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Abstract: The intensity distribution of a partially coherent beam with a nonconventional correlation
function, named the multi-Gaussian Schell-model (MGSM) beam, focused by an axicon was
investigated in detail. Our numerical results showed that an optical needle with a flat-topped
spatial profile and long focal depth was formed and that we can modulate the focal shift and focal
depth of the optical needle by varying the width of the degree of coherence (DOC) and the parameters
of the correlation function. The adjustable optical needle can be applied for electron acceleration,
particle trapping, fiber coupling and percussion drilling.
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1. Introduction

Over the past years, axicon lenses have been studied widely due to their unique properties
of producing focal lines of narrow transverse width over extended distances [1,2]. The axicon lens
and its combination with other optical elements have been applied in many fields such as laser
machining, corneal surgery, and atom alignment and trapping [2–5]. Since 1986, when Durnin first
put forward a non-diffracting beam named a Bessel beam [6], a great deal of attention has been
concentrated on the axicons lens as it provides the most energy efficient method of realizing generally
diffraction-free beams [7–9]. Later, the research was extended from completely coherent beams to
partially coherent beams. For a spatially partially coherent light, Friberg et al. proposed a method of
designing annular-aperture axicons or apodized annular logarithmic axicons to generate a uniform
intensity axial line image [10,11]. Shukri et al. designed diffractive axicons to produce uniform line
images in a twisted Gaussian Schell-model (TGSM) illumination [12,13]. Pu et al. generated adjustable
partially coherent bottle beams by focusing partially coherent light with an axicon-lens system [14,15].
Alkelly et al. examined the focal depth of partially coherent fields without aperture [16]. To date,
the research on focusing partially coherent fields by an axicon lens has been restricted to Gaussian
Schell-model beams. The results of the above-mentioned research show that the coherence length of
partially coherent light has an intimate relationship with the axial intensity distribution of the focused
field formed by an axicon. In an experiment, we can easily obtain different values of the coherence
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width by varying the focused beam spot on a rotating ground glass disk (RGGD) through adjusting
the distance between the focus lens and RGGD [17].

With the rapid development of partially coherent light and its wide applications [17],
nonconventional partially coherent light, the correlation function of which does not satisfy a Gaussian
distribution, has been proposed [18,19]. It has been confirmed both theoretically and experimentally
that the correlation function provides a new effective way to shape the intensity profile [20–30]. What is
the effect of the nonconventional correlation function on the intensity distribution of beams focused by
an axicon lens? Among a variety of nonconventional partially coherent beams, we are more interested
in beams with a flat-topped spatial profile, which have shown great value in lithography, integrated
circuit trimming, laser welding, and biomedical engineering. In 2012, a multi-Gaussian Schell-model
(MGSM) beam [31], the degree of coherence (DOC) of which was modeled by multi-Gaussian
distribution, was proposed by Korotkova et al. The MGSM beam can form flat square or rectangular
intensity distributions in the far field [31–33]. Later, generalized GMSM beam and elliptical MGSM
beam were proposed, which can produce prescribed flat-topped spatial profiles [34,35]. For these
nonconventional partially coherent beams, extra parameters of a correlation function can be used to
control the flat-topped spatial profiles. In this paper, we will investigate the intensity distribution of a
MGSM beam focused by an axicon and explore the effect of a nonconventional correlation function on
the focusing properties of a MGSM beam.

2. Analytical Expression of a MGSM Beam Focused by an Axicon Lens

The cross-spectral density (CSD) function of a MGSM beam in the source plane is described as
follows [31]:

W(ρ1,ρ2) = G0 exp

(
−
ρ2

1 + ρ2
2

2σ2

)
µ(ρ1,ρ2), (1)

where G0 is a normalized constant, ρ1,ρ2 are two arbitrary points in the source plane, σ is the beam
waist width of the source, µ(ρ1,ρ2) is the spectral DOC. The DOC of a MGSM beam is expressed
by [31]:
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M
∑

m=1

(−1)m−1

m

(
M
m

)
is the normalization factor, M is the beam order and δ is the initial

correlation width of the beam. A MGSM beam would reduce to a GSM beam when M = 1 or a coherent
Gauss beam when δ = ∞ and M = 1. Figure 1 shows the distribution of the DOC of a MGSM beam for
different values of the beam order M. Generally, it displays a more complicated form represented by a
sum of positive and negative exponentials.
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Figure 1. Distribution of the degree of coherence (DOC) of a multi-Gaussian Schell-model (MGSM)
beam in the source plane for different values of the beam order M.
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According to the generalized Huygens–Fresnel principle [36,37], a MGSM beam propagating
through an axicon, as shown on Figure 2, can be dealt with the following generalized Collins integral
formula:

W(r1,r2) =
1

λ2B2

s
W(ρ1, ρ2)T∗(ρ1)T(ρ2)× exp

{
−jk

2

[(
A∗
B∗ ρ

2
1 −

A
B ρ

2
2

)
−2
(

1
B∗ρ1r1 − 1

Bρ2r2

)
+
(

D∗
B∗ r2

1 −
D
B r2

2

)]}
d2ρ1d2ρ2,

(3)

where r1,r2 are two arbitrary points in the output plane, λ is the wavelength, A, B, C and D are the
transfer matrix elements of an optical system, T is the transmittance function of the axicon lens, which
can be expressed as follows:

T(ρ) =

{
exp[jk(nd<− βρ)] ρ ≤ R

0 ρ > R
, (4)

with
β = (nd − 1) tan

π − α

2
. (5)

Here nd is the relative refractive index of the axicon to the medium around it, < is the maxima of
its thickness, α is the apex angle of the axicon lens.
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Figure 2. Optical layout of a MGSM beam passing through an axicon lens.

One can rewrite Equation (3) in a polar coordinate system with ρ = (ρ cos ϕ, ρ sin ϕ), r =

(r cos θ, r sin θ), as:
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And after tedious integration, the expression of the CSD in the output plane can be obtained as:
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where Jl is the first kind Bessel function with order l . In Equation (9), the phase factor exp[jk f (ρ1, ρ2)]

oscillates around zero intensively within the range of the optical frequencies. Applying the stationary
phase method in [12,13,38], the integration result of Equation (9) can be acquired:
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We call the stationary phase points for ρ1s and ρ2s are roots of equation:

∂

∂ρ1
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∂

∂ρ2
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The transfer matrix for a MGSM beam passing through an axicon is given as [36]:(
A B
C D

)
=

(
1 z
0 1

)
. (14)

Replacing the elements of the transfer matrix in Equation (11) with the elements in Equation (14),
we can obtain the final analytical expression for the average intensity of a MGSM beam focused by an
axicon:

I(r,z) = 2πk
z2
√
|ab|C0

ρ1sρ2s exp[jk f (ρ1s, ρ2s)]

×
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m exp
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× Clm(z, ρ1s, ρ2s, r, r).

(15)

3. Numerical Simulation

In this section, we will analyze the focused intensity of a MGSM beam shaped by an axicon based
on Equation (15). The beam parameter λ, the refractive index nd, and the apex angle α of the axicon
are set as λ = 0.633 µm, σ = 2.5 µm, nd = 1.51630 and α = 170◦.

In order to clarify the axicon’s effect on a MGSM beam, as seen in Figures 3 and 4, we first
calculated the normalized intensity distributions of a completely coherent Gaussian beam with
δ = ∞, M = 1 and a partially coherent Gaussian Schell-model (GSM) beam with δ = 2σ, M = 1. One
can see in Figure 3 that the focused field of a completely coherent Gaussian beam displays an optical
needle and the transverse intensity profile remains unchanged and demonstrates a non-diffraction
property. Figure 4 shows that an optical needle is also formed as the coherence length of the incident
beam decreases while the transverse profile of the intensity at different propagation distances varies
due to beam diffraction. To give a quantitative evaluation to the effect of the coherence length on the
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diffraction of focused beams, we calculate the full width at half maximum (FWHM) of the intensity
along z for different values of δ, as shown in Figure 5. One sees that the FWHM along the z axis
remains unchanged for a fully coherent beam, which is consistent with the transverse profiles of
the intensity shown in Figure 3. For δ = 2σ, the FWHM increases slightly with the increase of z,
as shown in Figure 5. For the smaller value of δ, the focused field of a GSM beam shaped by an
axicon diffracts more quickly. As a result, the length of coherence should not be too small to keep the
non-diffraction property.
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Figure 4. Normalized intensity distribution of a focused partially coherent Gaussian Schell-model
beam shaped by an axicon at different propagation distances z with δ = 2σ: (a) 3-D shaded surface plot
of the normalized intensity distribution (b) 2-D density plot of the normalized intensity distribution (c)
Cross-section of the normalized intensity distribution.
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different propagation distances z for different δ.

Next, we concentrated our attention on the focused field of a MGSM beam passing through
an axicon. Figure 6 shows the normalized intensity generated by a MGSM beam with M = 4 and
δ = 0.2σ. One can see that the focused field of a MGSM beam diffracts more rapidly than that of a
GSM beam. The flat-topped profile emerges at z = 18 mm and from z = 18 mm to z = 22 mm the
beam profile remains flat-topped. The axicon lens plays the role of extending the longitudinal range of
the flat-topped spatial profile. As we increase the beam order M to 12 in Figure 7, the focused field
experiences a more complicated variance. The spatial profile varies from a concave top at z = 14 mm
to a flat-top at z = 18 mm and then to a cusp top at z = 20 mm. It can be concluded that the focused
field of a partially coherent beam is closely related to the characteristic parameters of a correlation
function. The FWHM of different beam orders M with δ = 0.2σ in Figure 8 clearly demonstrates that
as the beam order increases, the focused field diffracts more rapidly.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 10 
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intensity distribution.
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different propagation distances z with δ = 0.2σ for different beam orders M.

For a non-conventional partially coherent beam, the structure of a correlation function also induces
the effect of focal shift [39]. The relative focal shift is defined as:

z f = −
zmax − zGmax

zGmax
, (16)

where zmax and zGmax are the intensity maxima position of a MGSM beam and the corresponding
coherent Gaussian light focused by an axicon respectively. It is obvious from Figure 9 that either the
lower value of coherence or the larger beam order leads to the increment of relative focal shift.

From above simulation results, we can generate an optical needle with a flat-topped spatial profile
and long focal depth by focusing a MGSM beam with an axicon. The advantages of the formed optical
needle are that the focal shift and focal depth can be modulated by varying the width of the degree of
coherence (DOC) and the characteristic parameters of a correlation function.
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Figure 9. Relative focal shift of a focused MGSM beam shaped by an axicon: (a) for different δ (b) for
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4. Conclusions

Appling the generalized Huygens–Fresnel principle and the stationary phase method, the CSD of
a nonconventional partially coherent beam called a MGSM beam passing through an axicon lens was
derived in detail. The simulation result, based on the obtained equation, showed that an optical needle
with a flat-topped spatial profile and long focal depth can be generated. Compared with the complete
coherent light and conventional partially coherent light illumination, a MGSM beam illumination has
the advantage not only in the prescribed spatial intensity profile, but also in the convenient control
of the focal shift and focal depth. Our results will be useful for electron acceleration [40], particle
trapping [41], fiber coupling and percussion drilling [42], where a partially coherent flat-topped beam
spot is required.
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