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Abstract: This study aims to analyze and compare landslide susceptibility at Woomyeon Mountain,
South Korea, based on the random forest (RF) model and the boosted regression tree (BRT) model.
Through the construction of a landslide inventory map, 140 landslide locations were found. Among
these, 42 (30%) were reserved to validate the model after 98 (70%) had been selected at random
for model training. Fourteen landslide explanatory variables related to topography, hydrology,
and forestry factors were considered and selected, based on the results of information gain for the
modeling. The results were evaluated and compared using the receiver operating characteristic
curve and statistical indices. The analysis showed that the RF model was better than the BRT model.
The RF model yielded higher specificity, overall accuracy, and kappa index than the BRT model. In
addition, the RF model, with a prediction rate of 0.865, performed slightly better than the BRT model,
which had a prediction rate of 0.851. These results indicate that the landslide susceptibility maps
(LSMs) produced in this study had good performance for predicting the spatial landslide distribution
in the study area. These LSMs could be helpful for establishing mitigation strategies and for land
use planning.

Keywords: landslide susceptibility; random forest; boosted regression tree; information gain;
landslide susceptibility map

1. Introduction

A landslide is defined as a natural disaster that occurs when gravity causes a mass of debris, soil,
or rock to move on a downward slope [1]. The majority of landslides occur as a result of hydroclimatic
events, such as prolonged or intensive rain. Furthermore, mechanisms such as seismic triggers, wind,
and freeze–thaw cycles are known to initiate landslides [2].

Mountains with shallow layers of soil that have formed in place from weathered gneiss and
granite make up roughly 70% of the Korean peninsula [3]. Such terrain is vulnerable to weakening
during heavy rainfall. Most of the annual precipitation occurs during the summer, when heavy
rain and typhoons frequently occur. In particular, the heavy rain associated with typhoons has the
potential to cause landslides in South Korea [4]. The year 2011 was a particularly devastating year, with
43 landslide-related casualties in Chuncheon and at Woomyeon Mountain in the area surrounding
Seoul City. This is the largest number of landslide-related casualties since 2000.

South Korea has not been alone in experiencing an increase in such natural disasters. Other
regions around the world have also experienced more frequent landslides on a larger scale and
with more severe damage. In future decades, this trend will probably continue because of ongoing
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deforestation, increased urbanization, and an increase in regional precipitation in landslide-prone
areas due to climate change [5]. It is essential that both susceptible and stable areas be identified
to mitigate property damage, environmental degradation, and loss of life. Consequently, landslide
susceptibility assessments, i.e., assessments of the spatial probability of a landslide occurring, are
a huge step forward in the comprehensive hazard management of landslides [6,7]. The landslide
susceptibility map (LSM) produced by a landslide susceptibility assessment can be a useful tool for
authorities with decision-making capabilities.

Many methods and techniques have been proposed to evaluate landslide susceptibility. In the
past few decades, statistical approaches have become popular in the use of remote sensing
(RS) with a geographic information system (GIS). There are many statistical approaches used in
landslide susceptibility assessment, including a frequency ratio (FR) [8,9], certainty factor (CF) [10],
statistical index (SI) [11,12], as well as weight of evidence (WoE) [7,13,14] and logistic regression
(LR) [15,16] approaches.

Recently, machine learning techniques have become popular in various fields. Machine learning,
a branch of artificial intelligence, uses computer algorithms to analyze and predict information based
on learning from training data [17,18]. Due to its robustness and high generalization capability,
the use of machine learning has increased in landslide susceptibility analysis. Among the machine
learning methods, artificial neural network [19,20], fuzzy logic [21,22], neuro-fuzzy [23], support
vector machine [24,25], random forest [26,27], and naïve Bayes tree [17,28] methods have been
popularly applied.

More recently, ensemble machine learning techniques have been used to enhance the
prediction power and robustness of landslide susceptibility assessment. The ensemble methods,
formed by a combination of variously based classifiers, have typically demonstrated significant
improvement [17,24,29,30]. Ensemble techniques, which are relatively new approaches for producing
a landslide susceptibility map, have been rarely used in the field. Therefore, the main objective of
this research was to analyze and compare the performance of different ensemble models—namely,
the random forest (RF) and boosted regression tree (BRT) models—for landslide susceptibility analysis.
The RF and BRT models are very popular ensemble methods. Both are tree-based algorithms that
predict the results by combining individual trees. However, the RF and BRT models build trees in
different ways. Considering these characteristics, these models are appropriate for producing LSMs
and for comparing LSM results. The results of the models were compared using the receiver operating
characteristic (ROC) curve and statistical indices to determine the more robust model.

2. Study Area and Data Used

2.1. Study Area

The study area, Woomyeon Mountain, is located in the Seocho district of Seoul City, South Korea.
This area lies within 37◦27′00′′–37◦28′55′′ N and 126◦59′02′′–127◦01′41′′ E (Figure 1). The average
elevation is 293 m above sea level, and the slope is approximately 30◦–35◦. The bedrock is Precambrian
banded biotite gneiss, which is believed to be highly susceptible to landslides because of severe
weathering and abundant faults (Figure A1). In addition, granite gneiss with relatively poor
compositional differentiation is excavated en masse, and there is partial distribution of an embedded
dike. The gneiss outcrop is poor, as a result of severe weathering in the overall area, and its foliation
structure is irregular, due to several folding events [31].

This area experienced concentrated precipitation from 26–29 July 2011. The maximum precipitation,
which occurred during 2 h one morning, was 164 mm. This exceeded the 156-mm, 100-year return period.
This heavy precipitation led to a debris flow landslide in the area near Woomyeon Mountain, and 1–1.5 m
of stratum flowed over areas near the mountain. Seven locations in the study area, including two locations
in the valley area damaged primarily from flooding and five locations damaged by debris flow, were
affected by the landslide. The total area damaged by the debris was approximately 276,683 m2, and the
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maximum length of damage from the upper part of the steep-slope disaster area to diffuse areas was
approximately 764 m. The event caused 16 deaths and 10 building collapses [31].
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Figure 1. Location of study area (a) and landslide inventory map with hill shading (b).

2.2. Landslide Inventory

Landslide locations were identified using 32 aerial photographs of the study area, taken after
the occurrence of the landslides. These aerial photographs were taken by a digital mapping camera
with a spatial resolution of 10 cm. The orthorectified photographs were produced using the Leica
Photogrammetry Suite (LPS) mounted on ERDAS Imagine 2011 (Erdas, Inc., Norcross, GA, United
States). Landslide locations were digitized by visual interpretation using ArcGIS 10.2 (ESRI, Inc.,
Redlands, CA, USA). Among the digitized landslide locations, landslide locations belonging to rupture
zones were converted to point data using a centroid technique. The point data representing the
landslide locations were converted to a pixel format, with resolution of 10 m. From the 140 identified
landslides, 42 (30%) were reserved to validate the model, after 98 (70%) had been chosen at random for
model training. Additionally, non-landslide pixels were selected randomly from the non-landslide
area: 98 non-landslide pixels were used for the training dataset, and 42 non-landslide pixels were
used to build the validation dataset. This generating and splitting process was performed repeatedly
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more than 10 times. Finally, the combination utilized was found through the area under the receiver
operating characteristic (ROC) curve (AUC) method.

2.3. Landslide Explanatory Variables

Landslides usually occur by complex interactions among various explanatory variables, and there
is no consensus about which landslide explanatory variables to use. In this study, 14 explanatory
variables were selected, based on a literature review and data availability. These factors were divided
into the following three categories: topography, hydrology, and forestry (Table 1, Figure A2). These
factors were produced in raster format with a cell size of 10 × 10 m, considering the scale of the input
data, using ArcGIS 10.2 and ERDAS Imagine 2011; the total number of cells in the study area was 67,005.
For the next process, the continuous variables among the explanatory variables were reclassified into
seven classes, using ArcGIS 10.2. ArcGIS 10.2 provides various classification schemes, such as equal
interval, standard deviation, natural break, quantile, etc. Natural break classification groups the classes
based on break points that are relatively large jumps in data values. This classification method can
be used to maximize the variance between classes. In addition, Cao et al. (2016) [32] indicated that
natural break classification is more appropriate for the classification of variables, because their results
showed that the LSM produced had higher accuracy compared to that using a different classification
method. Therefore, natural break classification was used in this study.

Table 1. Information and sources of data used for the landslide susceptibility assessment at
Woomyeon Mountain.

Category Factor Source Scale
(Resolution)

GIS and
Data Type

- Landslide inventory Aerial photographs 1:5000 Raster

Topography Altitude Topographic maps 1:5000 Vector
Slope degree Digital elevation map 10 × 10 m Raster
Slope aspect

Profile curvature
Plan curvature

Hydrology Distance to streams Digital elevation map 10 × 10 m Raster
Topographic wetness index

Stream power index
Sediment transport index
Terrain roughness index

Forestry Timber type Forest map 1:5000 Vector
Timber diameter

Timber age
Timber density

2.3.1. Topography Factors

Topography factors include altitude, slope degree, slope aspect, profile curvature, and plan
curvature. Altitude is an influential factor among the various landslide explanatory variables, because
it is affected by several geomorphologic and geological processes. Slope, which can be described as the
form between any section of the surface and a horizontal datum, has considerable influence on slope
stability [33]. The degree of vulnerability to landslides may differ based on slope direction, because
the water content of the surface, vegetation type, and soil strength may be different. In addition, both
the profile and plan curvatures can be classified as flat, concave, or convex. During the rainy season,
concave slopes may contain more moisture than convex slopes or flat slopes, so the concave slopes
may be more vulnerable to landslides. All of these variables were extracted from the 10-m digital
elevation model (DEM), using the spatial analyst tool of ArcGIS. The DEM was produced from 1:5000
topographic maps provided by the Korean National Geographic Information Institute.
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2.3.2. Hydrology Factors

The hydrology factors were distance to streams, topographic wetness index (TWI), stream power
index (SPI), sediment transport index (STI), and terrain roughness index (TRI). The streams were
delineated by flow accumulation and converted to a vector format. The distance to streams was
calculated using the Euclidean distance function in ArcGIS. Beven and Kirby (1979) [34] developed a
TWI that reflects water’s tendency to accumulate anywhere within the catchment area, accumulations
that will then tend to move downslope as a result of gravity [35]. The water flow’s power to erode
is measured by the SPI, based on the assumption of proportionality of discharge to a catchment’s
specific area [36]. The STI is also often used to reflect the overland flow’s power to erode [37]. The TWI,
SPI, and STI were calculated with their base in specific catchment areas (As) and slope maps, using
the following:

TWI = ln
(

As

tanβ

)
(1)

SPI = As × tanβ (2)

STI =
(

As

22.13

)0.6( sinβ

0.0896

)1.3
(3)

where As represents the specific catchment area (m2/m), and β represents the local slope
gradient (degrees).

In addition, the TRI, which represents the concave and convex upward slopes [38], was
calculated as

TRI =
√
|x|(max2 −min2), (4)

where max and min represent the maximum and minimum values of altitude among the nine
rectangular neighbor pixels, respectively.

2.3.3. Forestry Factors

Vegetation prevents erosion on a slope by buffering the impact of rain falling on the slope, and
vegetation roots increase the shear strength of the slope by increasing the shear strength of the soil.
The forestry factors include timber type, timber diameter, timber age, and timber density. Here, timber
type and timber age mean the species and average age of planted trees, respectively. In addition,
timber diameter represents the size of the diameter at chest height. Timber density refers to the degree
of closure of the crown canopy. These values were obtained from a 1:5000 scale forest map produced
by the Korea Forest Research Institute.

3. Methodology

This study was performed using the following main steps: (1) collection and construction
of database of landslides and landslide explanatory variables, (2) preparation of the training and
test datasets through repeated random sampling, (3) feature selection using information gain (IG),
(4) landslide susceptibility mapping using RF and BRT models, and (5) validation and comparison
of performance among landslide susceptibility maps (LSMs) (Figure 2). The IG, RF, and BRT models
were implemented in R (Foundation for Statistical Computing, Vienna, Austria) using the “FSelector,”
“randomForest,” and “gbm” packages, respectively. These algorithms were performed employing a
10-fold cross-validation approach, to reduce the variability of the model results.
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3.1. Landslide Dataset Preparation

In this study, correlations between landslide and landslide explanatory variables were analyzed
using the FR (Table A1). The FR is the ratio of the area where landslides occurred to the total study
area. The FR was calculated by dividing the ratio of landslide occurrence, for the class or type of
each factor, into an area ratio, for the class or type of each factor to the total area. The calculated FRs
pertaining to each landslide explanatory variable were normalized from 0 to 1. The normalized FRs
were extracted for the landslide and non-landslide dataset. Subsequently, these data were used for
the training and validation datasets, to run the models and evaluate the prediction capabilities of the
models, respectively.

3.2. Information Gain

The landslide explanatory variables have a crucial role in producing LSM. Some landslide
explanatory variables might be associated with reductions in model performance, overfitting, model
training time, and predictive capability [39]. Therefore, it is necessary to recognize and choose proper
landslide explanatory variables.

Various methods such as IG [17], chi-square statistics [30], and Relief-F [29] have been proposed
for feature selection in landslide modeling. In this study, the IG, proposed by Quinlan (1993) [40], was
used to determine irrelevant and unimportant variables. The IG evaluates an attribute by determining
the overall information gain in terms of the class. Consequently, the result can determine the ranking
of importance, based on the normalized average merit contributed by each attribute [41,42].

The IG value of landslide explanatory variable Ci belonging to class L (landslide and
non-landslide) is calculated as [24,30]

IG(L, Ci) = IF(L)− IF(L|Ci) , (5)

where IF(L) is the entropy value of L, and IF(L|Ci) is the entropy of L after integrating the values of
landslide explanatory variable Ci. These values are calculated using Equation (6) and Equation (7),
respectively:

IF(L) = −∑
i

P(Li) log2(P(Li)), (6)

IF(L|Ci) = −∑
i

P(Li)∑
j

P(Li|Ci) ) log2(P(Li|Ci) ), (7)
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where P(Li) is the prior probability of the class L, and P(Li|Ci ) is the posterior probabilities of L given
the values of explanatory variable Ci. An explanatory variable with a higher IG value has higher rank,
meaning that it is more important to landslide models. By contrast, an explanatory variable with an IG
value of zero must be removed from the dataset, because that factor does not make a contribution.

3.3. Landslide Susceptibility Analysis

3.3.1. Random Forest

RF, developed by Breiman (2001) [43], is a popular ensemble learning method that has been used
widely for classification, regression, clustering, and interaction detection. A single decision tree is
a weak classification, because of its high variance and bias. However, RF tends to produce robust
models, because it can mitigate these problems by using ensemble trees [44].

RF generates thousands of random binary trees to form a forest. Each tree is grown based on a
bootstrap sample, using a classification and regression trees (CART) procedure with a random subset
of variables selected at each node [26,45]. For each tree grown on a bootstrap sample, the “out-of-bag”
(OOB) error rate is calculated using observations left out of the bootstrap sample. The final decisions
of class membership and model construction (output) are determined by the majority vote among all
trees [46].

Two types of error rate—the mean decrease in accuracy and the mean decrease in the Gini
coefficient—were calculated. These measures have been widely used to rank and select variables [26,47].
To run the RF model, the user should optimize two priori parameters, the number of trees in the forest
(ntree) and the number of variables tested at each node (mtry), to minimize the OOB error and obtain
good model performance [44,45].

3.3.2. Boosted Regression Tree Model

The BRT model is a combination of statistical and machine learning techniques. The BRT model
fits different techniques and combines them to improve the performance of a single model [48,49]. Two
different algorithms, namely boosting and regression, are used in the model, and the strengths of these
algorithms are combined to improve model accuracy and decrease model variance [45,50]. Boosting is
one of the most powerful learning methods for improving model accuracy, by iteratively fitting new
trees to the residual errors (RE) of the existing tree assemblage [45,51]. In addition to boosting, the
BRT model uses regression trees in the modeling process. Regression trees are categorized from the
classification and regression tree approaches from the decision tree group of models [52].

In the model, among the various parameters, the number of trees is automatically set through
internal cross-validation. In addition, the learning rate, the number of nodes in a single tree, and bag
fraction were determined through a trial-and-error approach [53]. The complexity of the model and
the contribution of each tree to the model are controlled by a shrinkage parameter and the learning
rate, respectively. The bag fraction and shrinkage parameter determine the number of trees required to
reach the optimal solution [54].

3.4. Model Performance Assessment and Comparison

3.4.1. Confusion Matrix

The confusion matrix includes true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) categories. Using these values, various statistical indices, such as accuracy, sensitivity,
specificity, threat score, equitable threat score, Pierce’s skill score, odds ratio, and odds ratio skill score
can be calculated [55]. The value calculated from the confusion matrix provides useful information on
model performance and classification accuracy.

In this study, the sensitivity, specificity, overall accuracy, and kappa statistic were used to validate
the performance of the LSMs. The percentages of landslide and non-landslide pixels classified correctly
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into those two categories enable the calculation of sensitivity and specificity, and the overall percentage
classified correctly (in both categories together) indicates the accuracy of the LSMs [56]. In addition,
the kappa statistic is used to evaluate the reliability of the landslide models. Its value ranges from
−1 (non-reliable) to 1 (reliable) [57].

3.4.2. Receiver Operating Characteristic

The receiver operating characteristic (ROC) curve has been commonly used to validate the quality
of a probabilistic model. The ROC curve is plotted by statistical index value pairs, with the false
positive rate (sensitivity) on the x-axis and the “100−false negative rate” (100−specificity) on the y-axis.
The ROC curve can be classified as a success rate curve or prediction rate curve, depending on the
dataset used. The success rate curve, calculated using the training dataset, represents how well the
LSMs fit the data. The prediction rate curve, calculated using the validation dataset, represents how
well the model and landslide explanatory variables predict a landslide [11]. The ROC curve can be
verified quantitatively when the area under the ROC curve (AUC) is calculated. AUC values range
from 0.5 to 1.0. AUC values closer to 1 indicate a more accurate model.

4. Results

4.1. Selection of Landslide Explanatory Variables

The average information gain (AIG) value, and its standard deviation for each landslide
explanatory variable, were calculated and ranked (Table 2). All landslide explanatory variables
used in this study contributed to the landslide models, because the AIG values of these variables
were more than 0. According to the results, the TRI had the highest AIG value (0.086), which means
that this factor made the greatest contribution to the landslide models in this study area. By contrast,
timber diameter made the smallest contribution to the landslide models, as indicated by the lowest
AIG value (0.005).

Table 2. Information gain values for the landslide explanatory variables used in this study.

No. Landslide Explanatory Variable Average Merit Standard Deviation

1 Terrain roughness index 0.086 ±0.010
2 Slope aspect 0.071 ±0.012
3 Distance to streams 0.06 ±0.010
4 Altitude 0.049 ±0.008
5 Timber type 0.049 ±0.008
6 Stream power index 0.041 ±0.008
7 Slope degree 0.038 ±0.008
8 Sediment transport index 0.037 ±0.006
9 Topographic wetness index 0.033 ±0.011

10 Plan curvature 0.025 ±0.006
11 Profile curvature 0.013 ±0.005
12 Timber age 0.012 ±0.002
13 Timber density 0.008 ±0.002
14 Timber diameter 0.005 ±0.002

4.2. Training the Random Forest and Boosted Regression Tree Models

The training dataset was used to train the RF and BRT models for landslide susceptibility
assessment. During the training process, the optimum values of the parameters for the models
were applied to obtain high model predictive capability. The optimized values for the RF model
were 300 for ntree and 2 for mtry. In the case of the BRT model, the optimized values for n.trees,
interaction.depth, shrinkage, and n.minobsinnode were 500, 1, 0.01, and 10, respectively. Subsequently, the
RF and BRT models were constructed using the optimized parameters, based on the training dataset.
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After their construction, the RF and BRT models were applied throughout the whole study area to
produce LSMs.

4.3. Model Validation and Comparison

The performance of each model was analyzed using the training dataset. The RF model showed a
higher sensitivity value (98.00%) than did the BRT model (79.57%). This result showed that the RF
model classified more correctly than the BRT model in the landslide class. The specificity results also
indicated that the RF model had higher specificity (100.00%) in the non-landslide class, indicating that
the non-landslide pixels were more correctly classified. The specificity value of the BRT model was
76.70%. Because of the lower sensitivity and specificity values of the BRT model, the overall accuracy
and kappa index values were lower, with values of 78.16% and 0.561, respectively. In the case of the
RF model, the overall accuracy and kappa index were 98.98% and 0.980, respectively.

In addition, the success rate and the prediction rate were analyzed using the training dataset and
the validation dataset, respectively (Figure 3). In the case of success rate, the RF and BRT models had
values of 0.999 and 0.887, respectively. The prediction rate curve also showed that the RF model had a
higher AUC (0.865) than the BRT model (0.851). Overall, the AUC values of all models were greater
than 0.8. These results show that the LSMs constructed in this study have good accuracy in the spatial
prediction of landslide susceptibility.
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Figure 3. Analysis of the receiver operating characteristic (ROC) curve for the two landslide
susceptibility maps: (a) success rate curve using the training dataset and (b) prediction rate curve using
the validation dataset.

4.4. Generating Landslide Susceptibility Maps

The RF and BRT models were used to develop LSMs in the study area. The LSMs were prepared by
generating landslide susceptibility indices (LSIs) and reclassifying the class. The LSIs were calculated
based on the trained RF and BRT models. Using the natural breaks method, the LSMs were reclassified
into five susceptibility classes: very high, high, moderate, low, and very low (Figure 4). Overall,
the distribution of LSI for each susceptibility class was similar between the LSM produced by RF (RF
LSM) and that produced by BRT (BRT LSM). The “high” and “very high” susceptibility classes covered
about 30% of the total area. The RF model had a value of 34.69%, and the BRT model had the lower
value of 31.11%.
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Figure 4. Landslide susceptibility maps produced by random forest (RF) (a) and boosted regression
tree (BRT) (b) models.

The LSMs produced from the two models were validated based on the landslide density (LD)
of each susceptibility class on the LSMs. The LD is the ratio of the percentage of landslide pixels to
the percentage of all pixels for each susceptibility class shown on the map [56]. LD was calculated by
overlaying the five LSMs and the landslide inventory map. Generally, for the study area, the value of
LD increased gradually, from very low to very high susceptibility (Table 3). At the “very high” class,
the RF and BRT models had LD values of 3.799 and 2.721, respectively. Overall, the models used in
this study are suitable for LSM.

Table 3. Landslide density on landslide susceptibility maps produced from the different models.

Random Forest Boosted Regression Tree

Pixels of
Class

Pixels of
Landslide

Landslide
Density

Pixels of
Class

Pixels of
Landslide

Landslide
Density

Very low 13,034 2 0.073 10,671 3 0.135
Low 16,871 4 0.113 18,629 16 0.411

Moderate 13,854 16 0.553 16,860 35 0.994
High 12,917 36 1.334 12,930 41 1.518

Very high 10,329 82 3.799 7915 45 2.721
Total 67,005 140 67,005 140

4.5. Discussion

The LSMs produced using the models were evaluated by statistical indices and ROC curves.
The RF model had better sensitivity, specificity, overall accuracy, and kappa values. The AUC values
of the LSMs used in this study were about 80%, indicating reasonable accuracy. The RF model had
higher AUC values for the success rate and prediction rate curves than the BRT model. Thus, these
models had very high predictive performance. Furthermore, the LSMs would be produced differently
depending on the methods used and the landslide explanatory variables selected. The landslide
explanatory variables may not make equal contributions, which can affect prediction ability. In this
study, the landslide explanatory variables used made different contributions to the models. Table 4
illustrates the importance of each explanatory variable, calculated and normalized in the RF and BRT
models. In general, TRI had the highest importance to the models, whereas timber diameter, timber
age, and timber density had lower predictive capability.
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Table 4. Relative importance of each landslide explanatory variable calculated in the random forest
and boosted regression tree model.

Random Forest Boosted Regression Tree

Importance Rank Importance Rank

Terrain roughness index 1.000 1 1.000 1
Distance to streams 0.857 2 0.556 3

Altitude 0.766 3 0.277 5
Sediment transport index 0.654 4 0.562 2

Timber type 0.484 5 0.158 7
Slope degree 0.469 6 0.000 -

Stream power index 0.449 7 0.084 9
Topographic wetness index 0.440 8 0.378 4

Slope aspect 0.408 9 0.242 6
Plan curvature 0.214 10 0.099 8

Profile curvature 0.118 11 0.016 10
Timber diameter 0.026 12 0.000 -

Timber age 0.009 13 0.000 -
Timber density 0.000 14 0.000 -

From the results, ensemble classification, such as that done by the model used in this study, can
improve the performance of single (weak) classifiers and the prediction accuracy of LSM [56]. However,
the models had overfitting problems, as indicated by the AUC values calculated using the training
and validation datasets. The AUC values of the success rate curve were very high, almost reaching
a value of 1, but the AUC values of the prediction rate curve were lower. Especially in the case of
the RF model, the AUC value of the prediction rate was decreased by about 20%. This result showed
that the RF model was trained excessively by the training data. This can be associated with poor
generalization from training data and increased error for real data. Overfitting is a common problem
affecting researchers performing machine learning and data mining. There can be many reasons
for overfitting. However, in this study, the landslide explanatory variables used still included noise,
despite the feature selection process. In addition, because the landslide area is very small compared to
the non-landslide area, the model could not learn and predict the non-landslide area.

5. Conclusions

This study compared and analyzed landslide susceptibility at Woomyeon Mountain using
different models. For this purpose, landslide-related spatial data consisting of a landslide inventory,
and landslide explanatory variables were collected and prepared. The landslide inventory map was
built using aerial photographs. The 14 landslide explanatory variables were constructed from spatial
data collected by government organizations. These factors included altitude, slope degree, slope
aspect, profile curvature, plan curvature, distance to streams, TWI, SPI, STI, TRI, timber type, timber
diameter, timber age, and timber density.

The contribution of each landslide explanatory variable was evaluated using the average IG
value with a 10-fold cross-validation approach. All of the landslide explanatory variables contributed
to the models, because the IG values of all factors were greater than zero. Therefore, the landslide
susceptibility analysis and mapping were performed with all landslide explanatory variables using the
RF and BRT models. The RF and BRT models were implemented in R. A popular open-source software,
R is helpful for statistical computing and data visualization [58]. The models were constructed using
optimized parameters, and LSI was predicted over the study area.

The LSMs produced in this study may prove useful for decision makers, planners, and engineers
in disaster planning to minimize economic losses and casualties. In a future study, the accuracy of the
LSMs of this study could be enhanced by selecting more optimal landslide explanatory variables and
solving the problem of overfitting.
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Figure A2. Landslide explanatory variables used to analyze landslide susceptibility: (a) altitude, (b)
slope degree, (c) slope aspect, (d) profile curvature, (e) plan curvature, (f) distance to streams, (g)
topographic wetness index, (h) stream power index, (i) sediment transport index, (j) terrain roughness
index, (k) timber type, (l) timber diameter, (m) timber age, and (n) timber density.

Table A1. Correlations between landslide and landslide explanatory variables using the frequency ratio.

Factor Class No. of Pixels
in Domains

No. of
Landslide

Pixels

Frequency
Ratio

Normalized
Frequency

Ratio

Altitude (m)

[22.59, 66.57] 12,477 10 0.38 0.00
[66.57, 95.90] 17,042 20 0.56 0.11

[95.90, 126.35] 13,614 31 1.09 0.42
[126.35, 159.05] 10,060 33 1.57 0.71
[159.05, 196.27] 6766 17 1.20 0.49
[196.27, 236.88] 4409 19 2.06 1.00

[>236.88] 2637 10 1.81 0.85

Slope degree (◦)

[0.00, 8.83] 4704 3 0.31 0.00
[8.83, 13.98] 11,554 11 0.46 0.11

[13.98, 18.15] 15,716 33 1.00 0.52
[18.15, 22.07] 14,692 27 0.88 0.43
[22.07, 26.24] 11,362 36 1.52 0.91
[26.24, 31.39] 6708 23 1.64 1.00

[>31.39] 2269 7 1.48 0.88

Slope aspect

Flat 69 0 0.00 0.00
North 8483 12 0.68 0.50

Northeast 7928 9 0.54 0.40
East 9395 18 0.92 0.67

Southeast 8837 20 1.08 0.80
South 9522 26 1.31 0.96

Southwest 8970 19 1.01 0.75
West 6333 18 1.36 1.00

Northwest 7468 18 1.15 0.85

Profile
curvature

Concave 33,763 79 1.12 1.00
Flat 247 0 0.00 0.00

Convex 32,995 61 0.88 0.79

Plan curvature
Concave 31,592 82 1.24 1.00

Flat 772 0 0.00 0.00
Convex 34,641 58 0.80 0.65
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Table A1. Cont.

Factor Class No. of Pixels
in Domains

No. of
Landslide

Pixels

Frequency
Ratio

Normalized
Frequency

Ratio

Distance to
streams (m)

[0.00, 167.16] 8947 3 0.61 0.28
[167.16, 281.13] 12,553 16 1.46 0.81
[281.13, 391.30] 13,430 41 0.77 0.38
[391.30, 501.48] 12,372 20 1.28 0.69
[504.48, 623.05] 9369 25 1.77 1.00
[623.05, 763.61] 6205 23 1.39 0.76

[>763.61] 4129 12 0.63 0.50

Topographic
wetness index

[−7.19, −5.25] 8350 11 0.63 0.50
[−5.25, −1.73] 3148 2 0.30 0.24
[−1.73, 1.70] 13,316 24 0.86 0.69
[1.70, 2.94] 21,415 56 1.25 1.00
[2.94, 4.43] 14,843 38 1.23 0.98
[4.43, 6.72] 4652 9 0.93 0.74

[>6.72] 1281 0 0.00 0.00

Stream power
index

[−13.82, −9.79] 487 0 0.00 0.00
[−9.79, −8.40] 3850 2 0.25 0.17
[−8.40, −4.54] 7251 11 0.73 0.48
[−4.54, −0.35] 13,013 16 0.59 0.39

Stream power
index

[−0.35, 0.88] 22,507 51 1.08 0.72
[0.88, 2.60] 16,613 52 1.50 1.00

[>2.60] 3284 8 1.17 0.78

Sediment
transport index

[0.00, 4.35] 15,486 17 0.53 0.20
[4.35, 10.88] 21,160 31 0.70 0.27
[10.88, 16.87] 16,659 44 1.26 0.48
[16.87, 24.49] 9054 29 1.53 0.58
[24.49, 37.01] 3267 18 2.64 1.00
[37.01, 58.23] 1065 0 0.00 0.00

[>58.23] 314 1 1.52 0.58

Terrain
roughness

index

[0.00, 25.24] 6302 0 0.00 0.00
[25.24, 33.92] 13,887 14 0.48 0.20
[33.92, 42.20] 14,614 23 0.75 0.31
[42.20, 51.30] 12,675 33 1.25 0.52
[51.30, 61.64] 9415 27 1.37 0.57
[61.64, 73.23] 6747 34 2.41 1.00

[>73.23] 3365 9 1.28 0.53

Timber type

Non-forest 1027 0 0.00 0.00
Pine 143 0 0.00 0.00

Nut pine 2319 3 0.62 0.24
Larch 1389 2 0.69 0.27

Pitch pine 431 0 0.00 0.00
Sawtooth oak 11,482 18 0.75 0.30

Mongolian oak 1183 2 0.81 0.32
Oriental oak 565 3 2.54 1.00

Other oak 25,845 63 1.17 0.46
Poplar 1419 6 2.02 0.80

False acasia 15,809 30 0.91 0.36
Other broadleaf

forest 3707 12 1.55 0.61

Mixed forest of soft
and hardwood 1686 1 0.28 0.11

Timber
diameter (cm)

Non-forest 1027 0 0.00 0.00
[6, 16] 2124 3 0.68 0.66
[16, 28] 63,854 137 1.03 1.00
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Table A1. Cont.

Factor Class No. of Pixels
in Domains

No. of
Landslide

Pixels

Frequency
Ratio

Normalized
Frequency

Ratio

Timber age
(ages)

Non-forest 1027 0 0.00 0.00
[21, 30] 1508 1 0.32 0.16
[31, 40] 62,234 130 1.00 0.52
[41, 50] 2236 9 1.93 1.00

Timber density
(%)

Non-forest 1027 0 0.00 0.00
[51, 70] 2994 5 0.80 0.78
[>71] 62,984 135 1.03 1.00
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