
applied  
sciences

Article

Network Intrusion Detection Based on
Novel Feature Selection Model and Various
Recurrent Neural Networks

Thi-Thu-Huong Le 1,2 , Yongsu Kim 1 and Howon Kim 1,*
1 School of Computer Science and Engineering, Pusan National University, Busan 609-735, Korea;

lehuong7885@gmail.com (T.-T.-H.L.); dkgoggog0329@gmail.com (Y.K.)
2 Information Technology Faculty, Hung Yen University of Technology and Education,

Hung Yen 16000, Vietnam
* Correspondence: howonkim@pusan.ac.kr

Received: 24 February 2019; Accepted: 29 March 2019; Published: 3 April 2019
����������
�������

Abstract: The recent increase in hacks and computer network attacks around the world has intensified
the need to develop better intrusion detection and prevention systems. The intrusion detection system
(IDS) plays a vital role in detecting anomalies and attacks on the network which have become larger
and more pervasive in nature. However, most anomaly-based intrusion detection systems are plagued
by high false positives. Furthermore, Remote-to-Local (R2L) and User-to-Root (U2R) are two kinds
of attack which have low predicted accuracy scores in advance IDS methods. Therefore, this paper
proposes a novel IDS framework to overcome these IDS problems. The proposed framework including
three main parts. The first part is to build SFSDT model which is the feature selection model. SFSDT is
to generate the best feature subset from the original feature set. This model is a hybrid Sequence
Forward Selection (SFS) algorithm and Decision Tree (DT) model. The second part is to build various
IDS models to train on the best-selected feature subset. The various Recurrent Neural Networks
(RNN) are traditional RNN, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU).
Two IDS datasets are used for the learned models in experiments including NSL-KDD in 2010 and
ISCX in 2012. The final part is to evaluate the proposed model by comparing the proposed models
to other IDS models. The experimental results show the proposed models achieve significantly
improved accuracy detection rate as well as attack types classification. Furthermore, this approach
can reduce the computation time by memory profilers measurement.

Keywords: intrusion detection; IDS; machine learning; deep learning; RNN; LSTM; GRU; SFS;
Decision Tree

1. Introduction

Computer networks have developed rapidly over the years, significantly contributing to social
and economic development. International trade, healthcare systems, and military capabilities are
examples of human activities that increasingly rely on computer networks. This has led to an increasing
interest in network security from research and industries. The main role of IDSs is critical since the
networks can be vulnerable to be attacked by both internal and external intruders [1,2]. The IDS has
become one of the fundamental components of computer security to detect these malicious threats
with the aim of protecting systems from common harms and group vulnerabilities [3].

IDS is to create systems that do not need expert knowledge to create and update signatures
but rather learn and update themselves. For example, the system should have low false positive
rates to make practice for deployment in a live network environment to improve network security.
The goal of intrusion detection is to identify preferably in real time, the unauthorized use, misuse,
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and abuse of computer systems by both system insiders and external penetrators [4]. The intrusion
detection problem is becoming more challenging due to the significant increase in computer network
connectivity, the speed of technological advancement, and the ease of finding hackers for hire. Thus,
IDSs are security systems used to monitor, recognize, and report malicious activities or policy violations
in computer systems and networks. However, the false recognition of IDS results in that it is difficult
for network administrators to deal with intrusion reports. These IDSs rely on the signatures of known
attacks. Human independent IDSs that incorporate machine learning techniques have been developed
as a solution to solve this problem. Besides, machine learning IDSs learn from normal and abnormal
traffic by training on a dataset in order to predict an attack by using classification. Several machine
learning techniques have been successfully implemented as classifiers on IDSs, but they have numerous
flaws such as low throughput and high false detection rates [5–8].

Another challenge in IDS is the different attack types including Probe, R2L, U2R,
and Denial-of-Service (DoS) should be detected well by IDS techniques. However, one of the most
difficult attacks to detect is R2L attack because it related to the host level features and network
level. Besides, U2R attack is also hard to detect at an early stage because it involved the semantic
detail such as content-based and target an application. This becomes one challenge in IDS techniques.
Presently, IDSs are generally categorized as signature-based (misuse detection) systems, behavior-based
(anomaly detection) systems, or hybrid systems. Misuse IDSs are commonly deployed in practical
networks since they are robust or low false alarm rate (FAR). However, the main shortcoming is their
inability to detect new attacks. Current research is focused on the anomaly detection approach since it
can detect new attacks. However, these approaches suffer from high false positive rates leading to
impractical implementation in live network settings.

On the other hand, neural networks have been employed in anomaly detection to identify whether
the behaviour of data is normal or abnormal. This network can detect both known and unknown
attacks with moderate performance. Several researchers have focused on developing IDSs based on
deep networks. However, a robust deep network model is how to estimate or optimize its parameters
as effectively. This model designing is one of the challenges derived from high-dimensional data
leading to the curse of dimensionality phenomenon. In order to avoid this issue, input patterns need
to be reduced the dimensionality. This method can also reduce the amount of required computation.
Although conventional techniques are projection-based such as Principal Component Analysis (PCA)
(unsupervised method) or Linear Discriminant Analysis (LDA) (supervised method), feature selection
techniques are considered as promising alternatives.

Feature selection methods are designed to deal with the combinatorial search problem.
These methods require a search strategy to select candidate subsets which are evaluated by an objective
function. A search strategy is therefore needed to direct the feature subset selection process as it
explores the space of all possible combination of features. The object function evaluates candidate
subsets and returns a measure of their goodness, a feedback signal used by the search strategy to
select new candidates. These new candidates are fewer features mean fewer parameters for pattern
recognition. They enable improving generalization capabilities, computation complexity, and execution
time. Thus, this work proposes a feature selection model to reduce high dimensional data. By this
way, an IDS framework based on deep neural networks is applied to the result of the proposed feature
selection model to improve accuracy performance as well as reduce FAR. Besides, this propose can
detect attack types well, especially U2R and R2L attacks. The proposed algorithm is evaluated on two
IDS datasets including NSL-KDD and ISCX datasets.

The rest of this paper is organized as follows. Section 2 presents related works. Section 3 presents
the proposed IDS framework. Section 4 shows the experiment results and discussion. The conclusions
are presented in Section 5.
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2. Related Work

Traditionally, the researchers study intrusion detection approaches from two major perspectives:
anomaly detection and misuse detection. However, there is no significant difference between
these two approaches. Stavrouslakis and Stamp [9] proposed a classification system to further
divide these approaches into three subcategories, including computation dependent on approach,
artificial intelligence, and biological concepts. However, such a classification makes it too hard
to see the whole properties of detection approaches. Although there is a lack of more detailed
views for detection approaches, Liao et al. [10] proposed a classification system consisting of five
sub-classes with an in-depth perspective on their characteristics: statistics-based, pattern-based, rule-based,
state-based, and heuristic-based. These sub-classes belongs to intrusion detection based on machine
learning methods.

• The researchers who applied statistic-based classification in IDSs include ANFIS-IDS
(Mar et al. [11]), distance-based (Sabahi and Movaghar [12]), Bayesian-based (Stavrouslakis
and Stamp [9]), and game theory (Li et al. [13]). Nevertheless, these technique’s characteristics
are simple but less accuracy, self-study, and poor control.

• Pattern-based classification consists of pattern matching (Karti el al. [14]), petrinet
(Lazarevic el al. [15]), keystroke monitoring (Murali and Rao [16]), and file system checking
(Lazarevic et al. [15]). However, these techniques are simple but less flexible, using user’s
typing pattern.

• Rule-based classification includes rule-based (Modi et al. [17]), data mining (Xie et al. [18]),
model/profile-based (Kartit el al. [14]), and support vector machines (SVMs) (Kolias et al. [19]).
However, these methods are not easily created and updated; automatically generated models.

• State-based classification includes state-transition analysis (Sabahi and Movaghar, [12]),
user intention identification (Lazarevic el al. [15]), Markov process model (Li et al. [13]),
and protocol analysis (Stavroulakis and Stamp [9]). However, the characteristics of these
techniques are high-level task pattern, probabilistic, self-training, low false positive rate,
and less effective.

• Heuristic-based classification includes neural networks (Modi et al. [17]), fuzzy logic
(Mar et al. [11]), genetic algorithm (Garcia Teodoro el al. [20]), immune system
(Lazarevic el al. [15]), and swarm intelligence (Alomari and Othman [21]). Self-learning,
fault tolerant, configurable, scalable, flexible are characteristics of these techniques.

Currently, deep learning has become more attractive and effective in IDS field. Generative learning
and discriminative learning are two kinds of deep networks.

First, generative learning in deep networks intends to capture high-order correlations between
observed or visible data for pattern analysis or synthesis when no available information about target
class labels. B. Abolhasanzadeh [22] proposed an approach to detect attacks on big data using a deep
autoencoder. The experiment was conducted on the NSL-KDD dataset to test the method of applying
bottleneck features in dimensionality reduction as part of intrusion detection. The obtained results
were more accurate than PCA, factor analysis, and Kernel/PCA with 95.25% for train data and 95.06%
for test data. However, the authors did not mention about accuracy every single attack type. Besides,
U. Fiore et al. in [23] explored the use of a deep Boltzmann machine (DBM) in anomaly detection by
training a network with real-world data traces from 24 h workstation traffic. This experiment tested the
accuracy of DBM in classifying normal data and data infected by the bot. A second experiment trained
DBM with KDD Cup’99 dataset and tested it against real-world data. The result obtained 84% accuracy
on KDD Cup dataset. Z. Alom et al. [24] also exploited the deep belief network (DBN) capabilities to
detect intrusion through a series of experiments. The authors trained DBNs with NSL-KDD data to
identify unknown attacks. They concluded that DBN was a good IDS based on an accuracy of 97.5%
achieved in the experiment. This result was compared with existing DBN-SVM and SVM classifiers
which the DBN outperformed. However, the authors did not mention the classification performance
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type of attacks. The ability of the Jordan RNN to store information in neurons allows it to train fewer
input vectors for more accurate classification of normal and abnormal patterns [25]. The author also
did not mention about accuracy and only suitable for online real-time applications.

Second, discriminative learning in deep neural networks depends on the observed data while
learning how to do the classification. Target label data are always available in direct or indirect forms.
Thus, it is considered to be supervised learning. RNNs and convolutional neural networks are two
types of discriminative architectures. LSTM RNN [26] and LSTM with Nadam optimizer [27] are
applied on the KDD Cup’99 dataset. The detection accuracy rates were high with 96.93% and 97.54%
corresponding to LSTM RNN and LSTM with Nadam optimizer models. However, the FARs of
these models were still slightly higher than other models obtained at 10.04% and 9.98%, respectively.
However, the researchers [28] mentioned these methods as well as generative learning.

3. The Proposed IDS Framework

The proposed IDS framework is shown in Figure 1. This architecture includes four steps. The first
step is to preprocessing from the original dataset. The second step is to generate feature subsets by
SFS. Then, accuracy and error scores are measured corresponding to each subset generated based on a
machine learning model. This machine learning model is Decision Tree (DT). In this work, the task of
DT is to predict accuracy and loss scores for each combined feature. After that, the best feature subset
is chosen based on the maximum accuracy score. In the third step, IDS classifiers are built for learning
the best-selected subset feature data. The final step is to evaluate various IDS RNNs models based on
two things. The first task is the comparison with other IDS classifiers. The second is measurement
memory profilers of the proposed models.

Figure 1. The proposed IDS framework.

Preprocessing dataset. This is the first step in the IDS framework. In ISCX dataset, XML files with
data labeled as input data are chosen. Then, the following procedures are performed: (1) converting
XML files to CSV files; (2) splitting *.CSV files data into training and testing data. In NSL-KDD dataset,
the NULL values are solved by using imputation technique. This technique is used to replace missing
data with substituted value.

SFSDT model. The purpose of this component is to select the best feature subset from the
complete feature set from the original datasets.

In mathematics, given a feature set x = xi|i = 1 . . . n, find a subset xm = xi1 , xi2 , . . . , xim ,
with m < n, that optimizes an criterion function (CF), ideally the probability of correct classification
(see Figure 2).
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Figure 2. The feature selection concept.

The first goal of the presented feature selection algorithms is to reduce the feature space
D = x1, x2, . . . , xn to a subset of features Dn in order to improve or optimize the computational
performance of the classifier and avoid the curse of dimensionality. The second goal is to select a
sufficiently reduced subset from the feature space D without significantly reducing the performance of
the classifier. An optimal feature subset of size m is chosen by CF. CF is typical, simply, and intuitively
assesses the recognition rate of the classifier.

This work proposes a model feature selection by hybrid SFS algorithm and DT model because of
some reasons as follows.

SFS [29] is the simplest greedy search algorithm which is a bottom-up search procedure. SFS starts
with an empty feature subset and sequentially adds features from the whole input feature space to
this subset until the subset reaches a desired (user-specified) size. For every iteration which is the
inclusion of a new feature, the whole feature subset is evaluated which is expected for the features that
are already included in the new subset. The evaluation is done by the so-called CF which assesses the
feature that leads to the maximum performance improvement of the feature subset if it is included.

Besides, DT [30] is a classical and well-known in the machine learning model. DT model has the
main different somehow is about the domain of application. While some models like KNN (K-Nearest
Neighbour), SVM etc. are used for continuous value input, DT is applicable for continuous and
categorical input (discrete values) with high accuracy classification. In NSL-KDD and ISCX datasets,
the input features are discrete values. Besides, NSL-KDD data contains multi-output values (with four
attack types). The DT model can handle a multi-output problem. In the proposed method, this work
adjusted and replaced a simple CF function in SFS algorithm by accuracy and error scores of DT model
on each feature subset is generated by SFS. Based on the accuracy and error scores, this proposed
method can decide and choose the best feature subset from the original feature set. In summary, the
goal of SFSDT is a feature selection based on the learning model. This proposed model can solve the
high-dimensional data leading to the curse of dimensionality phenomenon in big data. The main
reason reduces accuracy performance prediction because of this problem. In order to solve this issue,
input patterns need to be reduced the dimensionality.

SFSDT Algorithm 1 is started from the empty set, sequentially add the features x+ that results in
the highest accuracy score of the DT model. The accuracy of the DT model on the validation dataset
(feature subset) is the maximum value. This reduces the number of features which is likely due to a
decrease of the curse of dimensionality.
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Algorithm 1 The pseudocode of the proposed SFSDT algorithm

Require: Yd, output_class
Ensure: Yk, accuracy_scores, error_scores

1: accuracy_scores = []
2: error_scores = []
3: d is the number of complete feature
4: Start with the empty set Y0 = ∅
5: Select the next best feature x+ = argmax[accuracy(Yk + x+)]
6: accuracy = Accuracy score of DT model on (x+, output_class)
7: error = Error of DT model on (x+, output_class)
8: accuracy_scores.append (accuracy)
9: error_scores.append (error)

10: Update Yk+1 = Yk + x+; k = k + 1
11: Go to step 5
12: Termination k = d
13: return Yk, accuracy_scores, error_scores

• Input. The input of SFSDT algorithm is the set of all features, denoted by Y = y1, y2, ..., yd
and the output of class data is the type of each attach in each dataset, denoted by output_class.
The SFSDT algorithm takes the whole d-dimensional feature set as input. The output_class is
actual output which used in DT model to compare the predicted class of DT model. After that,
DT can measure accuracy and error scores corresponds to each subset feature generated.

• Output. Feature subsets, accuracy_scores, and error_scores are output values. Feature subset is
denoted by Yk, Yk = yj|j = 1, 2, ..., k, where k = (0, 1, 2, ..., d). The algorithm returns a subset of
the feature space of a specified size k, where k < d, has to be specified a prior.

• Initialization. Initialization of the algorithm with an empty set Y0 = ∅, so that k = 0, where k is
the size of the subset.

• Searching procedure. Adding an additional feature x+ to the feature subset Yk. x+ is the feature
that maximizes the criterion function. accuracy is the criterion function with the best classifier
performance of DT model if it is added to Yk. Hence, the best feature subset is contained in Yk.
This process is repeated until reaching the termination criterion.

• Termination. Termination is stopped when k equal to the number of combination desired
features. The new feature subset Yk are added until the feature subset of size k contains the
number of desired feature d that specified a prior.

Various RNNs.

• Traditional RNN model

RNN is a traditional recurrent neural network incorporates either supervised learning or
unsupervised learning. This model has an input sequence data whole length could be as
large as its depth. The RNN model architecture consists of a feedback loop that links each layer
with the ability to store data of the previous input. Thus it can increase the reliability of the
model. Elman and Jordan RNNs are two types of RNN model. While the Elman model has a
simple feedback loop in each layer, the Jordan model has a feedback loop for all neurons within
a layer to the next layer. There is also a feedback loop connecting a neuron to itself. RNNs are
recurrent because they perform the same task for each element in a sequence, with the output is
dependent on the previous computations. In other words, the RNN is a memory that captures
the information that has been computed so far. The structure of an RNN is shown in Figure 3.
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Figure 3. RNN architecture by time.

In this model, x(t) is input layer at time t with index i. h(t− 1) is hidden layer at time t− 1 with
index s. h(t) is hidden layer at time t with index j. y(t) is output layer at time t with index e.
U is weight matrix connects input to hidden layer with index i, j. W is weight matrix connects
previously hidden to hidden layer with index s, j. V is weight matrix connects hidden to output
layer with index j, e. m is number of input units. n is number of hidden units. k is number of
output units. The formulas that govern the computations in an RNN are as follows.

In the first step, h(t) is calculated based on the previously hidden state and the input at the
current step:

h(t) = f (Ux(t) + Wh(t− 1)) (1)

where f is a nonlinear function such as tanh or ReLU. h(t− 1) is required to calculate the first
hidden state which is typically initialized to all zeroes. In the second step, y(t) is the output at
step t is calculated following the formula:

y(t) = f (Vh(t)) (2)

In RNNs, hj(t) and ye(t) are calculated for recurrent networks as follows:

hj(t) = f (Σm
i xi(t)uij + Σn

s hs(t− 1)wsj) (3)

ye(t) = f (Σk
j=1hj(t)vje) (4)

RNN training is similar to train a traditional neural network. This model also used the
backpropagation algorithm but with a slight difference. Because the parameters are shared
by all time steps in the network, the gradient at each output depends not only on the calculations
of the current time steps but also the previous time steps. This is called backpropagation through
time (BPTT) [31]. Unfortunately, vanilla RNNs trained with BPTT have difficulty learning
long-term dependencies because of the so-called vanishing/exploding gradient problem [32].
There are some machines that deal with these problems, and certain types of RNNs (like LSTMs,
GRUs) were specifically created to get around them.

• LSTM model

LSTM is proposed by Hochreiter and Schmidhuber [33]. This model is more capable to learn
long-term dependences model than traditional RNN model. Thus the network overcomes the
vanishing gradient problem. Furthermore, this network was designed to be better at storing
and accessing information compared to standard RNNs. The memory cells replaced the hidden
notes in traditional RNNs. A memory cell includes three gates: an input gate it, a forget gate ft,
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and an output gate ot. The memory cell also are known as a cell state ct. The incoming signals
can alter the cell state or block it by the input gate. The cell state has an effect on other neurons
or prevents it from doing so by the output gate. Modulate the cell state of the memory cell can
allow the cell to remember or forget its previous state as need by the forget gate.

In LSTM networks, the hidden units are replaced by LSTM cells. Figure 4 shows the architecture
of this model which has two input units, three LSTM cells as hidden units, and three output
units. Assumption that Xt = [x1

t , x2
t , . . . , xnx

t ] is an input vector. Ht = [h1
t , h2

t , . . . , hnh
t ] is hidden

vector. Yt = [y1
t , y2

t , . . . , y
ny
t ] is output vector. Ct = [c1

t , c2
t , . . . , cnc

t ] is cell vector. The elements
of each vector are corresponding units for each layer of the LSTM model. nx, nh, nc, and ny

are the numbers of input, hidden, cell, and output units, respectively. σ is the sigmoid function.
Wxi

t ,Wx f
t ,Wxc

t , and Wxo
t are weight metrics that connect from the input node to the input gate,

forget gate, cell state, and output gate, respectively. Whi
t is a weight matrix that connects from

the hidden node (LSTM cell) to the input gate. Wh f
t is a weight matrix that connects from the

LSTM cell to the hidden gate. Whc
t is a weight matrix that connects from the LSTM cell to the

cell gate. Who
t is a weight matrix that connects from the LSTM cell to the output gate. Wco

t is a
weight matrix that connects from the cell state to the output node. Why

t is a weight matrix from
the LSTM cell to the output node. There are several steps to calculate values of each layers.

Figure 4. An architecture of long short-term memory networks by time.

The first step, the decision is what information is to be thrown away from the cell state by a
sigmoid (σ) layer called the forget gate.

ft = σ(Wx f
t Σnx

i=1xi
t + Wh f

t Σnh
j=1hj

t−1 + Wc f
t Σnc

k=1ck
t−1) (5)

The second step, the decision is what new information is going to be stored in the cell state by
two processing. First one is to decide which values to by update by the input gate. The second
one is a vector of new candidate value ct is created by the tanh layer.

it = σ(Wxi
t Σnx

i=1xi
t + Whi

t Σnh
j=1hj

t−1 + Wci
t Σnc

k=1ck
t−1) (6)

ct = ftct−1 + ittanh(Wxc
t Σnx

i−1xi
t + Whc

t Σnh
j=1hj

t−1) (7)
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The final step, the output is calculated based on the cell state. The value of the output gates is
computed and used it for the memory block output

ot = σ(Wxo
t Σnx

i=1xi
t + Who

t Σnh
j=1hj

t−1 + Wco
t Σnc

k=1ck
t−1) (8)

ht = ottanh(ct) (9)

The output units yt are computed with hidden vector ht

yt = σ(Why
t Σnh

i=1hi
t) (10)

• GRU model

A slightly more dramatic variation on the LSTM is GRU, introduced by Cho, et al. [34] in 2014.
This model combines the forget gate and input gate into a single update gate. It also merges the
cell state and hidden state and makes some other changes. The resulting model is simpler than
standard LSTM models and has been growing increasingly popular. A GRU has two gates, a reset
gate rt, and an update gate zt. Intuitively, the reset gate determines how to combine the new input
with the previous memory, while the update gate defines how much of the previous memory to
keep around. The basic idea of using a gating mechanism to learn long-term dependence is the
same as in an LSTM. The assumption that the GRU model has two input units, and three GRU
units are presented in Figure 5.

Figure 5. An architecture of Gated Recurrent Unit networks by time.

Similar to LSTM model, Xt,Ht, and Yt are the input vector, hidden vector, and output vector,
respectively. Wxz

t , Wxr
t and WxH

t are weight matrices from the input layer to the update gate,
the reset gate, and the hidden state, respectively. Whz

t , Whr
t , and WhH

t are weight matrices from
the hidden layer to the update gate, the reset gate and the hidden state, respectively. Wh

t is the
weight matrix from the hidden unit to the output.

In the first step, the update gate zt at time t is calculated as follows:

zt = σ(Wxz
t Σnx

i=1xi
t + Whz

t Σnh
j=1hj

t−1) (11)
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In the second step, the reset gate rt is calculated:

rt = σ(Wxr
t Σnx

i=1xi
t + Whr

t Σnh
j=1hj

t−1) (12)

In the third step, the hidden state Ht is calculated:

Ht = tanh(WxH
t Σnx

i=1xi
t + WhH

t (rtΣ
nh
j=1hj

t−1)) (13)

Finally, the value of the memory block, output ht is computed using Ht

ht = (1− zt) ∗ ht−1 + zt ∗ Ht (14)

In order to compute the output units in the output layer, the output units yt of the GRU model is
computed with hidden vector ht

yt = σ(Wh
t Σnh

i=1hi
t) (15)

Evaluation performance IDS classifiers. This step is to evaluate the performance of the proposed
IDS framework. The performance evaluation is based on two things. The first is comparison accuracy
of the proposed IDS models to advance IDS models. The second is measurement memory profiler of the
proposed IDS model on the complete feature set and the best-selected feature subset. In the experiment,
confusion matrix and receiver operating characteristic (ROC) are used to measure multi-attack output.
Besides, memory used and time executed are measured in memory profiler.

• Confusion matrix is presented in Figure 6. The classifier’s goal is to identify as many TPs and
TNs as possible while FPs and FNs need to reduce.

Figure 6. Confusion matrix.

where True positive (TP) is an attack that is correctly classified as an intrusion; True negative
(TN) normal traffic correctly classified as normal traffic; False positive (FP) is when normal
traffic is classified as an intrusion; False negative (FN) is when an intrusion that is classified as
normal traffic.

• ROC curve is a two-dimensional graph in which the false positive rate is plotted on X-axis and
the true positive rate is plotted on the Y-axis. The ROC curves are useful to visualize and compare
the performance of classifier methods. Figure 7 shows the ROC curves example for multi-classes
classification (10 classes).
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Figure 7. ROC curve example for multi-classes.

True Positive Rate (TPR) and False Positive Rate (FPR) are calculated as following formulas:

TPF =
TP

TP + FN
(16)

FPR =
FP

FP + TN
(17)

• Memory profiler is a python module for monitoring memory consumption of a process as well as
line-by-line analysis of memory consumption for python programs. In this work, memory profiler
library (https://github.com/pythonprofilers/memory_profiler) is used to calculated time-based
memory usage of the proposed models. Memory usage a long time is executed and recorded via
a command line such mprof run <script>, where <script> is the Python script. The final step is to
visualize the result of time-based memory usage via command line mprof plot. The result of
memory profiler example is plotted in Figure 8.

Figure 8. Memory profiler example.

4. Experiment Results and Discussion

This section points out the experiment results and discussion of the approach to build the efficient
IDS classifier based on proposed SFSDT model. Three experiments are shown in detail in Section 4.2.

https://github.com/pythonprofilers/memory_profiler


Appl. Sci. 2019, 9, 1392 12 of 29

Via the experiment result, the best IDS classifier is determined. Next, the evaluation of the proposed
method is discussed in Section 4.3.

4.1. Dataset Description

NSL-KDD dataset (http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html) [35]
is a new version of KDD Cup’99 dataset. The KDD Cup’99 contains train and test sets which
are duplicated about 78% and 75% of the records, respectively. Thus, NSL-KDD dataset was
redundant records in the train set and no duplicate records in new test sets. Besides, this dataset still
remains 41 input features and 1 output feature. The input features include [duration, protocol_type,
service, flag, src_bytes, dst_bytes, land, wrong_fragment, urgent, hot, num_failed_logins, logged_in,
num_compromised, root_shell, su_attempted, num_root , num_file_creations, num_shells, num_acces_files,
num_outbound_cmds, is_host_login, is_guest_login, count, srv_count, serror_rate, srv_serror_rate,
rerror_rate, srv_rerror_rate, same_sr_rate, diff_srv_rate, srv_diff_host_rate, dst_host_count, dst_host_sr_count,
dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_por_rate, dst_host_srv_diff_host_rate,
dst_host_serror_rate, dst_host_srv_serro_rate, dst_host_rerror_rate, dst_host_srv_rerror_rate]. The output
name is [Attack]. The output value consists of [ ’Normal’, ’R2L’, ’DoS, ’U2R’, ’Probe’]. As a result,
several records in train and test sets are reasonable which makes it affordable to run the experiments on
the complete set without the need to randomly select a small partition. The experiment uses KDDTest+
dataset file in learned models.

In ISCX dataset (http://www.unb.ca/cic/research/datasets/ids.html), the real-life dataset was
created by collecting network traffic data for several consecutive days. ISCX in 2012 is a real-life
dataset that builds on the concept of profiles which include details on intrusions. This dataset is
created by Shiravi Ali, et al. [36]. This dataset was designed specifically for developing, testing,
and evaluating network intrusion and anomaly detection algorithms. It uses two profiles, α and β,
during the generation of the datasets. The α profiles were constructed using the knowledge of specific
traces. Real packet traces were analyzed to create α and β profiles for agents that generated real-time
traffic for HTTP, SMTP, SSH, IMAP, POP3, and FPT protocols. Various multi-stage attack scenarios
were explored to generate malicious traffic. This dataset consists of seven days of network activities,
both normal and malicious. A pcap extension file (.*pcap) and XML extension file (.*xml) are two
extension files.

In data preparation, the ready-made training and testing datasets are not available in the
original dataset, and it is difficult to perform experiments on huge data (*.pcap files). Hence,
the file “labelled_flows_xml” which contained flow information in XML format for each day
are used. Furthermore, the labeled flow file supports the use of supervised machine learning
algorithms. The flows were generated using IBM WRadar appliance. The flow file was
labeled with “Normal” and “Attack”. The [Tag] feature indicates whether the flow is normal
or part of an attack scenario. However, all flows from day 1–Friday (11 June 2010) were
normal; therefore no flow XML file was included. The XML files contained 19 attributes for
input values and one attribute for the output value. The attributes for each day data file
include [appName, totalSourceBytes, totalDestinationBytes, totalDestinationPackets, totalSourcePackets,
sourcePayloadAsBase64, sourcePayloadAsUTF, destinationPayloadAsBase64, destinationPayloadAsUTF,
direction, sourceTCPFlagsDescription, destinationTCPFlagsDescription, Source, protocolName, sourcePort,
destination, destinationPort, startDateTime, stopDateTime, Tag].

In the preprocessing dataset, the *.XML file is read and converted to *.CSV file. Each attribute in
the XML file is a column in the CSV file. The [Tag] feature is the output which contains target values.
The other features are input features as well as input values. A cross-validation technique is used to
split the preprocessing dataset that randomly followed the ratio of 75% and 25%, respectively. Table 1
presents a description of the number of training and testing data of ISCX dataset.

http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html
http://www.unb.ca/cic/research/datasets/ids.html
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Table 1. List of number of record for training and testing data.

Date Total of Record No. Training No. Testing

Saturday 133,194 93,236 39,958
Sunday 275,528 192,870 82,658
Monday 171,380 119,966 51,414
Tuesday 192,041 134,429 57,612

Wednesday 182,968 128,078 54,890
Thursday 149,625 104,738 44,887

Further adjustments were made to make the data fit for use. Reduction of the number attributes
from all the possible attributes have to be carried out. The following attributes were chosen for the
experiment: [appName, totalSourceBytes, totalDestinationBytes, totalDestinationPackets, totalSourcePackets,
direction, sourceTCPFlagsDescription, destinationTCPFlagsDescription, source, protocolName, sourcePort,
destination, destinationPort, startDateTime, stopDateTime, Tag]. Some accumulative or redundant
attributes such as [sourcePayloadAsBase64, sourcePayloadAsUTF, destinationPayloadAsBase64,
destinationPayloadAsUTF] were removed.

4.2. Experiment Results

Three experiments on NSL-KDD and ISCX datasets are performed. These experiments are
implemented on Windows 10 and used Python language.

• The first experiment is to build SFSDT model to generate the best feature subset on both IDS
datasets. The proposed model can generate the list of combination feature subsets. The best
feature subset is selected based on the best score of accuracy and error.

• The second experiment is to detect types of attack in both datasets. This work builds three
classifiers of various RNNs including conventional RNN, LSTM, and GRU. These approach
models are learned on the best-selected feature subset by the proposed model. In NSL-KDD
dataset, this task points the classification result of four attacks including [’R2L’, ’DoS, ’U2R’,
’Probe’] and none attack is [’Normal’]. In the ISCX dataset, the detection result of two classes
including [’Normal’] and [’Attack’] are presented. The classification results are evaluated based
on confusion matrix and ROC.

• The final experiment is to measure memory profiles of the learning models including memory
used and time executed in both cases. The first case is on the original feature set. The second
case is on the selected feature subset.

4.2.1. Experiment 1

The proposed SFSDT model is implemented on both datasets including NSL-KDD and ISCX.
The original feature number of these datasets are 41 and 15, respectively. This model visualizes how
much accuracy and error scores obtained for each combination number of features in each dataset.

In NSL-KDD dataset, the results of SFSDT model are plotted in Figure 9a,b. From observation,
the proposed model achieved the highest accuracy 0.969017 at the number of combination features
is k = 12 . Besides, the minimum error score at 12 combined features is 0.00336. Therefore, the best
feature subset is selected including 12 features. The corresponding to the list of selected feature subset
is [protocol_type, service, flag, src_bytes, logged_in, num_file_creations, is_guest_login, count, srv_count,
dst_host_srv_diff_host_rate, dst_host_rerror_rate, dst_host_srv_rerror_rate].
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(a) (b)

Figure 9. Visualization performance of SFSDT model on NSL-KDD dataset. (a) accuracy score &
(b) error score.

Similar to ISCX dataset, Figures 10 and 11 show the accuracy and error scores of the proposed
model for each day dataset. For example, the best feature subset obtained at 3 combined features
which are [appName, totalDestinationBytes, source] in Saturday data.

(a) (b)

(c) (d)

Figure 10. Cont.
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(e) (f)

Figure 10. Visualization accuracy and error scores of SFSDT model on each day of ISCX dataset. (a) &
(b) Saturday data; (c) & (d) Sunday data; (e) & (f) Monday data.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. Visualization accuracy and error scores of SFSDT model on each day of ISCX dataset. (a) &
(b) Tuesday data; (c) & (d) Wednesday data; (e) & (f) Thursday data.

In summary, the results of the selected feature subsets detail on two datasets are shown in Table 2.
No.FF is the number of features in the original dataset. No.SF is the number of the best-selected feature
subset by SFSDT algorithm.

Table 2. The selected feature subset by SFSDT algorithm on two IDS datasets.

Dataset No.FF No.SF Selected Feature Subset Accuracy Error

protocol_type, service, flag, src_bytes,
logged_in, num_file_creations,

NSL-KDD 41 12 is_guest_login, count, srv_count, 0.969017 0.00336
dst_host_srv_diff_host_rate,
dst_host_rerror_rate,
dst_host_srv_rerror_rate

Saturday data 15 3 appName, totalDestinationBytes, source 0.999991 0.00001

Sunday data 15 7 appName, direction, protocolName, sourcePort, 0.999920 0.00002
destination, destinationPort, startDateTime

Monday data 15 7 appName, totalDestinationBytes, direction, source, 0.999920 0.00002
destination, destinationPort, startDateTime

Tuesday data 15 6 totalSourceBytes, source, destination, 0.999719 0.00006
destinationPort, startDateTime, stopDateTime

Wednesday data 15 3 appName, totalSourceBytes, totalDestinationBytes 1 0

Thursday data 15 3 appName, totalSourceBytes, source 1 0

4.2.2. Experiment 2

This experiment presents the results of variant RNN models are learned on the selected feature
subset of experiment 1. These models are Simple RNN, LSTM, and GRU. The output class of ISCX
dataset is [’Normal’, ’Attack’]. Hence, it is considered in binary classification in three learning models.
[’Normal’] value is denoted by 0 and [’Attack’] value is denoted by 1. In NSL-KDD dataset, the output
class includes non-attack and four types of attack, denoted by [’Normal’, ’R2L’, ’DoS’, ’U2R’, ’Probe’].
In experiment, visualization of ROC results of [’Normal’, ’R2L’, ’DoS’, ’U2R’, ’Probe’] are denoted by
[’class 0’, ’ class 1’, ’class 2’, ’class 3’, ’class 4’], respectively. The number of output class is more than
two, thus it is a multi-classification problem for three models. Therefore, confusion matrix and ROC
measurement are used to visualize the attack type and non-attack detection results.

In the NSD-KDD dataset, the attack classification results are illustrated in Figure 12. The confusion
matrix results display the number of correct and incorrect prediction compare to actual output class
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for each output class. The number of corrected predictions are displayed on the main diagonal of the
confusion matrix.

(a) (b)

(c)

Figure 12. Confusion matrix of three IDS models on NSL-KDD dataset. (a) Simple RNN model
(b) LSTM model (c) GRU model.

Besides, the ROC curve is used to measure the performance of different attacks detection on
NSL-KDD dataset (see Figure 13). Most attack type detection achieved better results on LSTM and
GRU models.
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(a) (b)

(c)

Figure 13. ROC for multi-class of three IDS models on NSL-KDD dataset. (a) RNN model (b) LSTM
model (c) GRU model.

Similar to the ISCX dataset, the confusion matrix results of three models are displayed in Figure 14
(on Saturday, Sunday, and Monday data) and Figure 15 (on Tuesday, Wednesday, and Thursday data).

(a) (b) (c)

Figure 14. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 14. Confusion matrix results of three approach models RNN, LSTM, and GRU on ISCX selected
feature subset. (a–c) on Saturday, (d–f) on Sunday, (g–i) on Monday.

(a) (b) (c)

(d) (e) (f)

Figure 15. Cont.
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(g) (h) (i)

Figure 15. Confusion matrix results of three approach models RNN, LSTM, and GRU on ISCX selected
feature subset. (a–c) on Tuesday, (d–f) on Wednesday, (g–i) on Thursday.

Based on the confusion matrix results, the accuracies of attack types detection in each dataset
are calculated and summarized in Table 3. The average accuracies of RNN, LSTM, and GRU model
on NSL-KDD subset feature data are 89.6%, 92%, and 91.8%. Similar to on ISCX subset feature
data, 94.75%, 97.5%, and 97.08% are average obtained accuracies of RNN, LSTM, and GRU model,
respectively. Therefore, the LSTM model has slightly better performance compared to the other models.

Table 3. The accuracy of attack types detection on two datasets.

Dataset Attack RNN LSTM GRU

Normal 0.94 0.96 0.96
R2L 0.81 0.89 0.86

NSL-KDD DoS 0.88 0.92 0.91
U2R 0.85 0.87 0.90

Probe 1.00 0.96 0.96

Saturday data Normal 1.00 1.00 1.00
Attack 0.99 1.00 1.00

Sunday data Normal 0.99 1.00 1.00
Attack 0.94 1.00 0.99

Monday data Normal 0.98 1.00 1.00
Attack 0.79 0.99 0.98

Tuesday data Normal 1.00 0.99 1.00
Attack 0.86 0.85 0.84

Wednesday data Normal 1.00 0.99 1.00
Attack 0.86 0.88 0.85

Thursday data Normal 1.00 1.00 1.00
Attack 0.96 1.00 0.99

4.2.3. Experiment 3

As mentioned in Section 4.2.2, the LSTM model obtained the best accuracy among three approach
models. Hence, the LSTM model is selected to measure memory profiles in two cases. Case 1 calculates
memory profiles on complete feature dataset of LSTM model. Case 2 calculates memory profiles on
the best feature subset generated by SFSDT model of LSTM model. The memory profile reports to the
memory used (in MiB unit) and time executed (in the second unit) of Python scripts. This experiment
performed to measure running an executable of learning model, recording memory usage and plotting
the recorded memory usage.
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Figure 16 shows the memory profiles of LSTM model on NSL-KDD dataset. The used memory
and the time for training of two cases are quite small different about memory profiles. In particular,
memory used and time compiling of LSTM model is trained on selected feature subset occupied under
250 MiBs and near 50 s, respectively. While the LSTM model is trained on complete feature dataset
obtained 300 MiBs and approximately 60 s corresponding to the memory used and time compiling.
In the ISCX dataset, the memory profile results of LSTM model are plotted in Figures 17 and 18.

(a)

(b)

Figure 16. Memory profile of two models on NSL-KDD dataset. (a) Original feature dataset; (b) Selected
feature subset.

In summary, the memory used and time executed of LSTM model on both cases ISCX dataset are
listed in Table 4. Smaller values are better. Obviously, case 2 obtained almost better results of memory
profiles on both memory used and time executed.
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Table 4. The memory profiles of LSTM model on ISCX dataset.

Dataset Memory Used Case 1 Memory Use Case 2 Time Executed Case 1 Time Executed Case 2

Saturday 550 300 550 480
Sunday 900 550 1100 1000
Monday 650 450 950 650
Tuesday 700 450 730 710

Wednesday 550 310 550 570
Thursday 580 300 650 780

(a) (b)

(c) (d)

(e) (f)

Figure 17. Memory profile results of LSTM model on complete feature data and selected feature subset
data respectively. (a) & (b) Saturday data; (c) & (d) Sunday data; (e) & (f) Monday data.

On the other hand, this work measured the memory profiler of the proposed SFSDT model to
find the best feature subset on both datasets. Figure 19 shows the memory profiler of the proposed
model on NSLKDD dataset. Besides, Figure 20 presents the memory profiler of the SFSDT model on
ISCX dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 18. Memory profile results of LSTM model on complete feature data and selected feature subset
data respectively. (a) & (b) Tuesday data; (c) & (d) Wednesday data; (e) & (f) Thursday data.

Figure 19. Memory profile results of SFSDT model to select the best feature subset on NSLKDD dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 20. Memory profile results of SFSDT model to select the best feature subset on ISCX
dataset. (a) Saturday data; (b) Sunday data; (c) Monday data; (d) Tuesday data; (e) Wednesday data;
(f) Thursday data.

In summary, the memory profiler results of SFSDT model are pointed in Table 5. In NSL-KDD
dataset, SFSDT model spent 63 s for time executed and used 145 MiB memory to generate and find the
best features. Besides, in ISCX dataset, this proposed model spent averages 120.83 s and 573.33 MiB for
time executed and memory used, respectively.

Table 5. The memory profiles of SFSDT model two IDS datasets.

Dataset Memory Used Time Executed

NSL-KDD 145 63
Saturday 480 60
Sunday 700 240
Monday 600 120
Tuesday 650 190

Wednesday 500 55
Thursday 510 60
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4.3. Discussion

Presently, there are many fields which contain big data, for example, finance, health care, stock,
banking, etc. To analyze these datasets, it requires spending more effort with the different methods
are used. It becomes a challenge with huge data with high dimensional features. A good feature
selection technique helps us to analyze and evaluate to choose the important features in big data that
ensure without losing important information. Besides, a good method helps reduce the effort for data
analysis about time and cost. The proposed method can be applied to other fields which have big
data to generate the best feature subset supporting further prediction model or using the result of the
proposed method for other activities such as statistic, prediction, etc. In other words, this method is a
low-cost design which helps data analyst can make a quick and accurate decision about what features
are important and effect and then keeping them for supporting another further purpose.

In the proposed scheme, SFSDT’s goal is to generate and find the best feature subset from the
complete feature set. The result of the proposed method on ISCX data are different in each day because
their valuable data are different, even though each day the dataset has the same 15 original features.
Hence, the obtained result of the proposed depends on the values of features. Therefore, when there is
suspicious traffic with the different feature sets, the proposed model can accurately recognize it, to
generate feature subsets which contain this different feature and then evaluate these subsets are the
best feature or not. Besides, the proposed SFSDT goal is a feature selection based on the learning model.
This proposed model can solve the high-dimensional data leading to the curse of dimensionality
phenomenon in big data. The results of experiment 3 show that the proposed method can find the best
feature subset in short time and small memory used.

Furthermore, the variant RNNs applied to the best feature subset can reduce the amount of
required computation as well as improve performance accuracies on each attack classification and the
average accuracy of classification IDS model. In particular, this work compares the proposed model to
previous models on two criteria including detection of attack types and intrusion detection accuracies
on both IDS datasets.

First, Tables 6 and 7 show the comparison accuracies of detecting attack types between the
proposed models to in advance IDS models on NSL-KDD dataset and ISCX dataset, respectively.
Based on the results obtained, LSTM and GRU models outperform than others. In particular, the
accurate detection of U2R and R2L attacks are improved significantly on LSTM and GRU models.

Table 6. Comparison accuracy detection of attack types on NSL-KDD dataset.

Model Normal (%) DoS (%) Probe (%) U2R (%) R2L (%)

ANN [37] - 77.7 76.6 10.5 34.6
J48 [38] 87.5 88.3 86.0 75.5 88.9

CART [38] 91.9 89.5 85.4 80.7 89.0
Naive Bayes [38] 75.9 75.0 75.1 74.3 71.1

MDPCA-DBN [39] 97.38 81.09 73.94 6.50 17.25
RNN 94 88 100 85 81
LSTM 96 92 96 87 89
GRU 96 91 96 90 86

Table 7. Comparison accuracy detection of attack types results on ISCX dataset

Model Normal (%) Attack (%)

NB [7] 35.5 98.4
Bagged-NB [7] 37.8 98.4
Boosted-NB [7] 35.5 98.4
AMGA2-NB [7] 95.2 92.7
TCM-KNN [40] 97.28 81.78

RNN 99.5 90
LSTM 96.67 95.33
GRU 100 94.17
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Second, Tables 8 and 9 show the comparison results of the approached models to well-known
IDS models on both datasets. The approached LSTM model outperformed accuracies than other IDS
models on both datasets.

Table 8. Comparison accuracy detection results on NSL-KDD dataset

Model Accuracy (%)

SCDNN [41] 72.64
STL [42] 74.38

DNN [43] 75.75
Gaussian-Bernoulli RBM [44] 73.23

Naive Bayes [38] 74.28
J48 [38] 80.6

ANN [37] 81.2
CART [38] 81.5

MDPCA-DBN [39] 82.08
Zscore+Kmeans [45] 90

RNN [46] 81.29
RNN 89.6
LSTM 92
GRU 91.8

Table 9. Comparison accuracy detection results on ISCX dataset

Model Accuracy (%)

NB [7] 43.2
Bagged-NB [7] 45.3
Boosted-NB [7] 43.2
AMGA2-NB [7] 94.5
TCM-KNN [40] 92.05

Zscore+Kmeans [45] 95
RNN 94.75
LSTM 97.5
GRU 97.08

5. Conclusions

This paper proposed SFSDT is a feature selection model for improving various RNNs model in
IDS field. Among three approached models, the LSTM model obtained the best accuracy performance
on both IDS datasets. In particular, this paper addressed the existing problems in IDSs including
improvement detection intrusion rate and type of each attack, especially, R2L and U2R. Besides,
the experiment result illustrates the effects of the proposed feature selection model by reducing
computation time and memory usage. The memory profile evaluation results show that the proposed
algorithm not only reduced execution time and the amount of required memory but also significantly
improved the performance of conventional LSTM model. Further, this proposed method is promising
can be applied to process big data in other fields.
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Abbreviations

The following abbreviations are used in this manuscript:

IDS Intrusion Detection System
R2L Remote-to-Local
U2R User-to-Root
SFS Sequence Forward Selection
DT Decision Tree
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
DoS Denial of Service
PCA Principle Component Analysis
DBM deep Boltzmann machine
DBN deep belief network
LDA Linear Discriminant Analysis
CF criterion function
KNN K Nearest Neighbour
SVM Support Vector Machine
ROC Receive Operating Characteristic
TP True Positives
FN False Negatives
FP False Positives
TN True Negatives
TPR True Positive Rate
FPR False Positive Rate
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