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Featured Application: The technique presented in this paper has potential application in
structural health monitoring of composite structures.

Abstract: This paper presents an experimental study on detecting and monitoring of evolution of
fatigue damage in composites under cyclic loads by using guided waves. Composite specimens
fabricated by glass fiber/epoxy laminates and surface mounted with piezoelectric wafers are fatigued
under tension–tension loads. A laser extensometer is used to obtain the degradation of longitudinal
stiffness of the specimens under fatigue states to reflect the accumulation of internal fatigue damage.
Meanwhile, at different fatigue cycles, one wafer acts as actuator to excite diagnostic guided waves,
and the other acts as sensor to receive corresponding response waves. These guided wave signals are
then processed by wavelet packet transform to extract characteristic features of energies in multiple
frequency bands. A statistical multivariate outlier analysis is then performed to determine the
existence of fatigue damage and to characterize their evolution using Mahalanobis squared distance.
Experimental results have demonstrated the potential applicability and effectiveness of guided waves
for continuous monitoring of fatigue damage in composite structures.

Keywords: structural health monitoring; fatigue damage in composites; guided waves; wavelet
packet transform; statistical multivariate outlier analysis

1. Introduction

Nowadays, composites are widely used in engineering structures due to their advantages of
light weight, high specific stiffness and strength. However, in the long run, fatigue damage initiated
with matrix cracks may inevitably accumulate in composite structures under cyclic loads. If this kind
of fatigue damage cannot be detected in time, it may continue to grow with new emerging damage
patterns such as delamination and fiber breakages, leading to catastrophic failure of the structures [1,2].
Thus it is very important and crucial to develop structural health monitoring (SHM) techniques to
detect the fatigue damage inside composite structures and, if possible, to continuously monitor its
evolution [3–11].

During the past two decades, a lot of techniques and methods as well as sensor networks have been
proposed to detect and identify damage in composites [12–17]. Among them, the guided wave-based
approach is considered as one of the most promising techniques. Using advanced signal processing
techniques, damage could be detected and identified by extracting characteristic information contained
in transient guided waves. A wide range of theoretical and experimental studies have been performed
to demonstrate the effectiveness of damage detection and identification using guided waves [18–27].
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However, most of these methods focus on impact damage which is localized damage phenomenon
instead of extended damage such as those caused by cyclic fatigue loads [28,29].

Usually, in the initial stage, fatigue damage in composites mainly contains accumulated micro
matrix cracks, resulting in a gradual stiffness degradation [1,2]. Thus, for monitoring fatigue damage
in composites, it is a straightforward way to monitor the degradation of stiffness to reflect the internal
damage. For example, Seale et al. studied the change of velocities and amplitudes of guided waves
in thermal–mechanical aged composites. They found that the velocities of symmetric S0 Lamb
waves reduced with the reduction of the in-plane stiffness, demonstrating that the accumulated
fatigue damage in composites can be characterized by measuring the velocities of the waves [28].
Rheinfurth et al. employed noncontact technique to excite and receive guided waves in composite
under different fatigue loading conditions, and studied the relationship between the change of wave
velocities of antisymmetric A0 Lamb waves and the stiffness degradation [29]. Further, to quantitatively
indicate the internal fatigue damage, studies have been performed to identify the elastic properties
of composites under different fatigue states by using guided waves and try to relate the reduction of
elastic properties with internal matrix cracks with micromechanics models. For example, Marzani et al.
used semianalytical finite element (SAFE) method to model the dispersion curves of guided waves in
an anisotropic composite plate, and combined the experimentally obtained dispersion curves from
time–frequency analysis to identify the elastic parameters [30]. Zhao et al. used a laser–ultrasonic
system to measure the phase velocity of ultrasonic guided waves in composites, and then employed
genetic algorithm combined with the measured phase velocity to invert the elastic modulus [31].
Tao et al. selected phase velocity of the S0 mode Lamb wave in the low frequency region to characterize
the fatigue damage in a composite laminate under cyclic loads in different fatigue stages. They also
used the phase velocity and damage model to predict the evolution of fatigue damage [32].

In contrast to the aforementioned velocity-based characterization methods, researchers also used
signal features to characterize fatigue damage in composites with guided waves [33–36]. By extracting
the damage-sensitive feature from the received guided waves, the fatigue damage can be classified and
identified. For example, Peng et al. used guided waves for in situ fatigue life prognosis for composite
laminates. They employed selected features such as normalized amplitude, correlation coefficient and
cross-correlation to characterize the fatigue damage and established a regression model to relate them
with stiffness degradation [33]. Wilson and Chang found that time-of-flight (TOF), amplitude, and
power spectral density (PSD) of the guided waves were sensitive features to fatigue induced matrix
cracks and delamination. They defined damage indices (DIs) with these features to characterize the
growth of matrix cracks and selected the PSD as the most sensitive feature to correlate with the matrix
cracks [34]. In addition to linear waves, nonlinear guided waves and their corresponding features
were also employed for fatigue damage detection [35,36]. For example, Li et al. investigated the
second harmonic generation of guided wave in composite laminates, and the correlation between the
acoustic nonlinearity and the degradation of composite laminate was studied, demonstrating that
the extracted nonlinear feature can characterize damage in an early stage [36]. However, most of
these works extracted only a univariate feature in the time or frequency domain, while deterministic
approaches were employed for characterizing fatigue damage without consideration of uncertainties
from environmental effects and measurement noise.

This paper presents experimental studies on detecting and monitoring of evolution of fatigue
damage in glass fiber/epoxy (GF/EP) composites under cyclic loads by using guided waves. Following
feature extraction of signal energies in multiple frequency bands by wavelet packet transform (WPT),
a statistical multivariate outlier analysis is performed to determine whether fatigue damage exist in
the specimens and to characterize the evolution of fatigue damage using Mahalanobis squared distance
(MSD). The rest of this paper is structured as follows. Section 2 describes the experimental fatigue
tests of the composite specimens and the monitoring process. Sections 3 and 4 present the WPT-based
signal processing and feature extraction, and statistical multivariate outlier analysis, respectively.
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Experimental results are given in Section 5 to verify the effectiveness and applicability of the proposed
method. Finally, conclusions are summarized in Section 6.

2. Experimental Test

To perform experimental study, two GF/EP laminate with [06/906]s and [04/908]s layups were
fabricated, respectively. The G15000 unidirectional prepregs were purchased from Weihai Guangwei
Composites Co. Ltd., with thickness of 0.12 mm and resin content of 30–40%. After stacking the
layers with designed layups, the laminates are manufactured through hot-press with temperature
of 120 ◦C for 90 min. The cured laminates have a thickness of 2.6 mm, and they were then cut into
200 mm × 30 mm specimens for tensile and fatigue tests. The average maximum tensile load for three
specimens of [06/906]s layup is 22.15 kN, corresponding to an average tensile strength of 283.97 MPa,
and for three specimens of [04/908]s the layup is 16.19 kN, corresponding to an average tensile strength
of 207.56 MPa. The other two specimens from [06/906]s and [04/908]s layups are labeled as S_A
and S_B for fatigue test, respectively. As illustrated in Figure 1a, the two ends of the specimens are
reinforced for gripping, and on the surface of the specimens, two P-51 piezoelectric wafers purchased
from Wuxi Haiying Co. were mounted by epoxy with a distance of 80 mm. The diameter and thickness
of the wafers are 10 mm and 1 mm, respectively. In the following experiments, one wafer acts as
actuator to excite diagnostic guided waves into the specimens and the other acts as sensor to receive
the response waves.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 17 

effectiveness and applicability of the proposed method. Finally, conclusions are summarized in 
Section 6. 

2. Experimental Test 

To perform experimental study, two GF/EP laminate with [06/906]s and [04/908]s layups were 
fabricated, respectively. The G15000 unidirectional prepregs were purchased from Weihai Guangwei 
Composites Co. Ltd., with thickness of 0.12 mm and resin content of 30–40%. After stacking the layers 
with designed layups, the laminates are manufactured through hot-press with temperature of 120 °C 
for 90 min. The cured laminates have a thickness of 2.6 mm, and they were then cut into 200 mm × 30 
mm specimens for tensile and fatigue tests. The average maximum tensile load for three specimens 
of [06/906]s layup is 22.15 kN, corresponding to an average tensile strength of 283.97 MPa, and for 
three specimens of [04/908]s the layup is 16.19 kN, corresponding to an average tensile strength of 
207.56 MPa. The other two specimens from [06/906]s and [04/908]s layups are labeled as S_A and S_B 
for fatigue test, respectively. As illustrated in Figure 1a, the two ends of the specimens are reinforced 
for gripping, and on the surface of the specimens, two P-51 piezoelectric wafers purchased from Wuxi 
Haiying Co. were mounted by epoxy with a distance of 80 mm. The diameter and thickness of the 
wafers are 10 mm and 1 mm, respectively. In the following experiments, one wafer acts as actuator 
to excite diagnostic guided waves into the specimens and the other acts as sensor to receive the 
response waves. 

 

(a) (b) 

Figure 1. Experimental setup: (a) glass fiber/epoxy GF/EP specimen and (b) fatigue test and 
monitoring systems. 

A test setup consisting of a MTS 810.25 fatigue test system and a guided waves monitoring 
system is established. The monitoring system contains a KH-7600 wideband amplifier produced by 
Krohn-Hite Corporation, a PXI-5441 arbitrary function generator, a PXI-5105 digitizer, and an 
embedded controller, which were all produced by National Instrument Corporation. In addition, a 
noncontact laser extensometer LE-05 produced by Electronic Instruments Research is also used to 
provide reference stiffness information to the guided wave-based technique. The overall view of the 
test setup is shown in Figure 1b. For the fatigue test, tension–tension cyclic loads are applied to the 
specimens. The maximum tensile loads applied to specimens S_A and S_B are 11 kN (equals to 
nominal stress of 141.03 MPa) and 8 kN (equals to nominal stress of 102.56 MPa), respectively; the 
stress ratios and loading frequencies of both cyclic loads are 0.1 and 1 Hz, respectively. In order to 
follow the evolution of fatigue damage, the longitudinal stiffness of the specimens is first obtained 
before fatigue tests (zero fatigue cycle) and then at periodically paused intervals of each 1000 cycles. 

Figure 1. Experimental setup: (a) glass fiber/epoxy GF/EP specimen and (b) fatigue test and
monitoring systems.

A test setup consisting of a MTS 810.25 fatigue test system and a guided waves monitoring
system is established. The monitoring system contains a KH-7600 wideband amplifier produced
by Krohn-Hite Corporation, a PXI-5441 arbitrary function generator, a PXI-5105 digitizer, and an
embedded controller, which were all produced by National Instrument Corporation. In addition, a
noncontact laser extensometer LE-05 produced by Electronic Instruments Research is also used to
provide reference stiffness information to the guided wave-based technique. The overall view of
the test setup is shown in Figure 1b. For the fatigue test, tension–tension cyclic loads are applied to
the specimens. The maximum tensile loads applied to specimens S_A and S_B are 11 kN (equals to
nominal stress of 141.03 MPa) and 8 kN (equals to nominal stress of 102.56 MPa), respectively; the stress
ratios and loading frequencies of both cyclic loads are 0.1 and 1 Hz, respectively. In order to follow
the evolution of fatigue damage, the longitudinal stiffness of the specimens is first obtained before
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fatigue tests (zero fatigue cycle) and then at periodically paused intervals of each 1000 cycles. A set of
small loads were applied to the specimens and the corresponding displacements were measured by
the laser extensometer. With the information of loads and displacements, the longitudinal stiffness
can be calculated. Table 1 lists the longitudinal stiffness data for both specimens within 10,000 fatigue
cycles, while Figure 2 shows the variations of longitudinal stiffness with increase of fatigue cycles.
It can been observed from Figure 2 that, with the increase of fatigue cycles, the longitudinal stiffness
of the two specimens degrades; at the end of 10,000 fatigue cycles, the stiffness of specimens S_A and
S_B reduces by approximately 11.2% and 8.6%, respectively. The stiffness reduction reflects the fatigue
damage accumulation in the composite specimens [24,25].

Table 1. Longitudinal stiffness data for GF/EP specimens under fatigue cycles (Unit: GPa).

Fatigue Cycles 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

Specimen S_A 25.30 23.70 23.32 22.90 22.67 22.58 22.55 22.49 22.51 22.50 22.46
Specimen S_B 18.14 17.60 17.19 16.88 16.67 16.65 16.63 16.62 16.61 16.60 16.58
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Figure 2. Longitudinal stiffness degradation with fatigue cycles: (a) specimen S_A and (b) specimen S_B.

Meanwhile, for monitoring the fatigue damage by using guided waves, the PXI-5441 arbitrary
function generator sends a diagnostic wave signal which is amplified by KH-7600 amplifier and drives
the actuator to generate guided waves, the response wave signals are then sensed by the sensor and
acquired by the PXI-5105 digitizer, whose sampling rate is set at 10 MHz. In this study, a modulated
five-cycle signal with center frequency of 250 kHz is employed as the diagnostic wave. Figure 3a,b
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shows the time trace and the frequency spectrum of the diagnostic excitation, respectively. The narrow
frequency band can help to reduce distortion of the response wave signals due to dispersion effects.
The response wave signals before fatigue test (zero fatigue cycle) is first acquired as the baseline signals
and then measured with an interval of 1000 cycles when the fatigue tests are periodically paused.
Figures 4a and 5a show a comparison of six sets of typical response wave signals under the fatigue
state after 1000, 2000, 3000, 4000, and 5000 fatigue cycles, as well as the baseline wave signals obtained
from the two specimens, respectively. The later acquired wave signals are not plotted together due
to difficulty for clearly discerning each other. Combined with the stiffness information provided by
Table 1 and Figure 2, it can be seen from the figures that with the increase of fatigue cycles, fatigue
damage accumulate in the specimens, leading to the change of response wave signals, especially the
reduction of amplitudes. Also, as illustrated in the locally zoomed signals in Figures 4b and 5b, at an
early stage of the fatigue tests, the wave signals change rapidly, and then change slowly. This trend is
similar to the degradation of longitudinal stiffness of the composite specimens, indicating the evolution
of fatigue damage in composites can be characterized by analyzing the guided wave signals.
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3. Signal Processing and Feature Extraction

For characterizing the accumulated internal fatigue damage, the first step is to extract
damage-sensitive features from the sensed guided wave signals to indicate the presence and evolution
of damage. The damage feature is a characteristic parameter or a set of parameters that could be
obtained by signal processing techniques in time, frequency or time–frequency domains. Compared to
traditional Fourier transform (FT)-based signal processing techniques, wavelet analysis is a widely
used signal processing and feature extraction technique in guided wave-based SHM with its powerful
capabilities for multiresolution analysis and time–frequency analysis [18,19,37,38].

Within the framework of wavelet analysis, a signal is decomposed into an approximation and
a detail. The approximation is then itself split into a second-level approximation and detail, and
the process is repeated [39]. For the sake of improvement, WPT decomposes not only the wavelet
approximations at each level, but also the wavelet details. Therefore, WPT offers a richer analysis
on the original signal and a complete binary decomposition tree can be produced. In this study,
the guided wave signals obtained after different fatigue cycles are first decomposed by WPT into
component signals to extract characteristic features, and then further analyzed to indicate the existence
and evolution of internal fatigue damage.

A wavelet packet (WP) is a linear combination of wavelet functions. It can be presented as the
function ψi

j,k(t):

ψi
j,k(t) = 2j/2ψi(2jt− k) (1)

where i, j, and k are the modulation, the scale, and the translation parameter, respectively. The wavelet
ψi is obtained from a recursive filtering process as

ψ2i(t) =
√

2
∞

∑
k=−∞

h(k)ψi(2t− k) (2)

ψ2i+1(t) =
√

2
∞

∑
k=−∞

g(k)ψi(2t− k) (3)

where the discrete filters h(k) and g(k) are quadrature mirror filters associated with the scaling function
and the mother wavelet function, respectively.
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For a guided wave signal S(t), according to Equation (1), at each level j, the WPT produces 2j

component signals Si
j(t) that are related to 2j sets of coefficients ci

j,k:

S(t) =
2j

∑
i=1

Si
j(t) (4)

Si
j(t) =

∞

∑
k=−∞

ci
j,kψi

j,k(t) (5)

Each WP coefficient ci
j,k is the inner product of the signal with the wavelet as

ci
j,k =

∫ ∞

−∞
S(t)ψi

j,k(t)dt (6)

After WPT decomposition, the WP component energy related to a single component signal is
equal to

Ei
j =

∫ ∞

−∞
Si

j(t)
2dt (7)

which stands for energy stored in the component signal Si
j(t).

Based on the WP component signals, an energy vector containing WP component energies in
multiple frequency bands is defined by Equation (8) in this study as a multivariate signal feature:

E =
[

E1
j E2

j · · · E2j−1
j E2j

j

]T
(8)

It is used to characterize the occurrence and evolution of fatigue damage in the composite
specimens. For real applications, the energies in some WP components are very small, thus the energy
vector defined in Equation (8) can be further simplified by excluding these negligible components.

4. Statistical Multivariate Outlier Analysis

In this study, the experimental tests are under controlled laboratory condition, and the guided
waves signals are not affected by various uncertainties. However, in real structural applications
with operational environmental effects, the guided wave signals will being inevitably influenced by
environmental conditions such as temperature and loads, and contaminated by measurement noise.
Thus a statistical analysis is needed to consider these various uncertainties. Since outlier analysis
have been demonstrated as a robust unsupervised learning pattern recognition tool for damage
detection [40–44], it is employed in this study to analyze the WPT features obtained from the response
guided wave signals under different fatigue states.

In statistics, an outlier is an observation that is significantly different from the rest of the population
and the outlier is believed to be generated by an alternative mechanism, for example, damage in
structures [40,41]. Statistical outlier analysis can be considered as a special class of pattern recognition,
which classifies the abnormal data or state from the normal ones. To determine whether an observed
data is an outlier, discordancy tests are usually performed. In the case of multivariate data, the
discordancy test is based on deviation statistics and given by

Dξ = (
{

xξ

}
−
{ ¯

x
}
)

T
[Σ]−1({xξ} − {

¯
x}) (9)

where Dξ is the Mahalanobis squared distance (MSD), xξ is the measured data corresponding to the

potential outlier, and
¯
x and Σ are the mean vector and covariance matrix of the samples, respectively.

Superscript T indicates transpose. The latter two values may be calculated with or without the potential
outlier depending upon whether inclusive or exclusive measures are preferred [40]. In this study,
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the statistics is exclusively computed from the signal features, i.e., WP energy vectors defined in
Equation (8) in the pristine state, without including potential outliers, i.e., WP energy vectors in the
fatigue states.

In order to consider the various uncertainties on guided wave signals and construct a suitable
mean vector and a covariance matrix, the guided wave signals in pristine state are copied 500 times and
each copy is subsequently corrupted with amplitude fluctuation and measurement noise as described
in Equation (10).

Sc(t) = (1 + e)× Se(t) + σ (10)

where Se(t) is the experimentally obtained guided wave signals and Sc(t) is the corrupted wave signals,
e is an random number to reflect the amplitude fluctuation caused by environmental conditions, and
σ is the measurement noise which is usually modeled as Gaussian white noise. In this study, we
assume that e comes from a uniform distribution [emin, emax], and the level of measurement noise is
described by signal-to-noise ratio (SNR). Then WPT is applied to these copies to obtain the signal
features. For determining whether an observation of signal features or its MSD is an outlier, a proper
threshold value Dth should be calculated. If the MSD is less than Dth, it can be considered that the
change of response guided waves is introduced by environmental conditions or measurement noise;
otherwise, it is because of fatigue damage occurrence and accumulation.

5. Experimental Results

With the aforementioned WPT-based signal processing and multivariate feature extraction method,
the wave signals obtained under different fatigue states are analyzed. The mother wavelet function
of Daubechies wavelet ‘db1’ is used to decompose each of the wave signals into sub-components,
and a 4-level decomposition is performed with 24 = 16 components in total. Figure 6 shows the WP
component energies of the baseline wave signals for specimens S_A and S_B at zero cycle, i.e., without
fatigue damage. It can be seen that the WP component energies mainly concentrate on the first several
components. For both specimens, the sums of energies in the first five components exceed 98% of the
total energies of the wave signals, thus the first five energies form the energy vector as the multivariate
signal features for characterizing the fatigue damage in this study. Figure 7 shows the evolution of the
first five WP component energies of the wave signals with the increase of fatigue cycles. It can be seen
that, in general, with the increase of fatigue cycles, the energies for each WP component decay quickly
at the initial stage and then slow down. This trend is very similar to that of the decay of stiffness.
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(b) specimen S_B.
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As aforementioned, to construct a suitable mean vector and a covariance matrix for outlier analysis,
the guided wave signals in pristine state are copied 500 times and each copy is subsequently corrupted
with amplitude fluctuation and measurement noise, as described in Equation (10). Two contamination
levels are considered: (I) Level 1: the fluctuation factor e comes from uniform distribution [−0.05 0.05]
and the SNR of measurement noise is 20 dB. (II) Level 2: The fluctuation factor e comes from
uniform distribution [−0.1 0.1] and the SNR of measurement noise is 10 dB. Figure 8a,b illustrates the
contaminated baseline signals with different levels for specimen S_A. Similar contaminated signals
can be obtained through Equation (10) for baseline signal for specimen S_B. Then for each set of
contaminated 500 baseline copies, mean vector and covariance matrix are constructed and baseline
MSDs are calculated according to Equation (9). To set an appropriate threshold value, statistical
analysis is performed and lognormal distribution is used to fit the probability density function (PDF)
for baseline MSDs. As illustrated in Figure 9a, for wave signals from specimen S_A with Level 1
contamination, threshold is determined by taking the value corresponding to 99.9% confidence of the
fitted lognormal distribution, which is 19.3. To test whether the wave signals after a certain fatigue
cycles are outlier or not, the wave signals are copied 100 times and the same contamination levels for
the baseline signals are applied. The corresponding MSDs for different sets of contaminated wave
signals can be also calculated by Equation (9) and compared with the threshold value. If the MSDs are
less than the threshold value, it can be considered that the change of guided wave features compared to
the baseline set is caused by environmental conditions or measurement noise; otherwise it is caused by
damage in the structure, i.e., fatigue damage in our case. It can be seen from Figure 9b, the calculated
MSDs after different fatigue cycles all exceed the threshold value, and with the increase of fatigue
cycles, the MSDs have a general increased trend. The means of the MSDs increase almost monotonically
with the fatigue cycles. This may because only matrix cracks increasingly accumulate in specimen
S_A before 10,000 fatigue cycles. It demonstrates that MSD can be used as a measure to integrate
the multivariate signal features to detect and characterize fatigue damage in composites. For wave
signals from specimen S_A with Level 2 contamination, Figure 10a shows the histogram of baseline
MSDs and the lognormal fit, the threshold value with 99.9% confidence is 19.2, and it can be seen from
Figure 10b that with the increase of contamination level, unlike the results shown in Figure 9b, most of
the MSDs for wave signals right after 1000 fatigue cycles are below the threshold value, indicating that
at this stage fatigue damage cannot be discerned. However, the MSDs from the later wave signals are
all above the threshold value and have a general trend of increase with the increase of fatigue cycles.
A similar processing procedure is applied to wave signals for specimen S_B, and the corresponding
results are illustrated in Figures 11 and 12. It can be seen that, for both contamination levels, the MSDs
of wave signals obtained after different fatigue cycles all exceed the threshold of the baseline MSDs,
and have general trends of increase with the increase of fatigue cycles until last several thousand cycles.
This may because matrix cracks accumulation in specimen S_B reaches saturation after ~5000 fatigue
cycles, and then new damage mechanism such as delamination occurs. Although further study is
needed to disclose the interaction between guided waves and damage phenomena, it still indicates
the effectiveness of MSD in integrating multiple signal features and characterizing fatigue damage
in composites.
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6. Conclusions

This paper presents an experimental study on detecting and monitoring of evolution of fatigue
damage in composites under cyclic loads by using guided waves. Piezoelectric wafers are used to excite
and receive guided wave signals to monitor the evolution of fatigue damage after different fatigue
cycles. The guided wave signals are processed by WPT to extract features based on WP component
energies to characterize the internal fatigue damage accumulation which is reflected by measured
stiffness degradation. A statistical multivariate outlier analysis is then performed with consideration
of uncertainties from amplitude fluctuations caused by environmental effects and measurement noise.
It is used to determine the existence of fatigue damage in composite specimens and to characterize
their evolution using MSD. Experimental results have demonstrated the effectiveness and potential
application of the guided wave-based monitoring technique: the extracted WP component energies of
the guided wave signals can be used as effective signal features to characterize the internal fatigue
damage in composites, and the statistical outlier analysis is an effective tool to detect the damage with
consideration of uncertainties, while the merged MSDs of the signal features have a similar trend to
evolution of fatigue damage in composites.
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