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Abstract: We consider the helicity and chirality of the free electromagnetic field, and advocate the
former as a means of characterising the interaction of chiral light with matter. This is in view of the
intuitive quantum form of the helicity density operator, and of the dual symmetry transformation
generated by its conservation. We go on to review the form of the helicity density and its associated
continuity equation in free space, in the presence of local currents and charges, and upon interaction
with bulk media, leading to characterisation of both microscopic and macroscopic sources of helicity.

Keywords: helicity; chirality; orbital angular momentum; dual symmetry; light-matter interactions;
bi-isotropic media

1. Introduction

The study of the handedness, or chirality, of matter has its roots in the work of Arago [1], Biot [2]
and Pasteur [3,4] in the early 19th Century, with the discovery that the polarisation of light rotates upon
propagation through certain crystals and molecular solutions. It was Lord Kelvin who introduced
the word chiral to describe such matter, which is non-superimposable upon its mirror image [5],
with a chiral object and its mirror image being called enantiomers. In particular, it was realised in
these early experiments that if the rotation angle of the polarisation vector through a solution of chiral
molecules is given by 6, then the rotation of the light in the enantiomeric form of the solution is through
the angle —60. We need not look far to observe that chirality is in fact ubiquitous in nature: our left
and right hands and feet are distinct from each other, with the word “chiral” itself derived from the
Greek word for hand, xeip [6]. The weak force, being parity violating, is a striking example of the
role of handedness in nature [7], as is the remarkable selectivity evident in biological homochirality [8]:
the complex molecules DNA, RNA, as well as the proteins and sugars comprising all living organisms,
are indeed chiral. A simple example of a chiral molecule, alongside an achiral counterpart, is shown
in Figure 1.

The response of such chiral matter to the polarisation of light is called natural optical activity [9],
and it is with this topic which we are primarily concerned. Of course, light itself can have a chiral
structure: left- and right-circularly polarised fields trace out helices with opposite handedness, and
accordingly act as a chiral influence on matter which itself exists in two enantiomeric forms. This is
manifest in many different effects [6], the most well-known being optical rotation, due to left- and
redright-circularly polarised light having a different refractive index in the chiral medium [2], and
circular dichroism, arising from the different absorption coefficients for the two polarisations [10].
We therefore look for a way of characterising such polarised fields before and after interaction with an
object which will allow us to infer any chiral influence of that object. Light carries an intrinsic angular
momentum [11], or spin, which differs in sign for left- and right-circular polarisation, promoting
the spin as a natural candidate for our purposes [6]. Being a pseudovector, however, means that the
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spin has even parity, whereas a little thought on the problem reveals that an odd-parity observable
is required to distinguish the interaction of light with two enantiomers of a chiral object, which are
parity odd. The answer lies in the projection of the spin in the direction of propagation of the light
beam: the optical helicity [12-19]. We use the well-known method of constructing continuity equations
for conserved quantities in electrodynamics [17] to show that the helicity can be used to characterise
the interaction of light with different types, and indeed scales, of matter. In Section 2, we review
the definition of the electromagnetic helicity in a vacuum, before looking at microscopic sources of
helicity in the form of mixed radiating electric-magnetic dipoles in Section 3. We extend the method in
Section 4 to examine the conditions under which helicity is conserved in lossless bulk media, before
summarising the results in Section 5.
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Figure 1. (a) The molecule bromochlorofluoromethane is chiral, as the molecule and its mirror image

cannot be superimposed, even after rotation. (b) Dichlorofluoromethane, on the other hand, is achiral,
as the molecule can be superimposed upon its mirror image after rotation.

2. Review and Motivation

In many areas of physics, it is useful to characterise the “twist” of a vector field by a pseudoscalar
quantity of the form F - (V x F). In fluid mechanics, for example, the quantity V x v is called the
“vorticity” [20,21], where v is the fluid flow velocity, and the further quantity v - (V x v) describes the
knottedness of the vortex lines [22].

In plasma physics, the conserved quantity A - (V x A) has been used since the late 1950s to
characterise the topology of magnetic field lines [23,24], where A is the magnetic vector potential.
More recently, this quantity has been applied to the study of optical fields. It can be generalised in
order to include both electric and magnetic contributions by including an additional vector potential C,
defined such that V x C = —DT, where DT is the transverse part of the displacement field [25].
For the free field, DT = ¢(E, and the helicity density is often expressed in terms of E rather than D.
In the presence of a medium, however, it is preferable to use the form given here. This leads to the
symmetrical definition:
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This is the quantity we refer to as the “helicity” (or, more accurately, “helicity density”)
throughout this article. The helicity is a Lorentz pseudoscalar and is a conserved quantity of the
free electromagnetic field. It is closely connected to the spin angular momentum of light, and has
attracted attention as a way of describing the interactions of light with chiral matter [16-18,26].

2.1. Integrated Helicity and Local Densities

Here, we will say a few words about the purpose of extending the magnetic definition of helicity to
include the extra gauge potential C, leading to the second term in (1). Indeed, the quantity [ A - B d°r,
where B is the magnetic induction, is sometimes used as a measure of the total electromagnetic
helicity [27,28], as, when time averaged, it is equivalent to the volume integral of (1). There is a sense
in which the helicity is only meaningful when integrated over all space: the appearance of the gauge
potentials in the definition implies that the helicity density at a point is explicitly gauge-dependent.
However, the total helicity is physically meaningful, as the volume integral serves to pick out only the
transverse parts of A and C, which are gauge-invariant, meaning that the integrated helicity is in fact a
gauge-independent quantity [14].

Such gauge-related ambiguity in the definition of the local densities might suggest that the
physically meaningful content of both definitions is the same. On the other hand, the manner in which
the total integral becomes gauge-independent might suggest that a local helicity density could be
unambiguously defined by explicitly using only the transverse parts of the potentials in (1). This is the
approach adopted throughout this article, though it should be cautioned that such a helicity density
still retains an element of a non-local character, as even the gauge-invariant parts of the potentials at a
point are not only determined by the fields and their derivatives at that point; the values of the fields
at other points are involved as well [17].

Having said this, there are more than simply aesthetic reasons that the symmetrical definition of
helicity might be preferred over the asymmetrical. For one thing, we will see that the symmetrical
definition obeys an exact local continuity equation and is therefore locally conserved, at least in
the absence of matter [6,17]. Furthermore, it retains its form under both Lorentz and duality
transformations [14], the latter being transformations that rotate electric into magnetic fields, and
vice versa, encapsulating the symmetry between these fields in the absence of charges. An analogous
continuity equation cannot be drawn up for the asymmetrical definition [17], and only its integral
over all space is invariant under duality and Lorentz transformations. This feature is the origin of
subtle complications in the use of A - B in the study of plasmas [24], but such issues do not arise for the
locally-conserved form. Finally, as will be shown in Section 2.3, the quantum helicity operator derived
from (1) has a particularly intuitive form, in further support of this symmetric definition.

2.2. Helicity and Chirality

The helicity is closely related to the “chirality”, another conserved quantity of the free
electromagnetic field, introduced by Lipkin [29] as one of a class of conserved quantities called
“zilches”. It is defined as:

X:%O[E(VxE)HZB-(VxB)}. @)

This quantity has also been studied as a means of describing the interaction of light with chiral
matter. Tang and Cohen [30] demonstrated the physical significance of the chirality, showing that
the differential excitation rate between the two enantiomers of a chiral molecule in a monochromatic
optical field is proportional to the chirality of the field in which they are immersed. Since that work,
the chirality density has been applied to the analysis of a number of scenarios, including that of
fields near metamaterial surfaces, where configurations have been suggested in which the ratio of
chirality density to energy density is greater than in circularly polarised light. This “superchirality” has
been proposed as a means of enhancing the enantioselectivity of some chiroptical techniques [31,32],
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although the importance of such “superchirality” in explaining the reported enhancements has been
challenged [33]. Superchirality in the works of Tang and Cohen [31] is associated with regions of
destructive interference and hence a reduction in the energy density; however, it is also possible to
generate bright regions of superchirality [34].

In monochromatic fields, the helicity and chirality densities are proportional to one another [14].
However, they have different frequency dependencies, and so, in a general time-dependent field,
no strict proportionality holds. A simple and striking illustration of the non-equivalence of helicity
and chirality is provided by considering the superposition of two circular plane waves of opposite
handedness and different frequencies; in this case, the two quantities have opposite signs. For right-
and left-circular polarisations, the helicity is proportional to £1/w and the chirality to £w. This might
immediately suggest that the two measures give opposite signs: if the right-handed wave has a higher
frequency than the left-handed, then the magnitude of the chirality of the right-handed wave will be
greater than that of the left, but the magnitude of the helicity will be greater for the left than the right.
Of course, the helicity and chirality are both quadratic in the fields, so the above represents little more
than a plausibility argument; explicit calculation, however, reveals that they do indeed have opposite
signs. If we take our two plane waves to be travelling in the positive z direction, then choosing vector
potentials A = — [Edtand C = — C% | Bdt and using the real parts of the fields and potentials in (2)
and (1) gives:

N 2€0Eg 2 (W1 — W2
= 2058 o (912 o
and: )
_ 2eEj ) (W] — W2
h = w1 (w1 — wy) cos <72 ), (4)

where w; is the frequency of the right-handed wave, w; that of the left-handed, Ej the peak electric
field strength of each wave, and 7 = t — z/c. We see that the helicity and chirality densities are here
both proportional to the energy density at all times, but with opposite signs and different dependencies
on the two frequencies.

Given the sign difference, it seems reasonable to ask which of the helicity and chirality
corresponds to the intuitive “sense” of the rotation in the example field given here. This field does
have a clear intuitive sense of rotation: if there is no frequency difference between the two circular
plane waves, the resulting superposition is simply a linearly polarised plane wave, but for small
frequency differences, the result is approximately a linearly polarised wave with a frequency equal to
the average frequency and a plane of polarisation that slowly rotates at (w; — wy) /2. This rotation of
the polarisation plane is directly analogous to the amplitude modulation in the “beats” observed in
the addition of two linearly polarised waves of different frequency. Our simple example may also be
of some practical interest, as these fields form the basis of an “optical centrifuge”, a procedure that can
be used to excite very high rotational states in molecules [35]. This is accomplished by introducing
a linear chirp into each of the two waves, one chirped up and the other down, so that the speed of
rotation increases with time, driving the molecule up a ladder of rotational transitions.

The rotation of the polarisation plane is in the same sense as that of the higher-frequency circularly
polarised wave. Therefore, insofar as the sign of these quantities should be a guide to the sense of
“rotation” in the field, the chirality density might appear to assign the correct sign (the chirality of the
combined field has the same sign as the chirality of the higher frequency wave), while the helicity has
the opposite (the helicity of the combined field has the opposite sign to that of the higher frequency
wave). However, the angular momentum content of the combined field is actually dominated by the
lower frequency plane wave. This can be shown by a simple photon-counting argument: if the two
plane waves have the same field strength (and therefore the same energy), then there are more photons
in the lower frequency mode than in the higher, as the photons in the lower frequency mode have less
energy each. As each photon in the higher frequency mode carries an angular momentum of / and
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each in the lower frequency mode an angular momentum of —7, it is clear that the sign of total angular
momentum is indeed reflected by the helicity, rather than the chirality.

2.3. Quantum Helicity Operator

One reason to prefer the helicity over chirality as a measure of the degree of handedness of an
optical field is its intuitive quantum-mechanical form. The operators for the electric and magnetic
fields and the two vector potentials are given by [17]:

. [ hck ;

E= ; ~ i(k-x—wt) h.
260V kz)\:lekﬂ”k,)\e + n.c,

~ h .

_ (K N i(k-x—wt) .
B 2€0CkV lgl( X ek,A)ak/,\e + h c,
A = L Zek )\ﬁk )\ei(kixiwt) + h.c,

2e9ckV o
N h .

= % Z (k X ek,/\)ﬁk’)\el(k.xiwt) + I’l.C, (5)
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where A labels two orthogonal polarisation modes, ey 4 and ay » are respectively the polarisation vector
and annihilation operator corresponding to a photon in mode (k, A), V is the quantisation volume
and k = VK2. Using these field and vector potential operators, expanded in the basis of creation
and annihilation operators for left- and right-circular polarisation modes, the quantum-mechanical
version of the classical definition of the integrated helicity density (1) corresponds to the difference in
the total number of left- and right-circularly polarised photons in the field [14,15,17]:

ﬁ:/fzd3r:hz<Nk,+ka,,>. ©)
k

Here, Ny . and Ny _ are the number operators for photons in the (k,+) and (k, —) modes,
Nt = ﬁ; LAy, ¢ and Ny = ﬁ;fﬁk/,. This form of the helicity operator allows the electromagnetic
definition of helicity to be connected to the concept of helicity in particle physics, where the helicity of
a particle is defined as the projection of its spin angular momentum in the direction of propagation [19].
The angular momentum associated classically with circular polarisation is conventionally associated
with the photon spin, meaning that each photon in a right- or left-handed mode contributes + 7 of
helicity. Parenthetically, it should be noted that the terminology of separating the total angular
momentum into spin and orbital “angular momenta” must be approached with caution. There is a
sense in which neither the spin, nor the orbital quantum operators correspond to angular momenta,
as neither satisfy the commutation relations of an angular momentum [36-39]. However, the quantities
are physically distinct, as supported by experimental evidence [39], and are furthermore separately
conserved under separate rotational transformations of the electromagnetic fields [36-38,40].

2.4. Helicity and Duality Symmetry

The free-space Maxwell equations treat electric and magnetic fields on equal footing. To say
this more precisely: the form of the free space Maxwell equations is invariant under the duality
transformation [41]:

E — Ecosf + cBsin®,

@)

¢cB — cBcosf — Esin®,
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for any real (pseudoscalar) angle 6. This property of the free electromagnetic field has been variously
referred to as the Heaviside-Larmor symmetry, duplex symmetry [14], dual-symmetry [18] or
“electric-magnetic democracy” [42]. The helicity of the electromagnetic field is fundamentally connected
with the dual-symmetry of the free-space Maxwell equations: the duality transformation can be
obtained by taking the helicity as the generator of an infinitesimal transformation of the fields [14].
To put the matter the other way around, the conservation of helicity in a vacuum can be derived from
the dual-symmetry of the free-space Maxwell equations using Noether’s theorem [12].

Here, we will examine the approach taken in [15,17], where the quantum-mechanical optical
helicity  is used to form the transformation operator:

U(6) = exp <—;lefz> , (8)

which can be applied to the vector fields Eand Bin (5) to produce:

Ut (0) EU(0) = Ecosf + cBsin®,
Ut (6) cBU() = cBcosd — Esinb. )

This is in complete analogy with (7), where now, the helicity operator / is explicitly shown to
generate this transformation. Results for the potentials A and € in (5) follow similarly:

A

Ut@)AU(s) = Acoso + \/E(A? sinf,
Ut ) Ct(g) = Ccosh — \/jA sin . (10)

2.5. Continuity Equations in Free Space

As mentioned above, helicity is a conserved quantity in vacuum. This fact can be expressed using
a local continuity equation, relating the time derivative of the helicity density at a point to the helicity
flux through an infinitesimal volume surrounding that point. Taking the time derivative of the helicity
density (1):

_ LT Jeo 4. B /¢, I
ath_z[ D (A-B+a-B)- [T (€ DC D)}

_;[ %(—E-(VXA)—A'(VXE))— Z(?(H'(VXCHC'(VXH))]' an

where, from the free-space Maxwell equations, we have used E = —A and H = —C, with the
dotted notation indicating the time derivative of the fields. Using the vector identity V - (E x A) =
A- (VXE)—E-(VxA)and V- (HxC) =C-(V xH) —H- (V x C), this is rearranged to produce:

ath+1{ €OV~(E><A)+\/EV~(H><C)} =—,/€—°E-B+,/@H-D. (12)
2 Mo € Ho €0

Inserting the relations B = pyoH and D = ¢)E and using V (1i9/€p) = 0 leads to the free-space
helicity continuity Equation [14,15,17]:

W+ V-v=0, (13)
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where the helicity flux density v is defined as:

v:1[1/€0ExA+,/HOHXC}. (14)
2 Ho €0

Thus, the conservation of helicity in a vacuum is explicitly demonstrated. Note that, thanks to the
use of the definition (1), helicity is shown to be locally conserved; a stronger result than if only the
integrated quantity were conserved. A pleasing analogy can be drawn between this characteristic of
the helicity density and the one of the electromagnetic energy density: the total energy can be written
as the volume integral of €y/2 (E? 4 ¢>B?), or indeed as the integral over all space of either the E? or
B? contributions. Only the energy density formed by the combined electric and magnetic contributions,
however, is conserved locally [41].

There is an appealingly simple relationship between the helicity flux density and the spin density.
The latter is often written as €gE x A, but it can also be written in the manifestly duplex-symmetric form:

s:%[eoExA+BxC], (15)

which immediately establishes the relation s = v/c. The relationship between these quantities and
the helicity density is reminiscent of that between the energy density, the energy flux density and
the momentum density, with Poynting’s vector playing the role of both of the latter two quantities.
For helicity and spin, s (or v) plays an analogous double role.

3. Microscopic Sources

3.1. Helicity in the Presence of Current and Charge

We have introduced the helicity as a quantity associated with the free electromagnetic field, but it is
also of interest as a way to describe the interaction of light with chiral or achiral matter. The presence of
matter breaks dual-symmetry, as all known matter is made up of only electric charges, with no magnetic
ones. In the presence of matter, therefore, helicity is not generally conserved. (We note parenthetically
that the equations still remain invariant if we additionally “rotate” the electric charges into magnetic
ones, introducing a charge and density and current density of magnetic charges. This symmetry of the
equations means that it is in a sense a matter of convention that we speak of electric charges, rather
than magnetic charges; the non-existence of magnetic monopoles can be rephrased as “every particle
has the same ratio of electric to magnetic charge”, and it is only a matter of convention that leads us to
treat all charges as purely electric. See [41], Chapter 6 §11.).

One way of discussing helicity in the presence of charges is to treat the charges microscopically,
with the fields described using the equations of free-space electromagnetism. In the presence of a
current density j and a charge density p, it can be shown that the continuity equation becomes [17]:

1
8th—|—V-V=§ ?[g(VxC)—i—C-(VXg)}, (16)
0

where g is a vector field defined by the requirement V x g = jT, the transverse part of the current
density. The continuity Equation (16) now expresses the non-conservation of helicity, with additional
terms on the right-hand side showing how the matter acts as a source or sink of helicity in the field [17].
The terms “source” and “sink” must be treated with caution, as—unlike (for example) the case of
energy—there is not a sense in which the matter “gains” or “loses” helicity when it absorbs or emits
into the field.

The chirality density obeys a similar continuity equation [30]:

at;(+2;OV-(E><(V><B)B><(V><E)>:;(j~(VxE)+E-(V><j)). (17)
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Comparison of the two continuity equations again demonstrates the close connection between
chirality and helicity: the chirality is the quantity one would obtain by forming the helicity from the
curl of the fields, rather than the fields [15]. This observation makes clear why a direct proportionality
holds for monochromatic light, where taking the curl merely introduces a factor of iw.

It is clear that g is acting like a magnetisation, as V x M = jg,e.. We also note that, as we only
consider the transverse E field, there is no analogous “polarisation-like” term to correspond with
V - P = p. This leaves the source term asymmetric in terms of electric and magnetic contributions.

3.2. Dipole Model of a Helicity Source

As an illustration of how charges and currents can act as a source of helicity, we consider a point
source consisting of an oscillating electric and a magnetic dipole, with electric and magnetic dipole
moments p(t) and m(t), as has been examined by Leeder et al. [28]. This can be thought of as a
simple model of a radiating chiral molecule, as the optical activity of chiral molecules ultimately arises
from the simultaneous induction of electric and magnetic dipole moments through the electric-dipole
magnetic-dipole polarisability tensor G [9] (see Chapter 3, §5.4). Leeder et al. treat the emission from
the dipoles quantum-mechanically, calculating a differential irradiance for left- and right-circularly
polarised light by considering the difference in decay rates into the two circular polarisation modes.
From this, they obtain an expression for the net emitted helicity. There are three contributions to the
total irradiance: one depending on |p|2, one on |m|? and one on p - m. The mixed dipole term p - m
is the only contribution to the total irradiance that is different for the two enantiomers, and hence
contributes to the net emitted helicity. We present here an analysis of helicity emission from the dipole
system in the context of the continuity Equation (16), working within classical electromagnetism.

Consider an electric dipole oscillating along the +z axis with dipole moment:

P(t) = poexpli(wt + ¢p)]2, (18)

where we have defined py = god, with d and g¢ the size and charge of the dipole, respectively.
The resultant (retarded) vector potential in the far field defined by d < A < ris [43]:

Al — 5 | WHoPo

b Ay expli(w(t—r/c) +¢p)l2| . (19)

We call this Al’o, as we reserve the symbol A for the transverse part of the vector potential. From
this expression, By, Ep, Cp and Ap, = A;)T can be found.

Similarly, we consider a current oscillating in a loop of radius b in the xy plane, I(t) = Iy exp[i(wt + ¢m)].
The resultant oscillating dipole moment is given by:

m(f) = /I(t) da = mpexp[i(wt + ¢m)]2, (20)

where my = 7b?1y. The vector potential is calculated as [43]:

iwpon
47r?c

An=Al =R [ (x§ — y)‘()} : (21)

Using this to find By, Er and Cpy,, we calculate the total helicity density and flux density of the
combined electric-magnetic dipole system in the far-field:

2 3
_ €o [ HoMopow 2.2\ o
fpm = 2 ( 16724 (5% +37) sin(gm - ‘PP)> / 2
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2 o3 .
Vpm = €0 (% (xZ + ]/2> sin(¢m — cpp)> r. (23)

From (22), E)thpm = 0, and we use Gauss’s theorem to calculate the net helicity flux of the combined
dipole system:

eopdmopow’
/V Vpm &1 = % sin(¢m — ¢p)- (24)

We can identify this with the source term on the right-hand side of (16). Noting [ g- (V x C) d®r =
[ C-(V x g)d® [17], we obtain:

[+ (9 x Qe = U G ), 25)
671C
which is maximised for a phase difference of +71/2 between the dipoles.

Left- and right-circularly polarised light can also be produced by a pair of orthogonally-aligned
oscillating electric or magnetic dipoles. We consider the former configuration: p1(t) = |p1(t)|2 and
p2(t) = |p2(t)[§, with a phase difference of ¢p, — ¢p, between the oscillations. The resultant helicity
flux density in the far-field is:

Vep = 5

2.,.2,..3
eoc [ wipdaw® |
_ €0 ( 1%7;)275 sm((])pz — (ppl)xr) T, (26)

again maximised for ¢p, — ¢p, = 77/2. The helicity density of this coupled dipole system is again
time independent, so that the “source term” is found in analogy with the above calculation. We find
[V vpp d3r=0: the coupled electric-electric dipole system does not describe a source of helicity.

These results follow intuitively by considering Figures 2 and 3, where the far-field patterns of the
electric-magnetic and electric-electric dipole systems in the yz plane have been drawn. A 71/2 phase
difference between the dipole oscillations results in right-circular polarisation in the + x direction
in both dipole systems. In the — x direction, however, we obtain left-circular polarisation for the
electric-magnetic dipole pair and right-circular polarisation for the electric-electric dipoles. Thus,
we obtain a net flux of helicity for the electric-magnetic dipole system only.

The results of this calculation are intimately related to the respective parity of the electric-magnetic
and electric-electric dipole systems. Considering again Figure 2, a parity transformation reverses the
direction of the electric dipole only, so that the field patterns in both the + x and the — x direction
are reversed, and a net flux of left-circular polarisation is produced. A parity transformation P
thus interconverts the two “enantiomeric” configurations of the electric-magnetic dipole systems and
produces a negative sign in the integrated source term in (25). The two enantiomeric forms can therefore
be described simply by the aligned and anti-aligned configurations (or equivalently, as a positive
or negative phase difference between the two oscillations in either configuration), which can be
distinguished in the far-field yz plane by an excess of right- or left-circular polarisation, respectively.

For the electric-electric dipoles in Figure 3, however, both dipoles are reversed under P, so that
the field patterns in & x directions remain unchanged. As the electric-electric system is parity-even,
but left- and right-circularly polarised fields are reversed under a parity transformation, it follows that
the electric-electric dipole system cannot produce an excess of either polarisation and hence cannot be
used to describe a source of helicity.
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Figure 2. Oscillating electric p(t) and magnetic m(t) dipoles aligned along the z axis, with the latter
lagging by a phase of 71/2. The far-field pattern is that of right-circularly polarised light in the + x
direction and left-circularly polarised light in the — x direction: there is a net flux of right-circular
polarisation in the yz plane.

r>isd _
p;(?) E )

s

po(0)

wt — /2

Figure 3. Two oscillating electric dipoles, labelled p;(t) and py(t), oscillate along the z and y axes,
respectively, with a phase difference of 71/2. The far-field pattern in the + x direction is identical to
that produced by the electric-magnetic dipole configuration in Figure 2, but has opposite polarisation
in the — x direction: the net helicity flux in the yz plane is zero.

4. Macroscopic Sources

4.1. Helicity in Achiral, Reciprocal Media

We have seen how helicity can be produced by a microscopic source (a dipole), but it is also
possible to discuss the generation of helicity within the framework of macroscopic electromagnetism in
dielectric media. It is perhaps surprising that even in the presence of matter, there are some situations
in which the helicity of an arbitrary electromagnetic field is still conserved. The conditions under which
the electromagnetic helicity is conserved within media have been studied in recent years [16,18,19].
Fernandez-Corbaton et al. [16] consider the propagation of helicity in isotropic, lossless linear media,
and these results are extended by van Kruining and Gétte in [18] to include anisotropic and general
linear media. Alpeggiani et al. [19] further consider helicity in a dispersive, lossy medium, while the
electromagnetic chirality is examined in such media by Vazquez-Lozano and Martinez [44].

In the following, we consider a linear, lossless and isotropic medium. If the medium is comprised of
distinct, homogeneous regions labelled by i, helicity is conserved so long as €;/y; remains constant for
all 7 [16]. Following a similar method to that used in Section 2.5, we can derive a continuity equation
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for helicity in such media. We use the definitions of & (1) and v (14), along with the constitutive
relations D = €E and B = pH, to obtain:

ath+V~v=;[V<\/j>-(ExA>+V<\/E>~<HxC>

where we have allowed for the possibility that € and y are functions of position. This explicitly shows
the conservation of helicity when V (e/u) = 0, which can be seen as a continuous statement of the
result for stratified media presented in [16].

We extend the results of [17] discussed in Section 3.1, to examine the effects of inserting a local
current density j into a medium described by the constitutive relations D = €E and B = yH. We find
a source term analogous to the right-hand side of (16), but with the replacement of ¢y — € and yg — .
Moreover, this type of source cannot be associated with that produced by a gradient of €/, as given
by the right-hand side of (27).

, (27)

4.2. Helicity in Bi-Isotropic Media

We model a general linear, lossless bi-isotropic medium, where we allow for both a chiral and a
magnetoelectric response, using an extension of the “Drude-Born-Fedorov” constitutive relations to
include the Tellegen parameter « [45]:

D =¢(E+ BV xXE) +aH,
B=pu(H+ BV xH)+aE, (28)

where £ is the referred to as the chirality parameter. The results of [16] have been extended to include
chiral and Tellegen media, as well an anisotropic polarisabilities, in [18], where it has been explicitly
shown that Maxwell’s equations in a medium remain invariant under a duality transformation of the
fields when there is a constant ratio € /u and a Tellegen parameter of zero. The chirality parameter,
on the other hand, is free to vary in space. This result in [18] is based on the symmetrized constitutive
relations of Condon [45], but it is straightforward to show that the same condition for dual symmetry
holds for the Drude-Born-Fedorov relations given above.

Inserting the constitutive relations (28) with « = 0 into the helicity density and flux density (1)
and (14) reveals that the conservation of helicity in a chiral medium cannot be expressed by a local
continuity equation unless the expression for the helicity density inside a chiral medium is suitably
modified [46].

Helicity Conservation in a Chiral Medium

Both helicity and energy are conserved in a lossless chiral medium [18,47]. It therefore follows
that, in a situation where the interface between the vacuum and the medium is dual-symmetric,
the helicity per photon of light in the chiral medium should remain the same as the vacuum values.
This is the situation depicted in Figure 4. In [14], free electromagnetic fields with left- and right-circular
polarisation are shown to have a helicity of 7 per photon. In [46], the expressions for the helicity
density and flux density (1) and (14) are trivially extended to those in a linear medium by replacement of
the vacuum electric and magnetic responses, €y and g, with € and y. In considering the propagation of
left- and right-circularly polarised light within a chiral medium, is it shown that, although the flux
density formed in this way produces the correct helicity of £ per photon, the helicity density does not.
This follows from the fact that the energy density within a chiral medium is of the form [48]:

[D-E+B-H—Beu(E-H—-E-H)|, (29)

N —

wy =
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containing an explicit B-dependent term. As we know the correct form of the helicity flux density

within the medium is:
1 € U
vV=_— —-ExA+4/EHxC), (30)
2 U €

we can use this and the condition of local helicity conservation to find the form of the helicity density.
We find:

V'V:z( ;(A-(VXE)—E-(VXA))—\/E(C-(VXH)—H~(V><C))>

:;(\/j(A~BE~B)\/E(C«D+H~D)), (31)

and use the product rule to write this as:

V~v:—at;<\/§A-B—\/EC~D>—(\/§E~B—\/EH~D>. (32)

Identifying the time derivative as d;h and inserting the constitutive relations (28) with « = 0 leads to:
V.v=—0h— /eup [E-D+H-B], (33)

which is rearranged to produce:
ot (h+ \/eupw) +V -v =0, (34)

where w = 1/2 (D - E + B - H) is the energy density in an achiral medium. Equation (34) is correct
to first order in the chirality parameter, denoted O(f), by which we mean that we neglect terms
multiplied by 82, or higher powers. This is incorporated into the definition of the helicity density & to

form [46]:
1
h1:2<1/;A-B1/ZC-D>+\ﬁey/Bw. (35)

It is further shown in [46] that this indeed produces a helicity to energy density ratio of +1/w for
right- and left-circularly polarised light, leading to a helicity of +7 per photon [47]. In addition, it can
be shown that higher order terms in j of the helicity and energy densities retain this correspondence
between the definitions, i.e.:

hyi1= % <\/5A'B_ \/ECD) +\/a;8wnr (36)

such that 0;w, + V - S = 0 and 0;h,, 11 + V - v = 0, where wj, is the energy density of the fields to
O(B") and S = E x H is the energy flux density. This follows from the exact expression:

Ih+V-v=/eupVv S, (37)

such that energy conservation to all orders in § implies helicity conservation to all orders in j.
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Figure 4. At the interface between a vacuum and a dual-symmetric, lossless chiral medium
characterised by €, u and the chirality parameter 8, both the energy and helicity of an electromagnetic
field are conserved. As a consequence, the ratio of the helicity density to energy density, /1/w, must be
preserved across the interface. In the chiral medium, the energy density contains a chiral contribution, as
given by wy (29), requiring a modification of the helicity density to k1 (35) such that /w = hy /w; holds.

We can examine the general form of a source of helicity in lossless non-reciprocal media by
inserting the constitutive relations (28) with a 0 into /1 and v, producing;:

o +V -v=—u (\/§|E|2—\/E|H|2>, (38)

where we have imposed V (e/p) = 0. As the energy is conserved [47], it follows that the helicity per
photon of the light within a Tellegen material must differ from the familiar free-space values.

4.3. Currents and Charges in Bi-Isotropic Media

We now consider what happens when a local current density is placed inside a chiral medium.
Inserting the constitutive relations (28) into V. x E= —B and V x H = D + j leads to:

A:ﬁ(VxE)+é(VxC+sz) (39)

and:

—;(VxA—aE), (40)

C=g+p(V xH)
where again, V x g is equal to the transverse part of the current density. We insert A and C into 9/
from (35) and find to O(B):

ath1+v-v_;\/E[g(VxC)+C-(V><g)]—\/a/3j~E—a<\/§|E|2—\/E|H|2>. (41)

This reduces to the result for a medium with no chiroptical or magnetoelectric response when
« = B = 0. The helicity contribution due to the chiral response of the material is identifiable as an
energy source, as obtained from the energy continuity equation in the presence of charges [41]. As this
term is a scalar, the pseudoscalar nature of § is responsible for this term’s acting as a source of helicity.
The Tellegen contribution, proportional to «, is identical to the helicity source in an absence of currents
or charges, as given in (38).

Consider a chiral, reciprocal material described by (28) with & = 0. From (41), we would expect
that an emitter that in free space emits no net helicity, such as a single oscillating electric dipole,
may act as a source of helicity when placed inside a chiral medium. Lathakia et al. have shown that
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this is so, by explicitly calculating the radiation pattern of a single oscillating electric dipole embedded
in a sphere composed of a lossless chiral medium [49]. From the point of view of an observer in the
far field, outside the sphere, the radiation pattern from the point electric dipole embedded in the
sphere appears identical to that of a point electric and point magnetic dipole oscillating in a vacuum.
In particular, the chiral medium is impedance matched with the surrounding vacuum to produce this
result, so that the net helicity cannot be attributed to a gradient in €/ at the vacuum-chiral interface.
As the chiral medium considered above and in [49] is lossless, neither can this generation of helicity
arise as a result of circular dichroism within the chiral sphere [30]. Furthermore, we know that the
electromagnetic helicity of a field is conserved within a dual-symmetric chiral medium, so the helicity
“source” in this case can only be attributed to the interaction of the embedded current and the chiral
medium itself; a result which seems worthy of further investigation.

It is interesting to observe that for O(B), we can write —fj-E = B(V x g) - (V x C), so that
the current helicity source in the chiral medium appears as an even-parity combination of g and C.
We would expect terms O(B*'*1) to echo this structure, with even-order terms O(B?") containing
odd-parity combinations of g and C, such as given by the first term on the right-hand side of (41).

5. Concluding Remarks

We have examined in detail the construction of the helicity density (1) in a vacuum and discussed
the merits of using this quantity to characterise chiral light. Alongside this, we examined the chirality
density (2) of the free electromagnetic field and pointed out cases in which the two quantities are
trivially related. Only the conservation of helicity, however, generates a physically-meaningful
symmetry transformation of the system. We used this to construct a continuity equation of the
helicity of the free field, before extending the method to examine cases under which this symmetry is
broken and helicity is no longer conserved. We have identified four distinct types of helicity sources.
The first results from a non-constant value of €/, taking the form of the right-hand side of (27).
The second helicity source has the general form of (16) [17] and can be understood in its simplest
form in terms of a coupled electric-magnetic dipole system. The third results from the non-reciprocity
parameter « in the constitutive relations, of the form (38). The final type of source examined in this
article results from a dual-symmetric object embedded in a chiral medium, expressible as an energy
source multiplied by the chirality parameter §, as given by (41).

Categorisation of the distinct sources of helicity in this way provides insight into the
electromagnetic response of different types of matter and is achieved by exploiting the inherent
symmetry of the Maxwell equations. The distinction between the microscopic and macroscopic sources
results from the non-tractable nature of the problem of determining the electromagnetic response of
large volumes (>>than the size of individual molecules) of helicity sources. In order to bridge this gap,
we can perhaps look to experiments in which chiral objects are embedded into a dielectric host, forming
an artificial composite chiral medium [50,51]. In recent work, such methods have been used to verify
that a chiral nanostructure is in fact able to sense the orbital, as well as the spin angular momentum of
an impinging light beam [52,53]. Theoretical study on this subject continues to reveal insight into
the significance of twisted light beams in chiral light-matter interactions [54,55], paving the way for
new methods in the detection and manipulation of chiral matter. The importance of helicity in the
characterisation of both natural and engineered chiral nanostructures is indeed becoming increasingly
apparent: Hanifeh et al. [56] show that using structured light with maximised helicity leads to a direct
measure of the chirality of such an object, which does not require knowledge of the helicity or energy
densities of the field. It is also evident that both the helicity of the incident fields and the dual-symmetry
(or helicity preserving nature) of a photonic structure are essential in circular dichroism enhancement
effects [57]. Reconciling our understanding of both microscopic and macroscopic sources of helicity in
a general theoretical model, however, is an ongoing topic of investigation.
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