulse coding techniques [9–11]. The first one can be actuated in two manners.
One involves using a high-power laser but incurs high costs, and the increased optical power injected
into the FUT would cause nonlinear effects, such as stimulated Brillouin scattering [12] and modulation
nonlinearities [13], affecting the detection of backscattered light. The other involves increasing the
duration of the forward probe pulse, but this would deteriorate the spatial resolution, affecting the
OTDR performance and fault localization accuracy. The second approach is mainly realized using
cryogenic detectors, photon counters and coherent detection. Cryogenic detectors and photon counters
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are not suitable for practical applications due to their costs and cooling requirements [14]. Therefore,
coherent detection seems the most practical method to achieve high receiver sensitivity. Unfortunately,
its detection distance is limited by factors such as the coherence length of the light source, phase noise
and polarization state of the backscattered light [15]. In the third approach, the optical pulse is encoded
and successively injected into FUT as a probe signal. The backscattering curve is derived from the
received backscattered signal via the correlation operation, which is equivalent to injecting a narrower
probe pulse with the same energy. However, given the logarithmic relation between the encoding gain
and length of the encoding OTDR, it is useless to keep increasing the encoding length above 256 bits to
improve the encoding gain [16].

In the conventional OTDR, the spatial resolution is determined by the pulse width. The optical
frequency domain reflectometry (OFDR) based on the Fourier transform has been proposed to solve
this problem [17,18]; a tunable light source is employed to generate a probe signal with a periodic
optical linear frequency modulation (LFM), and the information on FUT can be obtained by analyzing
the backscattered light in the frequency domain. The OFDR spatial resolution is determined by the
sweep frequency range of the LFM signal rather than the pulse width. Therefore, OFDR can overcome
the conflict between spatial resolution and pulse width of the conventional OTDR. However, there are
also some problems with OFDR using coherent detection. Firstly, the OFDR detection distance is
usually limited to only a few hundred meters because of the coherence length and phase noise of the
laser source and the randomly changing polarization state of the backscattered light [19,20]. Secondly,
improving the OFDR performance usually requires the use of a laser with small phase noise and
narrow linewidth, but such lasers are generally characterized by large volumes, low output optical
powers and high costs. Recently, based on the concept of LFM pulse compression radar, an optical
pulse compression reflectometry (OPCR) has been proposed [21]. The OPCR uses optical probe pulses
with LFM and then uses a matched filter to realize pulse compression on the received backscatter trace.
As with the OFDR, the spatial resolution of the OPCR is also only determined by the sweep frequency
range of the LFM signal. Unfortunately, due to the influence of the laser phase noise and the random
variation of the polarization state, the OPCR measuring distance was only 5.4 km [21,22]. In summary,
OFDR and OPCR are not suitable for applications in optical fiber communication systems, especially
for cost-sensitive PONs.

This paper proposes a novel OTDR method, called digital LFM OTDR (DLFM–OTDR), which can
be considered a new pulse coding technique, but it has different performance than the previous pulse
coding technique. It combines the advantages of the conventional OTDR and OFDR. Based on the
pulse coding technique with the modulated signal as a digital LFM signal, the probe signal is directly
modulated at the transmitting end. There is no need for additional optical equipment, which is bulky
and unsuitable for portable OTDRs, to modulate the frequency of the signal light as with OPCR.
Additionally, direct detection at the receiving end is adopted. Thus, the DLFM–OTDR can overcome
the shortcomings of OFDR and OPCR. The measurement curve is affected neither by the phase noise
and coherence length of the laser nor by the changes in the polarization state of the backscattered
light. Moreover, DLFM–OTDR can simultaneously overcome the contradiction between the spatial
resolution and measurement distance of the conventional OTDR by using the digital LFM probe signal
and the short-time fractional Fourier transform (STFrFT) [23,24]. In the demo experiments, testing the
proposed method on a conventional OTDR development board for comparison, we achieve a 7-dB
improvement in the dynamic range and an approximately 10-times improvement in spatial resolution.

2. Principle and Signal Processing Method

2.1. Digital LFM Signal and Direct Detection

In this section, we introduce a method for generating a digital LFM signal. To clarify the method
for generating a digital LFM signal, we need to generate a section of LFM signal S(t) first, expressed as
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S(t) = rect(
t
T
) cos(2π f0t + πKt2), (1)

where T is the pulse width, f 0 is the start frequency of the LFM signal, K is the frequency modulation
(FM) slope of the LFM signal, and rect(·) denotes the rectangular function.

We propose a digital LFM signal generation method by performing a symbolic operation on S(t).
Hence, we can obtain a digital LFM signal DS(t), as follows:

DS(t) = rect(
t
T
)sign[cos(2π f0t + πKt2)], (2)

where sign(·) denotes the symbolic operation.
The digital LFM signal represented in Equation (2) is bipolar. However, as shown in Figure 1,

we use a direct modulation laser as the optical source at the transmitting end, and the generated signal
controls whether the laser is on or off, that is, the optical source can actually produce only a unipolar
digital signal representing 0 and 1. With reference to the encoding OTDR, the effect of transmitting
bipolar digital signals can be obtained by transmitting two strings of complementary unipolar digital
signals. Therefore, the signal generator can emit two series of periodic complementary unipolar digital
LFM signals, DSA(t) and DSB(t), expressed as

DSA(t) =
1 + DS(t)

2
, DSB(t) =

1− DS(t)
2

. (3)

The intensity-modulated optical pulses having DSA(t) and DSB(t) as modulation signals are then
sequentially injected into FUT as probe pulses, whose power expressions can be written as

PDSA(t) = P0·DSA(t), PDSB(t) = P0·DSB(t), (4)

where P0 is the output optical power of the laser.
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Figure 1. Schematic block diagram of the digital LFM-based optical time-domain reflectometry method.
LD: laser diode; APD: avalanche photodiode; FUT: fiber under test; DSP: digital signal processing.

As shown in Figure 1, the backscattered light becomes a current signal after the direct detection
and photoelectric conversion, and can be expressed as

iDSA(t) = Rd·PDSA(t)⊗ G(t), iDSB(t) = Rd·PDSB(t)⊗ G(t), (5)

where ⊗ represent a convolution sign, Rd is a constant representing the photodetector responsivity and
G(t) is the impulse response of the backscattered light to the probe signal when this is a delta function
signal. Finally, the detected signals iDSA(t) and iDSB(t) are differentially operated to recover the bipolar
digital LFM signal, as follows:

is(t) = iDSA(t)− iDSA(t) = Rd·P0·DS(t)⊗ G(t), (6)

where the signal is(t) is equivalent to the value measured when the probe signal is bipolar.
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2.2. Short-Time Fractional Fourier Transform

Like the conventional OTDR, DLFM–OTDR also aims to obtain the attenuation characteristics of
FUT by detecting the intensity variation of the backscattered signal with the round-trip time. The probe
signal used is an intensity-modulated optical pulse whose modulation signal is the electrical digital
LFM signal. Therefore, considering how to effectively detect the digital LFM signal in the backscatter
signal is very important.

The Fourier series decomposition is performed on Equation (2), which can be rewritten as

DS(t) = rect(
t
T
)[cos(2π f0t + πKt2)− 1

3
cos(6π f0t + 3πKt2) +

1
5

cos(10π f0t + 5πKt2) + · · · ]. (7)

Hence, DS(t) can be considered as a linear superposition of various LFM signals, with different
FM slopes and start frequencies, which are referred to as primary, tertiary and quinary LFM signals in
sequence. Therefore, we only need to effectively extract the LFM signal from the backscattered one.

Figure 2a,b show, respectively, the time-domain waveform and time–frequency distribution
of an LFM signal, which has a large time width and bandwidth and is non-stationary, having the
frequency changing with time. Thus, the LFM signal can be processed and extracted neither in the time
nor frequency domains. The fractional Fourier transform (FrFT) is a generalized Fourier transform
that breaks through the traditional way of analysis only in the time, frequency, or time–frequency joint
domains [25,26]. It allows the signal analysis in the fractional domain between the time and frequency
domains, and all signal characteristics from both domains can be observed [27]. Like the Fourier
transform, FrFT is also a base representation method, whose basis function is a set of LFM signals.
As shown in Figure 2c, when the FM slope of the selected fractional Fourier domain decomposition
is equal to that of the LFM signal, the latter will have an energy aggregation effect on the selected
basis [27]. Similar to a narrow bandpass filter in the frequency domain, filtering is performed with
a spike in the fractional domain, and with a properly selected bandwidth, the signal energy can be
preserved while filtering out most of the noise energy. Therefore, FrFT is very effective in extracting
LFM signals and filtering noise.
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Figure 2. T-section of an LFM signal (time normalizes with respect to T). (a) Time-domain waveform
and (b) time–frequency distribution; (c) fractional Fourier transform when the FM slope of the
decomposition basis is equal to that of the LFM signal.

The effect of filtering can be measured by the signal-to-noise ratio improvement factor IF, which is
defined as the ratio of signal-to-noise ratio (SNR) before and after filtering [28],

IF =
SNRout

SNRin
. (8)

If N is defined as the length of the normalized signal sample, the input SNR can be defined as [29]

SNRin =

E[
N−1
∑
0
|s(n)|2]

Nσ2
n

. (9)
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We use a bandpass filter to filter the signal in the fractional domain, and then the output SNR can
be estimated as

SNRout ≈
E[

N−1
∑
0

∣∣∣s(n)2
∣∣∣]

∆nσ2
n

, (10)

where ∆n is the bandwidth of the narrow bandpass filter on the fractional domain. At this point,
the improvement in signal-to-noise ratio is

IF = SNRout/SNRin ≈ N/∆n. (11)

The improvement in SNR is proportional to the length of the signal sample and inversely
proportional to the bandwidth of the narrow bandpass filter on the fractional domain.

DLFM–OTDR requires the detection of not only the probe pulse intensity but also its changes
over time. STFrFT, a windowed FrFT, is used to detect the strength of an LFM signal of local sections
of a signal as it changes over time [23,24]. Therefore, we choose STFrFT as the signal processing
method for our proposed DLFM–OTDR. In practice, the procedure for computing STFrFT involves
dividing a longer time signal into shorter segments of equal length and successively computing the
FrFT separately on each of them.

To clarify the analysis, we first consider how to extract the primary LFM component x(t).
The signal x(t) is represented in the complex number to facilitate subsequent mathematical derivation,
and is expressed as

x(t) = rect(
t
T
) exp[j(2π f0t + πKt2)]. (12)

After x(t) is processed by STFrFT, the output signal can be expressed as [22]

STFRFTα
x (t, u) = 1√

2π
exp[−(j/2)t2 cot α]·

∫ +∞
−∞ x(τ) exp[(j/2)τ2 cot α]

·h∗(t− τ) exp[−j(t− τ)u csc α]dτ,
(13)

where α is the FrFT order, -cotα is the FM slope of the fractional Fourier domain decomposition, u is
an independent variable in the fractional domain, h(t) is the STFrFT window, and the superscript “*”
indicates the conjugate operation. As an example, we choose the simplest rectangular window for
STFrFT, expressed as

h(t) = rect(
t
T
), (14)

where T is the window length, which is selected as long as the length of the LFM probe pulse.
To achieve energy aggregation of the primary LFM components in the fractional domain, the FM

slope of the selected fractional Fourier domain decomposition must be equal to the FM slope of x(t),
as follows:

− cot α = 2πK, (15)

while the relationship between the FrFT independent variables and the Fourier transform independent
variables is determined by

f =
u csc α

2π
. (16)

By substituting Equations (13–16) into Equation (12) and taking into account the relationship
between the frequency f of x(t) and the time t, f = Kt + f 0, we can simplify Equation (12) as

STFRFTα
s (t) = A0√

2π
exp(−jπKt2)·

∫ +∞
−∞ rect( t

T )rect( t−τ
T ) exp[2jπ(Kτ + f0)t]dτ

= TA0√
2π

rect( t
2T )

sin πK(T−|t|)t
πKTt exp(2jπ f0t).

(17)
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When t 5 T, the envelope of (17) can be approximated as a sinc function, denoted by Sa(·),
as follows:

E(t) ≈ TA0√
2π

rect(
t

2T
)Sa(πKTt). (18)

Finally, Equation (6) is substituted into Equation (18) and only the primary LFM components are
considered. According to Equation (7), the output expression y(t) of the signal is (t) after STFrFT is

y(t) =
TP0Rd√

2π
rect(

t
2T

)Sa(πKTt)⊗ G(t). (19)

According to Equations (7) and (19), for other higher-order LFM components, the output result
would only differ in the intensity and width of the reflection peak.

According to the characteristics of the sinc function, the 3-dB width or full width at half maximum
(FWHM) of the mainlobe of the sinc function is

BW = 2πt
1

πKTt
=

1
KT

. (20)

The results of the STFrFT numerical calculation for a section of the LFM pulse based on intensity
modulation are shown in Figure 3; the original LFM pulse is compressed into a sinc-shaped narrow
pulse by STFrFT. According to Equation (20), the 3 dB width or full width at half maximum (FWHM) of
the mainlobe of the sinc function is equal to 1/KT, as shown in Figure 3b. In theory, the DLFM–OTDR
spatial resolution is determined by the probe pulse propagation distance in FUT within half time
length of the mainlobe FWHM, which can be expressed as

R =
c

2nKT
=

c
2nB

, (21)

where c is the speed of light propagation in vacuum, n is the refractive index of FUT, and B = KT
is the sweep frequency range of the LFM pulse. Equation (21) shows that the spatial resolution of
DLFM–OTDR is determined by the sweep frequency range B and not by the pulse width of the
probe pulse. Therefore, our proposed method overcomes the contradiction between the measurement
distance and spatial resolution of the conventional OTDR.
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Figure 3. STFrFT with a rectangular window (time normalizes with respect to T). (a) Compressed
narrow pulse of the sinc-shape by STFrFT and (b) zoom-in of the main lobe in (a) with 3-dB width,
which is equal to 1/KT, and a peak sidelobe ratio of approximately 13 dB.

2.3. Sidelobe Suppression

When the STFrFT window is rectangular, the output waveform envelope of the LFM pulse
processed by STFrFT shows properties similar to those of a sinc function. In addition to the mainlobe,
there are a series of sidelobes extending on the time axis. The first sidelobe close to the mainlobe is the
largest, with a peak value of 13 dB lower than the mainlobe one, and the peaks of the other sidelobes
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decrease successively. These sidelobes can overwhelm the signals of some smaller events nearby,
resulting in inaccurate measurements. Based on the pulse compression radar, different windows can
be used to suppress them [30]. However, suppressing the sidelobes also widens the mainlobe of the
output waveform envelope and decreases its peak value, that is, sidelobe suppression comes at the
expense of signal-to-noise ratio loss and poor distance resolution. The Hamming window is a sidelobe
suppression technique commonly used in pulse compression radars [30], and we used it as an STFrFT
window. Figure 4a illustrates the numerical calculation results when using the Hamming window.
A comparison between Figures 4a and 3a shows that the peak sidelobe ratio is greatly improved after
using the Hamming window, but the mainlobe is widened and its peak value is reduced. In particular,
according to the characteristics of the Hamming function, the peak sidelobe ratio can be increased to
about 41 dB and the mainlobe can be expanded by 1.47 times [30], as shown in Figure 4b.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 12 
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Figure 4. STFrFT with the Hamming window (time normalizes with respect to T). (a) Compressed
narrow pulse by STFrFT and (b) zoom-in of the main lobe in (a) with a 3-dB width, which is equal to
1.47/KT, and a peak sidelobe ratio of approximately 41 dB.

3. Experimental Setup and Results & Discussion

The proof-of-concept experimental system for the proposed DLFM–OTDR is shown in Figure 5.
The system is implemented on an existing conventional OTDR development board without any
hardware change. A 1625-nm multiple quantum well (MQW) Fabry–Perot (FP) laser diode was used
as the optical source, which can only be turned on and off, and it was controlled by a Cyclone V
series (Cyclone V 5CGXFC6U19I7N; Altera) field-programmable gate array (FPGA) through a constant
current source circuit. The waveform of the digital LFM signal is shown in Figure 6. In order to be
able to generate D-LPM pulse sequences on conventional OTDR development board, the conventional
OTDR development boards we use are developed by ourselves, and their signal transmission and
signal receiving parts are not as good as commercial OTDRs. The bandwidth of the laser driver
circuit on the conventional OTDR development board was only 25 MHz. To generate a relatively
complete digital LFM signal, its sweep frequency range was only from 4 MHz to 8 MHz (B = 4 MHz),
and the pulse width and period were 4 µs and 1.2 ms, respectively. Direct modulation of laser current
introduces some spurious phase modulation, in addition to intensity modulation. However, firstly,
the pulse signal modulation frequency is from 4 M to 8 M, the modulation frequency is very low, and
the generated spurious phase modulation is negligible. Secondly, the receiving end uses intensity
detection, which is insensitive to phase modulation. Therefore, the spurious phase modulation has little
effect on the system. The backscattered signal was directly detected and converted into a current signal
through the avalanche photodiode (APD) (NR8360JP-BC) with a 1 GHz bandwidth. After passing the
transimpedance and the signal amplification circuits, the signal was sampled by an analog-to-digital
converter (ADC) (AD9230) with a sampling rate of 100 MHz. The STFrFT for the acquired signal was
implemented on the computer. For the experiment, two 50-km fibers made up the FUT with a length
of 100 km.
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with a pulse period of 1.2 ms, (b) zoom-in of the digital LFM signal in (a), with a pulse width of 4 us
and a sweep frequency ranging from 4 MHz to 8 MHz (B = 4 MHz).

The average results of 16384 experiments are shown in Figure 7. By default, the STFrFT window
is rectangular. Figure 7a illustrates the measurement result considering only the primary LFM signal
in the backscattered signal, showing that the Fresnel reflection event in the FUT can be successfully
measured only in this case. Three reflection peaks can be observed. The first and second peaks,
respectively at 0 km and 50 km, are caused by the connector. The third peak, at 100 km, is the reflection
peak at the fiber end. The spatial resolution, which is the FWHM of the mainlobe of the reflection
peak, is 30 m, validating the theoretical spatial resolution of 26 m calculated by substituting n = 1.446
and B = 4 MHz into Equation (21). If a wide-bandwidth laser driver circuit generating a digital LFM
signal with a broader sweep frequency range is adopted in DLFM–OTDR, the spatial resolution is
expected to be further improved. Note, the fiber attenuation due to the Rayleigh scattering in the fiber
cannot be measured when considering only the primary LFM signal. Since the Rayleigh scattering
is a random process, the backward Rayleigh scattering signal at the receiver is a superposition of
Rayleigh backscattered light at each point in the fiber. Therefore, the power of the backward Rayleigh
scattering signal is an average value, which is mainly reflected by the direct current (DC) component
of the backscattered signal. The blue curve in Figure 7b represents the measurement result taking
into account both the primary LFM signal and the DC component, this DC component is obtained
by a digital low-pass filter with a bandwidth of 1 MHz. The blue curve in Figure 7b shows that the
simultaneous measurement of the fiber attenuation, and the Fresnel reflection event in the FUT can be
achieved by adding a DC component of the backscattered signal. However, the low-pass filter will
reduce the signal-to-noise ratio of the reflected signal. What we hope to achieve is to improve its spatial
resolution without reducing the dynamic range of the OTDR. The duration of the complementary
D-LPM pulse we used was 4 us, so the pulse duration of the single-pulse OTDR is also 4 us. The red
curve in the same figure represents the average results of 16384 experiments with a conventional
OTDR system having a pulse width of 4 us, under the same experimental conditions. The 400-m
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spatial resolution of the conventional OTDR is determined by the pulse width, since the pulse width
is 4 us and the measurement time is only 19 s and we did not use any other curve fitting technique.
The dynamic range of the single-pulse OTDR shown in Figure 7b is less than 20 dB. Figure 7b shows
that, under the same conditions, the dynamic range of DLFM–OTDR is improved by 7 dB and the
spatial resolution is improved by more than 10 times, compared to the conventional OTDR.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 12 
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Figure 7. Measurement results of the rectangular short-time fractional Fourier transform window.
(a) Considering only the primary linear frequency modulation signal in the backscattered signal.
(b) The blue curve represents the results obtained when adding the direct current component, and the
red curve the results of a conventional optical time domain reflectometry (OTDR) under the same
experimental conditions.

As shown in Figure 7, when the STFrFT window is rectangular, there are a series of evident
sidelobes around the high reflection peak in the reflection event measured. To suppress them, we use
the Hamming window as the STFrFT window, and the results are shown in Figure 8. Figure 8a
illustrates the measurement result when only the primary LFM signal in the backscattered signal is
considered. A comparison with the results in Figure 7 suggests that the measured reflection event is
mainly a high reflection peak with almost no sidelobes. However, the spatial resolution defined by the
FWHM of the mainlobe is reduced by a factor of 1.6 to a width of 48 m, which is almost the same as
the result in Figure 4b. Figure 8b shows the measurement results when considering the DC component
as well. A comparison with the results in Figure 7b indicates that the dynamic range is still improved
by 7 dB with respect to the conventional OTDR and there is no sidelobe in the reflection peak, but this
broadens 1.6 times to reach 48 m. Therefore, using the Hamming window as the STFrFT window can
significantly suppress the sidelobes in the reflection peaks but also widens the mainlobe.

According to Equation (7), the digital LFM signal can be decomposed into a series of LFM
signals with different sweep frequency ranges because the DLFM–OTDR spatial resolution is inversely
proportional to the sweep frequency range. The spatial resolution can also be improved without
affecting the dynamic range by extracting the higher-order LFM signal with a large sweep frequency
range, that is, the tertiary or quinary LFM signal. Figure 9a shows the measurement results obtained
by extracting the tertiary LFM signal; since its sweep frequency range is three times that of the primary
LFM signal, the spatial resolution is enhanced by 10 times to 10 m. Figure 9b shows the results for the
addition of the corresponding DC component; although the dynamic range is not affected, the spatial
resolution of the reflection event sharply deteriorates. Since the intensity of the tertiary LFM signal
is relatively weak, it is easily covered by the DC component, affecting the spatial resolution of the
reflection event.
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Figure 8. Measurement results of the Hamming short-time fractional Fourier transform window.
(a) Considering only the primary linear frequency modulation signal in the backscattered signal and
(b) adding the direct current component.
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Figure 9. Measurement results obtained by extracting the tertiary LFM signal. (a) Considering only the
tertiary LFM signal in the backscattered signal and (b) adding the direct current component.

4. Conclusions

A novel OTDR technique, called DLFM–OTDR, has been proposed. It involves the intensity
modulation on the probe pulse, where the modulation signal is the electrical digital LFM signal,
and at the receiver, STFrFT is used to process the received signal and filter out noise. We theoretically
analyzed and experimentally verified the working principle of DLFM–OTDR. Both the theoretical and
experimental results showed that the OTDR spatial resolution is determined by the sweep frequency
range of the LFM signal rather than the pulse width. In the demo experiment, a 7-dB improvement
in the dynamic range and an approximately 10-times improvement in the spatial resolution were
achieved compared to the conventional OTDR. Due to the bandwidth limit of the laser-driver circuit
in the conventional OTDR development board, the sweep frequency range of the digital LFM signal
ranged only from 4 to 8 MHz (B = 4 MHz). If a wide-bandwidth laser driver circuit generating a digital
LFM signal with a broader sweep frequency range is adopted in DLFM–OTDR, the spatial resolution is
expected to be further improved. In addition, the influence of the STFrFT window on the peak sidelobe
ratio of the reflection peak was studied, proving that the use of a Hamming window can significantly
suppress the sidelobes, but at the same time, the mainlobe would be widened by approximately
1.6 times.
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