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Abstract: Due to the poor thermal properties of conventional thermal fluids such as water, oil and
ethylene glycol, small solid particles are added to these fluids to enhance heat transfer. Since the
viscosity change determines the rheological behavior of a liquid, it is very important to examine the
parameters affecting the viscosity. Since the experimental viscosity measurement is expensive and
time-consuming, it is more practical to estimate this parameter. In this study, CuO (copper oxide)
nanoparticles were produced and then Scanning Electron Microscope (SEM) images analyses of the
produced particles were made. Nanofluids were obtained by using pure water, ethanol and ethylene
glycol materials together with the produced nanoparticles and the viscosity values were calculated
by experimental setups at different density and temperatures. For the viscosity values of nanofluids,
predictive models were created by using different computational intelligence methods. Mean square
error (MSE), root mean square error (RMSE) and mean absolute percentage error (MAPE) error
analyses were used to determine the accuracy of the predictive models. The multilayer perceptron
method, which has the least error value in computational methods, was chosen as the best predicting
method. The multilayer perceptron method, with an average accuracy of 51%, performed better than
the alternating decision tree method. As a result, the viscosity increased with the increase in the pH
of the nanofluids produced by adding CuO nanoparticles and decreased with the increase in the
temperature of the nanofluids. The importance of this study is to create a predictive model using
computational intelligence methods for viscosity values calculated with different pH values.
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1. Introduction

Viscosity is one of the most important flow properties of fluids. The pumping power, the pumping
power at the laminar flow and the convection heat transfer are directly related to the viscosity of
the fluid. For these reasons, theoretical and experimental studies on the viscosity properties of
nanoacids are carried out. In experimental studies, the relationship of viscosity with other parameters
is investigated and these properties are parameters such as nanoparticle volumetric concentration,
temperature, nanoparticle diameter, nanoparticle shape, nanoparticle aggregation, and pH value in
nanofluids [1].

In many studies in the literature, it has been shown that some parameters such as temperature,
particle size and shape, particle size distribution, surface tension, surfactant, and particle volume
ratio significantly affect the viscosity values of nano-fluids [2–4]. In order to estimate the viscosity,
Einstein [5] first developed a model in 1906 and then many models were developed (e.g., Krieger
and Dougherty, Mooney, Batchelor, Nielsen, Brinkman, etc.). It is seen that some of the models
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developed by these researchers are suitable and some of them are unsuitable [6]. This situation varies
depending on the geometric and chemical properties of the studied particles, the method of preparing
the nanofluids and the temperature. Dybowska-Sarapuk et al. [7] used graphene nanoplatelet in their
study with an average thickness of 8 mm and an average diameter of 10 nm. In order to examine the
ink viscosity changes in inkjet printing, they used graphene nanoparticles. They studied the shear rate
of ink in an inkjet printer nozzle. They reduced viscosity in inks using graphene and obtained higher
quality printing. Tavman and Turgut [8] examined the changes in viscosity of SiO2–H2O, TiO2 –H2O,
and Al2O3–H2O nanofluids at different volumetric ratios and temperatures. They observed an increase
in viscosity with increasing volumetric ratio. TiO2–H2O nanofluids have similar results with water,
which decreases viscosity with increasing temperature. In the test results for SiO2–H2O nanofluids,
the Einstein model calculated that the viscosity was significantly higher than the Krieger–Dougherty
model and Nielsen model. In addition, the viscosity of the TiO2–H2O nanofluids was higher than
in the Einstein model. In addition to the theoretical models, the researchers determined that the
viscosity of the nanofluids is directly related to the particle size, shape, temperature, dispersant and pH.
Nguyen et al. [9] studied the effect of particle size on viscosity in aluminum-water nanofluids. In their
study, they obtained the same results for particles with 36 and 47 nm in a 4% volumetric ratio. They
stated that the viscosity of the large-sized particulate fluid is higher than the small-sized particulate
fluid with the increase of the volumetric ratio. Weerapun and Somchai [10] found a 4–15% increase in
viscosity for TiO2–water nanofluids with a volumetric ratio of 0.2–2.0% in the 15–53 ◦C temperature
range. Jia-Fei et al. [11] reported that the viscosity of silicon dioxide nanofluids for nanoparticles of
less than 20 nm was dependent on pH. They observed a viscosity fluctuation between pH values of
5 and 7 and a decrease in viscosity for pH < 5. They think that this fluctuation is due to the size of
the flocculation and the electrical double layer of particles. They stated that the higher the volumetric
ratio, the greater the viscosity of the particulate fluid is higher than the small-sized particulate fluid.
Miastkowska et al. [12] studied nanoemulsions suitable for selected odor compounds without ethanol,
polyols and ionic surfactants. Optimized nano-perfumed formulations prepared by different methods
have produced a fragrance composition concentration in the range of 6–15%. They examined the
change in the viscosity of the formulations with pH and indicated that the low viscosity values had a
pH appropriate for the skin.

There are many valuable studies in the literature for the estimation of nanofluid viscosity.
Hemmati-Sarapardeh et al. Calculated the viscosities of different nanoparticles prepared with a
total of 11 nanoparticles in the range of 4 to 190 nm nanoparticle sizes in the range of 0% to 10%
nanoparticle volumes in the temperature range of −35 to 80 ◦C. Multilayer Perceptron (MLP), Support
Vector Machine (SVM) and Genetic Algorithm have calculated prediction models using computational
intelligence methods. They used nanofluid temperature, nanoparticle size, nanoparticle percentage,
and nanofluids density for the input data used in computational intelligence models. They used the
nanofluid viscosity for the output data. They use the root mean square error (RMSE) error analysis to
determine the accuracy of the methods. In the computational intelligence methods used for viscosity
estimation, the MLP method yielded a more accurate result than the other methods with an RMSE
error rate of 0.1 [13]. Afrand et al. estimated the viscosity of multi-walled carbon nanotubes/water
nanofluid with an optimal neural network using experimental data in their study. ANN used solid
volume fraction and temperature values in the predictive model as input variables, and their viscosity
values as output variables. ANN also used 268 data values to generate a predictive model for viscosity.
They used MAPE and MSE error analysis for the accuracy of the model. They obtained a successful
model according to the results of 0.28 MSE and 0.910 MAPE error analyses [14]. Meybodi et al.
Performed nanofluidic viscosity modeling with a total of 801 data values consisting of % volume
nanoparticle values used for nanofluid temperature, nanoparticle size and Al2O3, TiO2, SiO2 and CuO
nanofluids. For modeling, Least Squares Support Vector Machines (LSSVM) have used computational
intelligence. For the accuracy of the model, absolute absolute error (AARE) and RMSE error analysis
were applied. The LSSVM method estimated the nanofluidic viscosity values with an analysis value of
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3.7084 RMSE and a value of 2.1435 AARE for the error analyses [15]. Karimi et al., used an accurate
and effective artificial neural network (ANN) based on the genetic algorithm (GA) predicted 8 different
nanofluids viscosity. Genetic algorithm (GA) has been used to optimize neural network parameters.
The results showed that the GANN model was in good agreement with the experimental data with a
2.48% mean square error (MSE) error analysis result. The results also indicated that the GANN model
performed better than traditional neural networks in predicting the viscosity of nanofluids with a
percentage of 39% accuracy [16]. Ansari et al., In their study, have developed a predictive model for the
relative viscosity of various nanofluids using feedback-propagation MLP neural networks. The model
used a total of 1620 experimental data values to train, test and verify the proposed network. As the
input variables of the developed network, they chose the nanofluid temperature, shear rate values,
nanoparticle size, particle structure (nanoparticle density) and particle concentration. As a result, they
showed that the network they proposed was capable of accurately predicting viscosity with a general
average square error (MSE) of 0.00901 [17]. Esfe et al., in their studies, formed the niofluid samples
TiO2/SAE 50 nano-lubricant by a two-stage method using a mixer and ultrasonic device. To estimate
the viscosity values of the nanofluids they obtained, they applied three artificial intelligence methods
including the Genetic Algorithm-Radial Basic Function Neural Network (GA-RBF), Smallest Square
Support Vector Machine (LS-SVM) and Gene Expression Programming (GEP). They used the RMSE
error analysis to investigate the accuracy of the proposed models. They demonstrated the accuracy of
the proposed models with an average value of 0.58 RMSE [18].

In this study, the CuO nanoparticles were produced at different pH levels. Nanofluids were
obtained by using CuO Nanoparticles with pure water, Ethanol and Ethylene Glycol materials.
The viscosities of the obtained nanofluids in different Reynolds numbers were measured. The predicted
models were obtained by using multilayer perceptron (MLP), alternating decision tree (ADTree)
algorithms for computational intelligence methods. Mean square error (MSE), root mean square
error (RMSE) and mean absolute percentage error (MAPE) error analyses were used to determine the
accuracy of predictive models.

2. Materials and Methods

In our study, CuO (Carlo Erba Reagents, Val de Reuil, France) nanoparticles were produced
and nanofluids were obtained by adding certain amounts of pure water, ethylene glycol (Merck
Millipore, Burlington, MA, USA) and ethanol (Merck Millipore, Burlington, MA, USA) into the
mixture. The viscosity and average speed of the produced nanofluids were calculated. For the
calculated viscosity values, predictive models were obtained by using the computational intelligence
method ADTree and MLP.

2.1. CuO Nanofluids Production

In CuO particle production, 3.633 g (0.02 mol) of Copper Acetate was dissolved in 100 mL ethanol
for 30 min in an ultrasonic bath. Then, 8 g (0.2 mol) of NaOH (Carlo Erba Reagents, Val de Reuil,
France) and 200 mL of pure water were added to the resulting mixture and dissolved in an ultrasonic
bath for 30 min. Then, the resulting mixtures were combined and stirred in the fish mixer for 1 h.
In order to obtain the mixture at different pH ratios, ammonia was added to the mixture with a 10 mL
beaker. The mixture was allowed to precipitate for 20 h after preparation. After the waiting process,
filter paper was placed in the funnels and the material was subjected to the drying process at 50 ◦C.
Finally, the material obtained was heat-treated at 450 ◦C for 1 h. SEM image analyses were performed
to determine whether the material produced was a nanoparticle and whether nanoparticle production
was successful.

After the production of CuO nanoparticles, the materials used for the production of nanofluids are
57.1% Pure Water, 28.6% Ethylene Glycol and 14.3% Ethanol. 0.1%, 0.2%, and 0.3% CuO nanoparticles
were added to the solution of pure water, ethylene glycol and ethanol and then stirred for 45 min in an
ultrasonic mixer. The nanofluids formed as a result of the mixture is ready for use in the experimental
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setup. After determining the density of the produced nanofluids, pH values were determined using a
pH measuring device. Experiments were performed for 5 different Reynolds values between 846 and
2292 for the produced nanofluids.

Scanning Electron Microscope Analysis

Basically, the scanning electron microscope (SEM), Tungsten, Lantana hexane boron cathode or
the field emission (FEG) from the day of the use of the electrons emerging from the surface to be
examined (as a result of the interaction) is based on the interaction. In general, this electron energy in
SEM can range from 200–300 eV to 100 keV. For this purpose, the electron beam, which is collected
by the concentrator electromagnetic lens (condenser lens), focuses on the lens and perform scanning
on the sample surface with electromagnetic deflector coils. The formation of images in a scanning
electron microscope is basically based on the principle of collecting and examining the signals resulting
from the physical interactions with the surface of the electron beam (elastic, non-elastic collisions and
others). In the SEM device, the electrons in the electron bundle are the secondary electrons that emerge
as a result of the non-elastic collision with the atoms in the material (i.e., transferring their energies to
the electrons in the atoms on the sample surface). These electrons emerge from a depth of about 10 nm
of the sample surface, and their typical energies are at most 50 eV. Secondary electrons are collected by
means of the photomultiplier tube and associated with the scan signal location, for example, to obtain
a surface image [19].

The nanoparticle images at different pH values taken with the SEM display device (JSM-7001F,
Tokyo, Japan) are shown in Figure 1 respectively.

Figure 1. The scanning electron microscope (SEM) image of CuO, (a) CuO pH 7 nanoparticle; (b) CuO
pH 10 nanoparticle; (c) CuO pH 12 nanoparticle; (d) CuO pH 14 nanoparticle.

The nanoparticles, defined as dusts, whose dimensions are less than or equal to 100 nm, form
the basis of nanoscale materials and, thus, nanotechnology [20]. According to SEM analysis images in
Figure 1, the morphological structure and dimensions of the CuO nanoparticles produced at various
pH were found to be successful in the production of nanoparticles.
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2.2. Viscosity Measurement, the Average Speed (Vavr) and Reynolds Calculations of Nanofluids

The viscosity and density of nanofluids obtained by adding 0.1%, 0.2% and 0.3% CuO
nanomaterials were calculated with an SV-10 viscometer at different pH values and different
temperature values. The viscometer is used for liquids that cannot be identified with a single viscosity
value. Therefore, more parameters should be set and measured than for a viscometer. The viscometer
determines the viscosity of the nanofluids and allows the viscosity values to be examined in the face of
temperature variations.

In order to create a more precise model of computational intelligence methods used in the
viscosity estimation, the number of data values must be increased. In order to increase the number of
data, the Reynolds number and average speed values, which are the most important parameters in
determining the flow type, were selected. The average velocity and Reynolds numbers were calculated
with the help of the experimental setup in Figure 2. In the experimental setup, the temperature of
the in-pipe nanofluids obtained by the heat band and the temperature values where the viscosity
measurements are made are the same.

Figure 2. The experimental setup (1) Pump; (2) T Connection reducer elbow pipe; (3) Heat
Band; (4) Copper pipe; (5) Plastic pipe; (6) Flow Measurement Electronic device sensor; (7) Flow
Measurement Electronic device; (8) Fluid reservoir; (9) Flow Adjustment Valve; (10) Fluid Thermometer;
(11) Thermocouple.

As shown in Figure 2, the flow rate of nanofluids is adjusted by means of a flow rate control
valve. Temperature measurements were taken from 4 different points on the surface of the pipe with
the help of the thermocouples of the nanofluids passing through the copper pipe through laminar
flow. The inlet and outlet temperatures of the nanofluids to the copper tube were measured by means
of a fluid thermometer. The volumetric flow rate of the nanofluids was determined by means of the
flow meter.

In heating and cooling applications, the average speed may vary slightly due to density and
temperature changes. In practice, however, we evaluate fluid properties by taking fluid properties at
an average temperature and treat them as fixed. The suitability of working with fixed features often
compensates for a slight deviation from accuracy. The Reynolds number for the internal flow in the
circular pipe is defined as follows [21].

Re =
IntertiaForces
ViscosityForce

=
Vavr.D

ν
=

ρ.Vavr.D
µ

(1)

In Equation (1), µ is viscosity (kg/m·sn), υ is kinematic viscosity (m2/sn), D is pipe diameter (m),
ρ is density (kg/m3) and Vavr is mean flow velocity (m/s).
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We have already calculated the density and viscosity values. After calculating the average speed of
the nanofluids with device 7 in Figure 3, the Reynolds number is calculated with the help of Equation (1).

Figure 3. The diagram of measurements made in the experimental setup.

A diagrammatic representation of the measurements taken in the experimental setup is given in
Figure 3.

2.3. Computational Intelligence Methods

Computational intelligence methods use various datasets to make predictions or classifications.
In this study, Alternating Decision Tree and Multilayer Perceptron computational intelligence methods
were used to estimate the experimentally calculated viscosity values. The input parameters in the
computational intelligence methods used to estimate the viscosity were selected as the Reynolds
number (Re), power value (pH), percentage of nanoparticles used for the production of nanofluids
(%Nanoparticles), temperature of the nanofluids in the experimental setup (Temperature), nanofluids
density (Density), and average speed of the nanofluids in the experimental setup (Average Speed).
The viscosity of nanofluids (Viscosity) was used as the output parameter.

2.3.1. Alternating Decision Tree

Decision trees are potentially strong predictors and provide a clear concept description for a
dataset. Decision tree learners are popular because they are fast and they produce models that perform
well with a variety of features [22,23]. The root node, which is the first node of the tree, starts to ask
questions for the estimation of the data and the structure of the tree, and this process continues until
nodes or leaves without branches are found [24].

The Alternative Decision Tree (ADTree) consists of decision nodes and prediction nodes.
The decision states an action result. Prediction nodes contain a single number. Alternative decision
trees always have prediction nodes as both the root and leaves. The classification or prediction for a
dataset is made by following the paths of each forecast node and all decision nodes [25].

The learning algorithm must be 1 <= i <= n and n is provided through the sample (~xi; yi).
~xi indicates an attribute value indicating the vector and yi indicates the target value. When an external
vector x is entered, this model is used to estimate the value corresponding to the y value. The purpose
of this model is to minimize the error between the estimated value and the actual value. The method
uses the basic algorithm of incremental regression by using an advanced stepwise additive model at
the stage of learning additive model trees [26].
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If a model consisting of k base model is created;

Fk(
→
x ) =

k

∑
j=1

f j(
→
x ) (2)

the error squared on a progressive state;

n

∑
i=1

(Fk(
→
x i)− yi)

2
(3)

is minimized through n training samples.
The alternating decision tree method, which is used for estimating the viscosity values of

nanofluids, was applied by using the MATLAB 2018b software (MathWorks). The ADTree M5P
algorithm was used in the MATLAB software.

Figure 4 shows the tree structure used by the alternating decision tree algorithm to estimate
viscosity values. In Figure 4, the viscosity values were estimated according to the rules in the branches
of trees depending on the values of the average speed, Reynolds, pH, and density in the alternating
decision tree.

Figure 4. The tree structure.

In Figure 5, the average speed parameter forms the root part of the tree. Reynolds pH and Density
form the inner root. LM1-5 forms the leaves. The ADTree algorithm continues to apply rules until the
data is separated by the decisions in the branches and reaches the LM values. The ADTree algorithm
sets the rules and roots randomly.

Figure 5. The network structure of multilayer perceptron (MLP).
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2.3.2. Multilayer Perceptron

The concept of artificial intelligence entered the lives of scientists as a result of long-term studies
in the computer model of the human brain. A new domain name, which they call artificial neural
networks, was followed by following these steps. An artificial neural network technique, reliable
results and the active use of nonlinear problems in the solution of the problem has led to their
widespread use over time.

Feed-forward neural networks (ANN) are often used as classifiers for model classification
approaches involving a multi-layer perceptron (MLP). In general, the software application of MLP
neural networks is used in the algorithm development phase, where parallel and low latency
approaches are not required. However, in real-world applications, high-speed processing and low
latencies are needed to carry out ANN in real-time constraints [27].

MLP is an ANN made up of multiple neuronal layers in a feed-through architecture. A multi-layer
sensor consists of three or more layers with one input, one output, and one or more hidden layers.
Considering that the MLP is a fully connected network, each neuron in each layer is the link to the next
layer with a certain weight function. MLP uses a supervised learning technique called backpropagation.
The weight function is defined in the training phase of the neural network [28].

The prediction of viscosity values with MLP was done using the MATLAB 2018b software. A total
of 420 data values were used in the MLP model. A total of 294 data values were used for training
and 126 data values were used for the test. The MLP network structure used for the estimation of h is
shown in Table 1.

Table 1. The network Structure of multilayer perceptron (MLP).

Number of Layers 3
Number of Neurons in Layers 6-6-1

Weight Ratings Random
Activation Function Logsig

Transfer Function Tangent Sigmoid Transfer
Learning Function Backpropagation

The structure of the MLP was given in Figure 5. The MLP structure shown in Figure 5 consists of
6 input parameters, 1 output parameter and 2 hidden layers.

The formula and parameters of the mean square error (MSE), root mean square error (RMSE)
and mean absolute percentage error (MAPE) error analysis used to determine the accuracy rates of
computational intelligence methods are shown in Table 2.

Table 2. The accuracy criteria and formulas [29].

Accuracy Criteria Formulas Parameters

MSE 1
n

n
∑

i=1
(Pi− Ai)2

P: Predicted Value
A: Actual Value
n: Total Estimated Value

RMSE
√

(P1−A1)
2+...+(Pn−An)

2

n

P: Predicted Value
A: Actual Value
n: Total Estimated Value

MAPE
P
∑

p=1

∣∣∣ dp−zp
dp

∣∣∣. 100
P

d: Predicted Value
z: Actual Value
P: Total Estimated Value
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3. Results

In this study, the viscosity values of CuO nanofluids at various pH and temperatures for the
nano-liquids obtained using the nanomaterials produced are inversely proportional to the temperature
values between 20 and 60 ◦C. Figure 6 shows an inverse relationship between temperature and viscosity.

Figure 6. The experimental measurement of the viscosity of the CuO solution as a function of T with
various pH values and weight % values.

According to Figure 6, the viscosity value increased when the pH value increased, but the viscosity
value decreased when the temperature increased.

Figure 7 shows the average velocity-viscosity values at a Reynolds number of 2300 and at a
temperature of 20 ◦C. Figure 7 is the viscosity-average velocity graph of the nanofluids obtained
by adding CuO at different percentages. According to this graph generated, at different pH values,
the viscosity value increased as the pH ratio increased. At the same time, the higher the CuO ratio,
the higher the viscosity value. The increase in the viscosity value due to the increase in the average
velocity value can be explained by the increase in the amount of CuO.

Figure 7. The average velocity-viscosity change of nanofluids obtained at different pH and CuO ratios.
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Creating Predictive Models for Viscosity Values with ADTree and MLP

The error rates for ADTree and MLP predicted models created for viscosity values of CuO
nanofluids were shown in Table 3.

Table 3. The error rates.

Kernel Models MSE RMSE MAPE

Alternating Decision Tree 0.056 0.1436 0.0384
Multilayer Perceptron 0.023 0.0745 0.0204

In the literature, different studies have been performed to create a predictive model of various
nanofluidic viscosities by using computational intelligence methods. These studies are shown in
Table 4.

Table 4. The predictive models of nanofluids viscosity in the literature.

Nanofluids Number of
Values Method Error

Analysis
Error Analysis

Result Reference

Al2O3, TiO2, SiO2 and
CuO-water nanofluids 3144 MLP RMSE 0.1 Hemmati-Sarapardeh et al. [13]

Multi-walled Carbon
Nanotubes

MWCNTs/water
Nanofluids

268 ANN MSE 0.28 Afrand et al. [14]

Al2O3, CuO, TiO2 and
SiO2 Nanofluids 801 LS-SVM RMSE 37.084 Meybodi et al. [15]

Al2O3–H2O, CuO–H2O,
TiO2–H2O, TiO2–EG,

SiO2–H2O, SiO2–EtOH
381 GA-ANN MSE 2.48 Karimi et al. [16]

Different Nanofluids 1620 MLP MSE 0.09 Ansari et al. [17]

TiO2/SAE 50
Nano-lubricant 251 LS-SWM RMSE 0.58 Esfe et al. [18]

Table 4 shows the nanoacetic type, the number of data values, the predictive method, the type of
error analysis and the results of the error analysis. In our study, the results of the RMSE error analysis
of the methods used to estimate the viscosity of the nanofluids have less error than the results of the
RMSE error analysis of the studies in Table 4.

Figures 8 and 9 show the viscosity values estimated by computational intelligence methods and
the viscosity values calculated from the experimental study.

Figures 8 and 9 show the experimental and predictive data. The data given in the form of plus
are predictive and the data given in square form are experimental. The predictive viscosity values are
the values obtained using the input parameters specified in Section 2.3 with MLP and DT, which is a
machine learning algorithm. The fact that the experimental data and the predictive data are close to
each other indicate a more accurate estimation.
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Figure 8. The actual viscosity values obtained with the experimental values and predicted viscosity
values obtained using ADTree.

Figure 9. The actual viscosity values obtained with the experimental values and predicted viscosity
values obtained using MLP.

In Figures 8 and 9, the predictive values obtained by both computational intelligence methods
in the figures are similar to the actual values. In the actual and predictive viscosity values shown in
Figures 8 and 9, the predictive values made with MLP are closer to the actual values. This can be
explained by the results of the error analysis in Table 2. The results of the error analysis in the MLP
method are lower than the error analysis results in ADTree method. According to the values in Table 2,
the MLP method has a more accurate estimate of 50% than the ADTree method.

4. Conclusions

Our work, the SEM images analyses of the particles produced after the production of CuO
nanoparticles, has been shown to be successful in the production of nanoparticles. The viscosity values
of the nanofluids were examined with temperature and pH values in the experimental setup. It was
observed that the viscosity values decreased with increasing temperature values and increased with
increasing pH values.
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In the computational intelligence methods used to estimate the viscosity values, the estimated
values are similar to actual values. In the predictive methods, it was concluded that multilayer
perceptron was a successful model for the predictive modeling of viscosity values according to the
results of the error analysis (Table 3). As shown in Figure 9, the actual and predictive viscosity values
are very close to each other. By using different nanofluids or by increasing the measurement ranges,
more data can be obtained and different computational intelligence methods with fewer errors can
be used.
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