iriried applied
L sciences

Article

A Hybrid Crow Search Algorithm for Solving
Permutation Flow Shop Scheduling Problems

Ko-Wei Huang "*(0, Abba Suganda Girsang 2, Ze-Xue Wu ! and Yu-Wei Chuang 3

1 Department of Electrical Engineering, National Kaohsiung University of Science and Technology,

Kaohsiung City 807, Taiwan; 1103104102@nkust.edu.tw

Computer Science Department, BINUS Graduate Program-Master of Computer Science Bina Nusantara
University, Jakarta 11480, Indonesia; Agirsang@binus.edu

Department of Computer Science and Information Management, Providence University,

Taichung City 433, Taiwan; ywchuang@gmail.com

* Correspondence: elone.huang@nkust.edu.tw; Tel.: +886-7-381-4526

check for
Received: 7 March 2019; Accepted: 27 March 2019; Published: 30 March 2019 updates

Abstract: The permutation flow shop scheduling problem (PFSP) is a renowned problem in the
scheduling research community. It is an NP-hard combinatorial optimization problem that has
useful real-world applications. In this problem, finding a useful algorithm to handle the massive
amounts of jobs required to retrieve an actionable permutation order in a reasonable amount of
time is important. The recently developed crow search algorithm (CSA) is a novel swarm-based
metaheuristic algorithm originally proposed to solve mathematical optimization problems. In this
paper, a hybrid CSA (HCSA) is proposed to minimize the makespans of PFSPs. First, to make the
CSA suitable for solving the PFSP, the smallest position value rule is applied to convert continuous
numbers into job sequences. Then, the HCSA uses a Nawaz-Enscore-Ham (NEH) technique to create
a population with the required levels of quality and diversity. We apply a local search to enhance
the quality of the solutions and avoid premature convergence; simulated annealing enhances the
local search of a method based on a variable neighborhood search. Computational tests are used to
evaluate the algorithm using PFSP benchmarks with job sizes between 20 and 500. The tests indicate
that the performance of the proposed HCSA is significantly superior to that of other algorithms.

Keywords: permutation flow shop scheduling; NEH heuristic; crow search algorithm; smallest
position value; makespan

1. Introduction

Several optimization methods have been proposed in artificial intelligence to find interesting
patterns or optimization results for larger NP-hard optimization problems within a reasonable amount
of time. To date, several real-world problems have been investigated to address this issue, such as data
mining [1-4], DNA fragment assembly [5,6], DNA compression [7], Internet of Things [8,9], knapsack
problem [10], networks of evolutionary processors [11], scheduling [12], and traveling salesman [13].

Among these, the permutation flow shop scheduling problem (PFSP) has attracted significant
attention and has important roles in scheduling research. The PFSP was first proposed by Johnson
[14] in 1953, and has attracted extensive attention since then. Several theoretical, algorithmic,
and computational research studies have addressed this problem. The basic concept of the PFSP is that
n jobs need to be processed on a sequence of m machines, such that each job needs to be processed
on all machines in the same order. Johnson addressed it as a two-machine problem. Kan proved that
the makespan minimization of the PFSP is an NP-hard problem [15]. For large problem instances,
both the traditional dynamic programming approach and the heuristic approach require excessive

Appl. Sci. 2019, 9, 1353; d0i:10.3390/app9071353 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1489-540X
http://dx.doi.org/10.3390/app9071353
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/7/1353?type=check_update&version=2

Appl. Sci. 2019, 9, 1353 20f15

computational time. To date, the Nawaz-Enscore-Ham (NEH) heuristic [16] is considered to be one of
the most effective heuristic approaches for solving the PFSP; numerous variants of the NEH algorithm
have been proposed, such as those in References [17-22]. Metaheuristic approaches are often applied to
solve NP-hard combinatorial optimization problems. Various metaheuristic algorithms [23] continue
to attract increasing interest in optimization research. This type of research is typically inspired by
natural behavior, and has yielded algorithms such as the artificial bee colony (ABC) [24], ant colony
optimization (ACO) [25], cuckoo search (CS) [26], differential evolution (DE) [27], firefly algorithm
(FA) [28], gravitational search algorithm (GSA) [29], particle swarm optimization (PSO) [30], and whale
optimization (WA) [31]. Recently, the combinatorial optimization community has attempted to solve
the PFSP by using metaheuristic approaches, such as those in References [32-37]. One of the recently
proposed swarm-based intelligence algorithms is the crow search algorithm (CSA) [38]. The CSA is
based on the intelligent behavior of crows, who tend to store excess food in hiding places and retrieve
it when required. Crows may try to follow other crows to steal their hidden food. The CSA simulates
crow strategies with awareness probability and flight length parameters. The CSA provides an efficient
search strategy for solving optimization problems. Furthermore, it is considered to be quicker than
and superior to the PSO algorithm.

The performance of a simple CSA is controlled by two parameters: the flight length fL and
the awareness probability AP. Although the CSA is better than PSO, similar issues occur; namely,
it is necessary to avoid premature convergence and enhance diverse abilities [39,40]. In addition,
the original CSA is more suitable for continuous optimization problems, whereas little research has
been done on transferring the approach to combinatorial optimization problems. It is a challenge to
map the CSA to PFSP problems. Thus, in this paper, we propose a hybrid CSA (HCSA) approach to
minimize makespan in PFSP problems. First, to make the CSA suitable for solving the PFSP, the smallest
position value rule is applied to convert continuous numbers into job sequences. Our HCSA applies
an NEH technique to create a population with excellent quality and diversity. Finally, to enhance the
quality of the solutions and avoid premature convergence, simulated annealing (SA) [41] is combined
with the variable neighborhood search (VINS) [23] to produce SA-VNS, which provides a local search
to enhance the exploitation and exploration of HCSA. Performance evaluations proved that our HCSA
outperformed existing algorithms. In summary, HCSA applies the evolutionary searching of CSA to
generate the population, individual update, and competition, and effectively find better solutions by
utilizing and initializing adaptive local searches to create diversity.

The remainder of this paper is organized as follows. Background and related work are described
in Section 2. The problem definition is stated in Section 3. Section 4 presents the proposed HCSA.
The performance evaluation is outlined in Section 5. Finally, conclusions and suggestions for future
research are provided in Section 6.

2. Background Knowledge and Related Works

This section reviews relevant background and related studies. The following topics are discussed
in detail:

e Nawaz-Enscore-Ham heuristic (NEH);
* Crow search algorithm (CSA);

e Simulated annealing (SA);

® Variable neighborhood search (VNS).

2.1. NEH Heuristic

The NEH [16] algorithm is the best constructive heuristic for solving the PFSP, as has previously
been discussed in References [17-22,42]. Two main concepts underpin the NEH algorithm: 1. the order
of the jobs; and 2. that jobs are prioritized based on priority rules and tie-breaking strategies, such as
NEHD [17], NEHKK1 [18], NEHKK?2 [19], CL [20], and NEHLJP1 [22]. The procedure employed by
the NEH algorithm is presented in Algorithm 1.

Appl. Sci. 2019, 9, 1353 30f15

Algorithm 1 Standard Nawaz-Enscore-Ham (NEH) algorithm.

Input: n jobs, s machines, and the processing time of each job on each machine
Output: A solution with a minimized makespan

Step: Description:

1. Obtain a permutation 7z of 1 jobs such that each job is in a descending order of its processing
time on the machines.

2. Choose the first two jobs from job sequence 77, and obtain the superior order according to the
makespan values

3. Generate a new job permutation by inserting the g-th job (g =3, ..., n) in job sequence 7 in every
possible slot of job sequence 77, and choose the order with the minimum makespan.

4. Finally, output the current best solution—the one with the minimum makespan value.

2.2. Crow Search Algorithm (CSA)

Crows are among the most intelligent types of birds; the behavior of crows indicates substantial
cognitive ability. Although crows are less intelligent than humans, crows make tools and recognize
themselves in mirrors [43]. In a typical community of crows, each crow has its own cache of food,
and each crow hides its cache from potential burglars. Askazadeh published the CSA [38]—a stochastic
swarm-based optimization method. The main points of the CSA are as follows:

Crows live in flocks;

Crows recall where their caches are;

Crows pursue each other and opportunistically burglarize food caches;

Crows protect their hiding spaces from attackers with a probability in the interval [0, 1].

LS

The CSA represents crows as software entities. Each crow has some flight length fL and an
awareness probability AP. If the value of fL is small, then the CSA conducts a local search; if the
value of fL is large, then the CSA conducts a global search. The values of AP control crow intensity
and diversity. The CSA generates crow positions randomly. For N crows in a solution space with
dimension d, at iteration ¢, Equation (1) calculates each crow’s position in the solution space:

Xf = {xf/l,xfrz, xfrj,. ..,xf,d} fori=1,2,3...,N, (1)

where x! jis the j-th potential position of crow i.
Our model considers that crow ¢ may be followed by crow i, and crow ¢ may or may not be aware
of this pursuer. Equation (2) calculates the updated position of crow i at time ¢ + 1:

xf/j + rand; x fl x (m’c] — x;’j) if rand; > AP,)
K random position if rand; < AP,

where x! j is the location of crow i in dimension j at iteration ¢, m! j is the location of the hiding place of
crow i atiteration t. fL is the flight length of crow i at iteration ¢, AP is the awareness probability of
crow c at iteration f, and rand; is a random variable in the range [0, 1].

The CSA algorithm is outlined in Algorithm 2.

Appl. Sci. 2019, 9, 1353 40f15

Algorithm 2 Standard crow search algorithm (CSA).

Input: Number of crows N, flight length fL, awareness probability AP
Output: The best solution

Step: Description:

NGk

Randomly initialize the position of all crows.

Initialize the memory of all crows.

Obtain the fitness value of all crows.

Obtain the memory of all crows.

Update the position of all crows according to Equation (2).
Repeat Steps 3 to 5 until the termination criterion is reached.
Output the best solution.

2.3. Simulated Annealing (SA)

The SA algorithm is a metaheuristic method proposed by Kirkpatrick et al. [41]. The concept

underlying the SA algorithm is derived from the annealing of solids. SA is extensively applied to solve
complex combinatorial problems, as it employs a perturbation search strategy. Some studies have
applied SA to solve the PFSP [21,44-47]. The detailed procedure employed by the SA algorithm is
shown in Algorithm 3.

Algorithm 3 A standard simulated annealing (SA) algorithm.

Input: Initial temperature T, cooling rate 3, and frozen temperature T, 4

Output: The best solution

Step: Description:

1. Initialize with a random solution.

2. Generate a new solution by using the perturbation method and computing a fitness function.
3. Calculate the energy change AE = f"¢v — fold,

4. If AE < 0, the new solution will be accepted and adopted as the best solution.

5. If AE > 0, calculate the probability of accepting the solution according to r, < (emAE/T),
6. Adjust temperature T using T = T * 8.

7. Repeat Steps 2 to 6 until temperature T reaches the freezing point, T,

8. Finally, the best solution is found.

In the above, f"**? is the new solution object value, f old is the current best solution value, and p
is a uniform random variable in the interval [0, 1].

2.4. Variable Neighborhood Search

VNS [23] is a local search strategy used to improve metaheuristic methods. VNS can be used to

maintain the diversity of solutions throughout the metaheuristic process. Four common neighborhood
perturbation operators are adopted in VNS: pair-swap, inversion, insertion, and displacement.
These are described as follows::

1.

Pair-swap: Randomly select two different positions from the permutation sequence and swap
these positions;

Inversion: Invert the subsequence between two random positions from the permutation sequence;
Insertion: Randomly select two different positions from the permutation sequence and insert the
front position before the back position;

Displacement: Randomly choose a position and a subsequence; then, insert the subsequence
before the chosen position.

Figure 1 shows a simple example of each of these VNS local search operations. The VNS algorithm

continues to run until a stopping condition is reached; this is the maximum number of iterations.

Appl. Sci. 2019, 9, 1353 50f 15

Pair-Swap [2]s]1]4]3]6] = |2]3|z]4]5]6]

Inversion [2]5]1]4]3]6] > [2]3]4]1]5]6]

Insertion [2]5]1]4f3]6] > [2|3]5]1]|4]s6]
| S

Displacement [2]5]1]4]3]6] > [2]4]3]s[1]6]
| S

Figure 1. Examples of the different operations in the variable neighborhood search (VNS) local
search algorithm.

3. Problem Definition

The PFSP requires running # jobs on a sequence of m machines, such that every job must be
processed on all machines in the same order; the goal is to minimize the makespan. The detailed
description is as follows: Given n jobs {1,2,...,n}, each job is processed on a series of s machines
{1,2,...,s} in a sequence defined by the job permutation. The job permutation 7w = {71y, 712, ..., 7, }
is calculated by ordering the operations into a permutation. The processing time of job i on machine j
is denoted by p, ;, where each job is permitted to be processed on no more than one machine at a time
and each machine can process only one job at a time. The completion time of job i on the machine is
denoted by C(7;, k). The objective function for PFSP is expressed in Equation (3).

C(nlrl) = Pmias

C(?Ti,l) = C(7'(Z‘_1,1)+p7-(1.,1, 1=23,...,n,

C(l,ﬂk) = C(T[l,k—l)-i—}?nl,k, k:2,3,...,S, (3)
C(mj, k) =max {C(m;,k—1),C(mi_1,k)} + P, s

for i=23,...,n; k=2,3,...,s.

The optimal permutation 7r* from the set of all different permutations F; (i.e., the permutation
with the minimum makespan) can be found by the optimization in Equation (4):

m* =argmin C*(7r), Vm € Fy,
(4)
Ciax () = C(71y,8).

4. Proposed Algorithm

4.1. Solution Representation

The CSA uses continuous number encoding for a swarm-based metaheuristic representation.
Whereas typical metaheuristics generate permutations to solve NP-hard problems, the CSA does not

Appl. Sci. 2019, 9, 1353 60f15

directly generate permutations. In this study, we use a smallest position value (SPV) rule inspired by
the random keys approach [48] to convert continuous numbers into a job sequence [49]. With the SPV
rule, the position values of all crows are first sorted in ascending order, and then the job permutation is
determined based on the results. Table 1 presents an example of the SPV transformation of continuous
values into permutations of a job sequence. Assuming we have six jobs and six dimensions, the position
values of the crows are presented in the second column as (1.35, —2,46, —1.52, 2.31, 0.52, and —1.68).
Based on the SPV values, the smallest position value is —2.46; therefore, the first job order is two.
The second smallest position value is —1.68; therefore, the second job order is six. Similarly, the ranking
order values produce the job values and the output permutation is [2, 6, 3, 5, 1, 4].

Table 1. Example of the smallest position value (SPV) approach.

Dimension d Position Value Job Permutation

1 1.35 2
2 —2.46 6
3 —1.52 3
4 2.31 5
5 0.52 1
6 —1.68 4

4.2. Initial Population

The NEH algorithm is an efficient heuristic method for solving the PFSP. Thus, to guarantee
that the initial population can receive a quality solution with high diversity, one of the crows uses an
NEH-based algorithm to generate the job permutation, which is then mapped to the position values
according to the SPV rule. Table 2 shows how the SPV is applied to transform the permutations of
the job sequence into a continuous value. To limit the search space, Equation (5) is applied to the first
crow population:

Xid = Xmin T+ (xmax - xmin) *7i. d=12,...,n, (5)

where d is the quantity of jobs at the agent position and x; 4 refers to the dth position value of crow i.
Further, ; is a random variable uniformly distributed in the interval [0, 1]. x,,;;, = —5.0 and x;;5x = 5.0
are respectively the lower and upper bounds of the position or velocity values.

Table 2. Mapping a job permutation to position values.

Dimension d Job Permutation from NEH Heuristic Initial Value Remapped Values

1 2 —1.02 1.31
2 6 0.45 —-1.02
3 3 1.31 0.45
4 5 -0.76 2.87
5 1 2.87 0.56
6 4 0.56 —0.76

4.3. SA-VNS Local Search

The VNS procedure can be combined with other heuristic algorithms to ameliorate the solution
quality [23]. Thus, in this study, the SA algorithm was combined with VNS for a local search after
the CSA procedure. This improved the local search ability and avoided premature convergence.
Incorporating the SA algorithm into the VNS process enables an appropriate balance between
exploration and exploitation to be maintained at different temperatures.

Appl. Sci. 2019, 9, 1353

4.4. The Proposed HCSA Algorithm

Figure 2 presents a flowchart of the hybrid crow search algorithm (HCSA). Initially, NEH-based
algorithms are used to obtain a solution for one crow; the values for the remaining crows are generated
randomly. The SPV rules and the evolutionary CSA are used to generate numerous possible solutions.
The SPV rules and the evolutionary CSA are then used to randomly generate numerous possible
solutions, and the system delivers the global best solution (out of all known possibilities) before the
stopping criterion is met. The SA-VNS local search improves the quality of the global best solution
obtained from the CSA. Finally, the approximate best permutation is obtained.

Use the NEH-based algorithm to
generate one solution m

12

Initialize each crow with a random
position and form a sequence

2

Assign the 7, to crow 1, and

remap the position value

v

Calculate the fitness of each
crow

2

Obtain the memory of all crows

¥

Update the position of all crows
according to Eq. 2

v

Apply the SA-VNS local search
on the best search crow

Until the criterion or maximum
iteration tmax is reached

Finally, the best
permutation is found

Figure 2. Proposed hybrid CSA (HCSA) for solving the permutation flow shop scheduling

problem (PFSP).

5. Experimental Results

In this section, the performance of the proposed HCSA is presented.

Appl. Sci. 2019, 9, 1353 8 0f 15

5.1. Environment Setting

The proposed HCSA’s performance was evaluated by solving the PFSP benchmarks generated by
Taillard [50], which comprise 12 instances ranging from 20 jobs with five machines (Ta01) to 500 jobs
with 20 machines (Tal11), as shown in Table 3. All programs were implemented in Java and executed
on a Windows 10 operating system running on a computer with an AMD Ryzen 3 1200 Quad-Core
3.10 GHz CPU, and 8 GB RAM.

Table 3. Taillard [50] benchmarks for the permutation flow shop scheduling problem (PFSP).

Problem Jobs Machines

ta01 20 5
tall 20 10
ta2l 20 20
ta3l 50 5
ta4l 50 10
ta51 50 20
ta6bl 100 5
ta71 100 10
ta81 100 20
ta9l 200 10
tal01 200 20
talll 500 20

5.2. Parameter Setting

Table 4 lists the parameter settings for all experiments. The performance of the CSA was assessed
based on Equations (6) and (7):

S,—UB o
YR (i) x 100%)

ARPD = ,
R

(6)

£ () x 100%)

B :)
where ARPD is the average percentage relative deviation, BRPD is the best percentage relative
deviation, S; is the average values of the makespan found by the algorithm, S,; is the best makespan
found by the algorithm, UB indicates the upper bound of the benchmark, and R is the number of
independent runs.

BRPD =

Table 4. Parameter settings of the proposed algorithm.

Algorithm Parameter Value
CSA
Number of crows 20
Number of iterations #;;4x 1000
Number of independent runs R~ 20
Flight length fL 10
Awareness probability AP 0.25
SA
Initial temperature T 100
cooling coefficient 3 0.99

5.3. Comparison of CSA Algorithms Incorporated with Variants of the NEH

To validate the effectiveness of each initialization approach, the CSA was combined with several
variants of the NEH-based algorithm and their respective performance levels were compared. A new

Appl. Sci. 2019, 9, 1353 90f15

priority rule and a new tie-breaking rule based on the NEH [16] algorithm were used; elements
included NEHD [17], NEHKKT1 [18], NEHKK2 [19], CL [20], and NEHLJP1 [22]. The BRPD and ARPD
values for the simulation of the CSA coupled with six initialization NEH algorithms are summarized
in Table 5 and the values in bold font represent the algorithms that achieve superior performance.

Table 5. Comparison of different variants of initialization algorithms. ARPD: average percentage
relative deviation; BRPD: best percentage relative deviation.

NEH NEHD NEHKK1 NEHKK2 CL NEHLJP1

Problem
ta01 BRPD 0.70 1.49 0.47 1.48 0.70 148
ARPD 0.73 1.55 1.36 1.48 0.71 1.48
tall BRPD 252 2.84 2.14 2.46 272 2.66
ARPD 3.28 3.66 4.79 3.73 4.08 3.12
ta2l BRPD 3.22 2.82 2.39 1.92 205 2.66
ARPD 4.22 2.82 3.93 242 273 3.37
ta31 BRPD 0.18 0.00 1.02 0.18 0.18 0.18
ARPD 0.18 0.39 1.98 0.21 0.25 0.18
tadl BRPD 4.74 3.81 3.51 454 454 3.51
ARPD 5.05 5.62 4.33 4.54 548 457
tabl BRPD 3.45 5.61 452 455 450 4.16
ARPD 3.65 7.20 5.21 4.96 471 4.38
ta61 BRPD 0.38 0.38 1.36 0.43 0.04 0.09
ARPD 0.38 0.43 1.37 0.43 0.04 0.45
ta71 BRPD 1.06 1.87 0.88 0.92 0.74 0.88
ARPD 1.19 2.10 1.06 0.94 1.14 0.98
ta81 BRPD 2.85 3.14 3.64 2.77 3.19 3.17
ARPD 3.21 4.14 3.93 3.31 3.56 3.31
tagl BRPD 0.74 0.20 0.72 0.52 0.68 0.75
ARPD 0.75 0.49 0.72 0.61 0.68 0.75
tal01 BRPD 246 1.57 2.13 2.76 228 1.89
ARPD 2.66 1.69 2.24 2.88 259 224
talll BRPD 147 1.59 1.54 1.22 1.52 1.15
ARPD 1.79 1.69 1.70 1.43 1.77 1.38
Average BRPD 198 2.11 2.03 1.98 1.93 1.88
ARPD 2.26 2.65 2.72 2.25 231 218

The best BRPD and ARPD values of the tested NEH-based algorithms were 1.88 and 2.18,
respectively. From the aforementioned simulation results, it can be concluded that the CSA combined
with the NEHLJP1 heuristic is more effective than other NEH-based heuristic algorithms. In addition,
the original NEH algorithm had better ARPD values than the NEHD and NEHKKT1 variants. Therefore,
we incorporated NEHL]JP1 into the CSA algorithm as the initialization strategy. To present the previous
experimental results more clearly, the data from Table 5 are depicted visually in Figure 3. The x-axis
shows the different sizes of the benchmarks, and the y-axis shows the ARPD and BRPD values for each
test function.

5.4. Comparison of CSA Algorithms Incorporated with the SA-Based Local Search

NEHLJP1 combined with the CSA algorithm provided the best BRPD and ARPD values. In this
section, we validate the effectiveness of the algorithm on the number of iterations in the SA local search.
We compared two different iterations of the local search, 1000 and jobs x (jobs — 1) [49], using the
BRPD and ARPD values and the average computation time ¢,0g, where jobs indicates the number
of jobs of the benchmark and the values in bold font represent the algorithms that achieve superior
performance.

The computed BRPD and ARPD results are listed in Tables 6 and 7. The jobs x (jobs — 1) strategy
achieved better BRPD and ARPD values for small jobs (0.54 and 0.69, respectively). However, the BRPD

Appl. Sci. 2019, 9, 1353 10 of 15

and ARPD values were almost the same for large jobs. Additionally, the computation times were almost
identical for two different numbers of iterations. In summary, the jobs x (jobs — 1) strategy achieved
the most desirable BRPD and ARPD values for all benchmarks, specifically 0.61 and 0.81, respectively.

ARPD ARPD

7| = NEH " NEH
== NEHD) == NEHD
- NEHKK1 35 . NEHKK1
= NEHKK2 = NEHKK2
- CL ¥ - CL
" NEHLJP1 " NEHLJP1

ta01 ’ ta101 talll

BRPD BRPD

m NEH
s NEHD
s NEHKK1
. NEHKK2
- L
N NEHLJP1

 NEH
s NEHD
s NEHKK1
m NEHKK2
- CL
N NEHLJP1

tal0Ol talll

Figure 3. Comparison of the results for all different NEH-based algorithms.

Table 6. Comparison of different iterations of the local search for small job sizes.

1000 jobs X (jobs —1)

Problem
ta01 BRPD 0.00 0.00
ARPD 0.00 0.00
tavg 143 143
tall BRPD 0.00 0.00
ARPD 0.06 0.00
twg 167 165
ta21 BRPD 0.00 0.00
ARPD 027 0.18
tavg 226 223
ta31 BRPD 0.00 0.00
ARPD 0.00 0.00
tavg 3.08 321
ta4l BRPD 147 1.24
ARPD 229 1.70
tavg 3.75 3.82
tab1 BRPD 218 1.95
ARPD 242 225
tavg 522 531

Average BRPD 0.61 0.54
ARPD 0.84 0.69
tavg 290 294

Appl. Sci. 2019, 9, 1353 110f15

Table 7. Comparison of different iterations of the local search for large job sizes.

1000 jobs X (jobs —1)

Problem
ta61 BRPD 0.00 0.00
ARPD 0.02 0.02
tavg 6.02 6.22
ta71 BRPD 0.26 0.23
ARPD 051 0.50
taog 732 756
ta81 BRPD 1.72 1.59
ARPD 211 2.10
tavg 10.28 10.32
ta9l BRPD 0.16 0.16
ARPD 048 0.56
tavg 14.70 15.32
tal01 BRPD 1.08 1.26
ARPD 141 1.39
tavg 19.88 20.79
talll BRPD 1.47 0.89
ARPD 1.79 1.06
tavg 54.14 55.92

Average BRPD 0.69 0.69
ARPD 094 0.94
tavg 18.72 19.36

5.5. Comparison of Meta-Heuristic Algorithms

We compared the performance level of the HCSA with those of one GSA-based and two PSO-based
algorithms, namely, MGELS [37], PSOVNS [49], and PSOMA [51], for 1000 iterations of the 12 Taillard
benchmarks. The settings employed for HCSA are detailed in Table 4. MGELS is a GSA-based
algorithm with an emulated local search algorithm. PSOVNS is an SPV-rule-based algorithm that
combines PSO and VNS. PSOMA is an SPV-rule-based algorithm that combines PSO and NEH, and also
adopts an SA-based local search.

As shown in Table 8 and the values in bold font represent the algorithms that achieve superior
performance. In terms of the BRPD values, the HCSA was superior to the MGELS, PSOVNS,
and PSOMA algorithms, except for ta081 (100*20). In terms of the ARPD values, the HCSA was
better than the MGELS, PSOVNS, and PSOMA algorithms, except for ta081 (100*20) and ta091 (200*10).
The average ARPD value from HCSA was 0.61%, in comparison to the values of 6.00%, 2.05%, and 0.90%
obtained by MGELS, PSOVNS, and PSOMA, respectively. In addition, because MGELS does not apply
any initialization algorithm or local search, its performance had significant differences from other
algorithms for large benchmarks. For the local search, using an SA-based search with the metaheuristic
algorithm achieved better results than not using SA. In summary, from the aforementioned simulation
results, it can be concluded that HCSA is more effective than the MGELS, PSOVNS, and PSOMA
metaheuristic algorithms. To present the previous experimental results more clearly, the data from
Table 8 are depicted visually in Figure 4. The x-axis shows the different sizes of the benchmarks,
and the y-axis shows the ARPD and BRPD values for each test function.

Appl. Sci. 2019, 9, 1353

Table 8. Comparison tests of various meta-heuristic algorithms.

12 0f 15

HCSA MGELS PSOVNS PSOMA

Problem
ta01 BRPD 0.00 1.48 0.23 0.00
ARPD 0.00 2.45 1.63 0.00
tall BRPD 0.00 2.84 0.26 0.00
ARPD 0.00 4.95 2.28 0.10
ta2l BRPD 0.00 2.84 0.74 0.00
ARPD 0.18 4.14 1.77 0.20
ta31 BRPD 0.00 0.77 0.00 0.00
ARPD 0.00 1.65 0.51 0.04
tadl BRPD 1.24 8.42 1.61 1.61
ARPD 1.70 8.82 1.75 2.43
tab1 BRPD 1.98 7.74 291 2.15
ARPD 2.25 10.26 4.31 2.54
ta61 BRPD 0.00 0.52 0.00 0.00
ARPD 0.02 1.10 0.02 0.11
ta71 BRPD 0.23 492 1.19 0.26
ARPD 0.50 5.70 1.98 0.50
ta81 BRPD 1.59 9.38 2.33 1.29
ARPD 2.10 10.51 3.82 1.62
ta9l BRPD 0.16 2.17 1.12 0.16
ARPD 0.56 4.17 1.17 0.21
tal01 BRPD 1.26 8.50 1.96 1.45
ARPD 1.39 9.47 3.03 1.53
talll BRPD 0.80 7.40 1.64 1.35
ARPD 1.06 8.82 2.37 1.48
Average BRPD 0.61 4.75 1.15 0.69
ARPD 0.81 6.00 2.05 0.90

ARPD

ARPD

10 = HCSA
" MGELS
mmm PSOVNS
g | mmm PsoMA

ta0l

tall ta2l

BRPD

ta3l

tadl

. HCSA

s MGELS
= PSOVNS
=== PSOMA

ta51

ta6l

ta7l tagl

BRPD

. HCSA

7w MGELS
= PSOVNS
=== PSOMA

© kN W & O O N ®

L L.

L

ta0l tall ta2l

ta3l

tadl

ta9l talol talll

= HCSA
— MGELS
g | mEm PSOVNS
= PSOMA

ta51

ta6l

ta7l tagl

tagl talol talll

Figure 4. Comparison of the results for various metaheuristic algorithms.

6. Conclusions

This paper proposed an HCSA approach to solve the PFSP. The proposed HCSA adopts an SPV
rule to convert the continuous position values to job permutations and incorporates an NEH-based
heuristic algorithm for population initialization. It also adopts the SA-based VNS local search method

Appl. Sci. 2019, 9, 1353 130f 15

to balance exploitation and exploration, and ultimately enhance the quality of the solution. Simulation
results demonstrate that the proposed HCSA, which incorporates NEHLJP1 and an SA-based VNS
local search, produced a better makespan for all benchmark datasets than other algorithms. In our
future research, we hope to analyze the following four aspects of the HCSA: (1) applying the HCSA to
large real-world problems, such as nurse scheduling, basketball tournament scheduling, automotive
manufacturing, and the vehicle routing scheduling problem; (2) adapting the Lévy searching strategy to
improve the local search; (3) using graph structures and neighborhood structures to speed up the local
search; and (4) implementing a new NEH-based heuristic algorithm and solving the larger benchmarks.

Author Contributions: Conceptualization and methodology, K.-W.H., A.S.G. and Z.-X.W.; writing—original draft
preparation, K-W.H., AS.G., Z-X.W. and Y.-W.C.; writing—review and editing, K.-W.H. and Y.-W.C.

Funding: This work was supported in part by the Ministry of Science and Technology, Taiwan, R.O.C.,
under grants MOST 107-2218-E-992-303.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fournier-Viger, P; Lin,].C.W.; Kiran, R.U.; Koh, Y.S.; Thomas, R. A survey of sequential pattern mining.
Data Sci. Pattern Recognit. 2017, 1, 54-77.

2. Gan, W, Lin,].C.W,; Fournier-Viger, P.; Chao, H.C.; Philip, S.Y. HUOPM: High-Utility Occupancy Pattern
Mining. IEEE Trans. Cybern. 2019, 1-14. [CrossRef] [PubMed]

3. Lin, J.C.W,; Zhang, Y.; Zhang, B.; Fournier-Viger, P.; Djenouri, Y. Hiding sensitive itemsets with multiple
objective optimization. Soft Comput. 2019, 1-19. [CrossRef]

4. Lin, J.C.W, Yang, L.; Fournier-Viger, P.; Hong, T.P. Mining of skyline patterns by considering both frequent
and utility constraints. Eng. Appl. Artif. Intell. 2019, 77, 229-238. [CrossRef]

5. Huang, KW.,; Chen, J.L.; Yang, C.S.; Tsai, C.W. A memetic particle swarm optimization algorithm for solving
the DNA fragment assembly problem. Neural Comput. Appl. 2014, 26, 495-506. [CrossRef]

6. Allaoui, M.; Ahiod, B.; El Yafrani, M. A hybrid crow search algorithm for solving the DNA fragment
assembly problem. Expert Syst. Appl. 2018, 102, 44-56. [CrossRef]

7. Zhu, Z.; Zhou, J.; Ji, Z; Shi, YH. DNA Sequence Compression Using Adaptive Particle Swarm
Optimization-Based Memetic Algorithm. IEEE Trans. Evol. Comput. 2011, 15, 643-658. [CrossRef]

8. Fan, Q.; Ansari, N. Application aware workload allocation for edge computing-based IoT. IEEE Internet
Things |. 2018, 5, 2146-2153. [CrossRef]

9. Lin, J.C.W.; Wu,] M.T.; Fournier-Viger, P.; Djenouri, Y.; Chen, C.H.; Zhang, Y. A Sanitization Approach to
Secure Shared Data in an IoT Environment. IEEE Access 2019. [CrossRef]

10. Lépez, LEM,; Blas, N.G.; Albert, A.A. Multidimensional knapsack problem optimization using a binary
particle swarm model with genetic operations. Soft Comput. 2018, 22, 2567-2582. [CrossRef]

11. De Mingo Lépez, L.E; Gémez Blas, N.; Arteta, A. Optimal Performance: Underlying Octahedron Graph of
Evolutionary Processors. Comput. Inform. 2016, 34, 858-876.

12. Kadri, R.L.; Boctor, FF. An efficient genetic algorithm to solve the resource-constrained project scheduling
problem with transfer times: The single mode case. Eur. J. Oper. Res. 2018, 265, 454—462. [CrossRef]

13. Chen, W.N,; Chung, H.S.H.; Zhong, W.L; Wu, W.G,; Shi, YH. A Novel Set-Based Particle Swarm
Optimization Method for Discrete Optimization Problems. IEEE Trans. Evol. Comput. 2010, 14, 278-300.
[CrossRef]

14. Johnson, S.M. Optimal two and three-stage production schedules with setup times included. Naval Res.
Logist. Q. 1954, 1, 61-68. [CrossRef]

15. Rinnooy Kan, A.-H.G. Machine Scheduling Problems: Classification, Complexity And Computations; Martinus
Nijhoff: The Hague, The Netherlands, 1976.

16. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega 1983, 11, 91-95. [CrossRef]

17. Dong, X.; Huang, H.; Chen, P. An improved NEH-based heuristic for the permutation flowshop problem.
Comput. Oper. Res. 2008, 35, 3962-3968. [CrossRef]

http://dx.doi.org/10.1109/TCYB.2019.2896267
http://www.ncbi.nlm.nih.gov/pubmed/30794524
http://dx.doi.org/10.1007/s00500-019-03829-3
http://dx.doi.org/10.1016/j.engappai.2018.10.010
http://dx.doi.org/10.1007/s00521-014-1659-0
http://dx.doi.org/10.1016/j.eswa.2018.02.018
http://dx.doi.org/10.1109/TEVC.2011.2160399
http://dx.doi.org/10.1109/JIOT.2018.2826006
http://dx.doi.org/10.1109/ACCESS.2019.2899831
http://dx.doi.org/10.1007/s00500-017-2511-0
http://dx.doi.org/10.1016/j.ejor.2017.07.027
http://dx.doi.org/10.1109/TEVC.2009.2030331
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/j.cor.2007.05.005

Appl. Sci. 2019, 9, 1353 140f 15

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Kalczynski, PJ.; Kamburowski, J. An improved NEH heuristic to minimize makespan in permutation flow
shops. Comput. Oper. Res. 2008, 35, 3001-3008. [CrossRef]

Kalczynski, PJ.; Kamburowski, J. An empirical analysis of the optimality rate of flow shop heuristics. Eur. J.
Oper. Res. 2009, 198, 93-101. [CrossRef]

Ying, K.C.; Lin, S.W. A high-performing constructive heuristic for minimizing makespan in permutation
flowshops. J. Ind. Prod. Eng. 2013, 30, 355-362. [CrossRef]

Xiong, F; Xing, K.; Wang, F. Scheduling a hybrid assembly-differentiation flowshop to minimize total flow
time. Eur. |. Oper. Res. 2015, 240, 338 — 354. [CrossRef]

Liu, W,; Jin, Y.; Price, M. A new improved NEH heuristic for permutation flowshop scheduling problems.
Int. J. Prod. Econ. 2017, 193, 21-30. [CrossRef]

Gendreau, M.; Potvin, J.Y. Handbook of Metaheuristics, 2nd ed.; Springer: New York, N, USA, 2010.
Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report TRO6;
Erciyes University: Kayseri, Turkey, 2005.

Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents.
IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29-41. [CrossRef] [PubMed]

Yang, X.S. Chapter 9—Cuckoo Search. In Nature-Inspired Optimization Algorithms; Yang, X.S., Ed.; Elsevier:
Oxford, UK, 2014; pp. 129-139.

Das, S.; Suganthan, P. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput.
2011, 15, 4-31. [CrossRef]

Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications;
Watanabe, O.; Zeugmann, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2009; Volume 5792, pp. 169-178.

Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009,
179, 2232-2248. [CrossRef]

Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November—1 December 1995; Volume 4, pp. 1942-1948.

Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51-67. [CrossRef]
Chiang, M.C,; Tsai, C.W.,; Yang, C.S. A time-efficient pattern reduction algorithm for k-means clustering.
Inf. Sci. 2011, 181, 716-731. [CrossRef]

Fong, S.; Lou, H.L.; Zhuang, Y.; Deb, S.; Hanne, T. Solving the Permutation Flow Shop Problem with Firefly
Algorithm. In Proceedings of the 2014 2nd International Symposium on Computational and Business
Intelligence (ISCBI), New Delhi, India, 7-8 December 2014; pp. 25-29.

Ding,].Y.; Song, S.; Gupta,].N.; Zhang, R.; Chiong, R.; Wu, C. An improved iterated greedy algorithm with
a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Appl. Soft Comput. 2015,
30, 604-613. [CrossRef]

Marichelvam, M.; Tosun, O.; Geetha, M. Hybrid monkey search algorithm for flow shop scheduling problem
under makespan and total flow time. Appl. Soft Comput. 2017, 55, 82-92. [CrossRef]

Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A hybrid whale optimization algorithm based
on local search strategy for the permutation flow shop scheduling problem. Future Gener. Comput. Syst. 2018,
85, 129-145. [CrossRef]

Sanjeev Kumar, R.; Padmanaban, K.; Rajkumar, M. Minimizing makespan and total flow time in permutation
flow shop scheduling problems using modified gravitational emulation local search algorithm. Proc. Inst.
Mech. Eng. Part B |. Eng. Manuf. 2018, 232, 534-545. [CrossRef]

Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems:
Crow search algorithm. Comput. Struct. 2016, 169, 1-12. [CrossRef]

Abdelaziz, A.Y.; Fathy, A. A novel approach based on crow search algorithm for optimal selection of
conductor size in radial distribution networks. Eng. Sci. Technol. 2017, 20, 391-402. [CrossRef]

Jain, M.; Rani, A.; Singh, V. An improved Crow Search Algorithm for high-dimensional problems. J. Intell.
Fuzzy Syst. 2017, 33, 3597-3614. [CrossRef]

Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671-680.
[CrossRef]

Taillard, E. Some efficient heuristic methods for the flow shop sequencing problem. Eur.]. Oper. Res. 1990,
47,65-74. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2007.01.020
http://dx.doi.org/10.1016/j.ejor.2008.08.021
http://dx.doi.org/10.1080/21681015.2013.843597
http://dx.doi.org/10.1016/j.ejor.2014.07.004
http://dx.doi.org/10.1016/j.ijpe.2017.06.026
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.ins.2010.10.008
http://dx.doi.org/10.1016/j.asoc.2015.02.006
http://dx.doi.org/10.1016/j.asoc.2017.02.003
http://dx.doi.org/10.1016/j.future.2018.03.020
http://dx.doi.org/10.1177/0954405416645775
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://dx.doi.org/10.1016/j.jestch.2017.02.004
http://dx.doi.org/10.3233/JIFS-17275
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/0377-2217(90)90090-X

Appl. Sci. 2019, 9, 1353 150f 15

43.

44.

45.

46.

47.

48.

49.

50.
51.

Prior, H.; Schwarz, A.; Guntiirkiin, O. Mirror-Induced Behavior in the Magpie (Pica pica): Evidence of
Self-Recognition. PLoS Biol. 2008, 6, 1-9. [CrossRef]

Osman, L.H.; Potts, C.N. Simulated annealing for permutation flow-shop scheduling. Omega 1989, 17,
551-557. [CrossRef]

Low, C.; Yeh,].Y.; Huang, K.I. A robust simulated annealing heuristic for flow shop scheduling problems.
Int. J. Adv. Manuf. Technol. 2004, 23, 762-767. [CrossRef]

Low, C. Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines.
Comput. Oper. Res. 2005, 32, 2013-2025. [CrossRef]

Dai, M.; Tang, D.; Giret, A.; Salido, M.A; Li, W. Energy-efficient scheduling for a flexible flow shop using
an improved genetic-simulated annealing algorithm. Robot. Comput. Integr. Manuf. 2013, 29, 418-429.
[CrossRef]

Bean, J.C. Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA J. Comput. 1994,
6, 154-160. [CrossRef]

Tasgetiren, ML.E,; Liang, Y.C.; Sevkli, M.; Gencyilmaz, G. A particle swarm optimization algorithm for
makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur. J.
Oper. Res. 2007, 177, 1930-1947. [CrossRef]

Taillard, E. Benchmarks for basic scheduling problems. Eur.]. Oper. Res. 1993, 64, 278-285. [CrossRef]

Liu, B.; Wang, L.; Jin, Y. An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling. IEEE Trans.
Syst. Man Cybern. Part B 2007, 37, 18-27. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pbio.0060202
http://dx.doi.org/10.1016/0305-0483(89)90059-5
http://dx.doi.org/10.1007/s00170-003-1687-x
http://dx.doi.org/10.1016/j.cor.2004.01.003
http://dx.doi.org/10.1016/j.rcim.2013.04.001
http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.1016/j.ejor.2005.12.024
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1109/TSMCB.2006.883272
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background Knowledge and Related Works
	NEH Heuristic
	Crow Search Algorithm (CSA)
	Simulated Annealing (SA)
	Variable Neighborhood Search

	Problem Definition
	Proposed Algorithm
	Solution Representation
	Initial Population
	SA-VNS Local Search
	The Proposed HCSA Algorithm

	Experimental Results
	Environment Setting
	Parameter Setting
	Comparison of CSA Algorithms Incorporated with Variants of the NEH
	Comparison of CSA Algorithms Incorporated with the SA-Based Local Search
	Comparison of Meta-Heuristic Algorithms

	Conclusions
	References

