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Abstract: With the improvement of computer performance, virtual reality (VR) as a new way of visual
operation and interaction method gives the automatic lip-reading technology based on visual features
broad development prospects. In an immersive VR environment, the user’s state can be successfully
captured through lip movements, thereby analyzing the user’s real-time thinking. Due to complex
image processing, hard-to-train classifiers and long-term recognition processes, the traditional
lip-reading recognition system is difficult to meet the requirements of practical applications. In this
paper, the convolutional neural network (CNN) used to image feature extraction is combined with a
recurrent neural network (RNN) based on attention mechanism for automatic lip-reading recognition.
Our proposed method for automatic lip-reading recognition can be divided into three steps. Firstly,
we extract keyframes from our own established independent database (English pronunciation of
numbers from zero to nine by three males and three females). Then, we use the Visual Geometry
Group (VGG) network to extract the lip image features. It is found that the image feature extraction
results are fault-tolerant and effective. Finally, we compare two lip-reading models: (1) a fusion
model with an attention mechanism and (2) a fusion model of two networks. The results show that
the accuracy of the proposed model is 88.2% in the test dataset and 84.9% for the contrastive model.
Therefore, our proposed method is superior to the traditional lip-reading recognition methods and
the general neural networks.
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1. Introduction

Machine learning methods have had a great impact on social progress in recent years,
which promoted the rapid development of artificial intelligence technology and solved many
practical problems [1]. Automatic lip-reading technology is one of the important components
of human–computer interaction technology and virtual reality (VR) technology. It plays a vital role
in human language communication and visual perception. Especially in noisy environments or VR
environments, visual signals can remove redundant information, complement speech information,
increase the multi-modal input dimension of immersive interaction, reduce the time and workload
of human on learning lip language and lip movement, and improve automatic speech recognition
ability. It enhances the real experience of immersive VR. Meanwhile, automatic lip-reading technology
can be widely used in the VR system [2], information security [3], speech recognition [4] and assisted
driving systems [5]. The research of automatic lip-reading involves many fields, such as pattern
recognition, computer vision, natural language comprehension and image processing. The contents of
the research involve the latest research progress in these fields. Conversely, the study of lip movement
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is also a check and development of these theories. Meanwhile, it will also have a profound impact on
content-based image compression technology.

Traditional lip-reading systems usually consist of two stages: feature extraction and classification.
For the first stage, most previous feature extraction methods use pixel values extracted from the mouth
region of interest (ROI) as visual information. Then, the abstract image features are extracted by
discrete cosine transform (DCT) [6,7], discrete wavelet transform (DWT) [7] and principal component
analysis (PCA) [7,8]. Therefore, the model-based methods, such as active appearance model (AAM) [9]
and active shape model (ASM) [10] form non-rigid models and obtain a set of advanced geometric
features which has the characteristics of lower dimensionality and stronger robustness. In the second
stage, the extracted features are fed into the classifiers of support vector machine (SVM) [11] and
hidden Markov model (HMM) [12].

At present, deep learning has made significant progress in the field of computer vision
(image representation, target detection, human behavior recognition and video recognition). Therefore,
it is an inevitable trend of scientific research to shift the direction of automatic lip-reading technology
from the traditional manual feature extraction classification model to the end-to-end deep learning
architecture. In recent years, researchers have introduced attention mechanisms on convolutional
neural networks (CNN) to focus on areas of interest, and the classification and target detection of
images have also achieved great success. For example, a CNN feature extraction method based on
attention mechanism proposed by Vinyals et al. [13]. Furthermore, the mechanism of attention can be
successfully applied in recurrent neural network (RNN) to find the relationship between the context.
Since the changes between video frames of automatic lip-reading are continuous and happen in
time series, the researchers use the long short-term memory (LSTM) network [14], which can find
hidden association information in time series data such as video, audio and text. A multi-layered
neural network structure of cascaded feed-forward layer and LSTM layer is proposed for word-level
classification in speaker-based lip-reading.

Considering that lip motion is a continuous process with time information, visual content can
be represented by consecutive frames. Therefore, we proposed a hybrid neural network architecture
combining CNN and attention-based LSTM to learn the hidden correlation in spatiotemporal
information [15] and used the weights of attention to express the importance of keyframes.

Our proposed method for automatic lip-reading recognition can be divided into four parts: Firstly,
we extracted keyframes from a sample video, used the key points of the mouth to locate the mouth area
to reduce the complexity of redundant information and computational processing in successive frames.
Then, features were extracted from the original mouth image using the VGG19 network [16], which
consists of 16 convolution layers and three fully connected layers. Thirdly, we used attention-based
LSTM network to learn sequential information and attentional weights among video keyframe features.
Finally, the final recognition result was predicted by two fully connected layers and a SoftMax layer.
The SoftMax function converts predicted results into probability.

The main advantages of our method: (1) The VGG19 is equipped to overcome the image
deformation including translation, rotation and distortion. Therefore, the extracted features have
strong robustness and fault tolerance. (2) Attention-based LSTM is good at finding and exploiting
long time dependencies from sequential data, and the introduction of attention mechanism makes
the network selectively focus on active video information and reduce the interference of invalid
information. Therefore, the relationship of the features among frames is connected and strengthened.

The rest of the paper is organized as follows: in Section 2, we introduce the preparation work and
the architecture of the lip-reading model. Experimental results and analysis of our proposed method
are presented in Section 3. Section 4 offers conclusions and suggestions for future research directions.

2. Proposed Lip-Reading Model

In this section, the proposed framework and main steps are discussed in detail according to the
following four parts. Firstly, we need to preprocess the dynamic lip videos, including separating
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audio and video signals, extracting keyframes and positioning the mouth. Secondly, features are
extracted from the preprocessed image dataset by using CNN. Then, we use LSTM with attention
mechanism to learn sequence information and attention weights. Finally, the ten-dimensional features
are mapped through two fully connected layers, and the result of automatic lip-reading recognition is
predicted by SoftMax layer. SoftMax normalizes the output of the fully connected layers and classifies
it according to probability. The sum of probabilities is one. Our proposed CNN with attention-based
LSTM architecture is shown in Figure 1.
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• We use OpenCV library to load images and convert them into a three-dimensional matrix [18]. 
Then, we use the facial landmark detection of Dlib toolkit [19]. It takes the face images as input, 
and the returned face structure consists of different landmarks for each specific face attribute. 
We choose to locate the seven key points of the mouth, labeled as: 49, 51, 53, 55, 57, 58, 59. 
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2.1. Video Preprocessing

We preprocess the sequential images of lips in order to balance training speed and recognition
results, including keyframes extraction and lip location segmentation [17].

Generally, the data from video capture is about 25 frames per second. Since there is a difference in
the length of each utterance and any word actually pronounced has a series of redundant information
about the movement of the lips, it is difficult for the model to extract the image features and discover
the hidden relationship of the sequences. Therefore, we try to remove redundant information from all
the original images, extract keyframes and segment lips in the following four steps as experimental
datasets:

• The time of the utterance is divided into 10 equally interval portions, and a random frame of each
portion is selected as a keyframe, thus each word obtains a sequence image frame of equal length.

• We use OpenCV library to load images and convert them into a three-dimensional matrix [18].
Then, we use the facial landmark detection of Dlib toolkit [19]. It takes the face images as input,
and the returned face structure consists of different landmarks for each specific face attribute.
We choose to locate the seven key points of the mouth, labeled as: 49, 51, 53, 55, 57, 58, 59.

• We segment the mouth images and remove the redundant information, then calculate the center
position of the mouth based on the coordinate points of the image boundary, denoted as (x0, y0).
The width and height of the lip image are represented by w and h, respectively, L1 and L2 represent
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the left and right, upper and lower dividing lines surrounding the mouth, respectively. According
to the following formula to calculate the bounding box of the mouth:

L1 = x0 ±
w
2

, (1)

L2 = y0 ±
h
2

, (2)

• After the mouth segmentation step, the original dataset will be processed into 224 × 224 pixels
which take lips as a standard. This method has the characteristics of strong robustness, high
computational efficiency and consistency of eigenvectors. The processes of pretreatment are as
shown in Figure 2.
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2.2. Attention-Based LSTM

In general, RNN can obtain sequence output with time information through sequence input [20].
For example, LSTM network which is a special type of RNN can learn long-term dependency
information. LSTM was proposed by Hochreiter and Schmidhuber [21] and it was improved and
promoted by Alex Graves in 2012 [22]. In many practical applications, LSTM has achieved considerable
success and it has been widely used.

The first step in LSTM is making a decision to discard useless information from the cell state,
which is accomplished by a decision called “the forget gate”. This gate reads ht−1 and xt, then it outputs
a value in the [0,1] interval for each number in cell state Ct−1. The calculation process is as follows:

ft = σ
(
W f · [ht−1, xt] + b f

)
, (3)

where σ is the hidden activation function, ht−1 is the hidden state at time t− 1, xt is the input at time t,
and b is the bias.

Then, it is determined that new useful information is stored in the cell state. It consists of two
parts: First, a sigmoid layer is called the “input gate layer” and it determines which value will be
updated. Then a new candidate value vector is created by tanh, the activation function that processes

the data on the state and output is tanh in LSTM.
→

Ct is added to the state, and the old cell state Ct−1

is updated to Ct. Second, the cell updates useful information into cell status and multiply the old
cell state Ct−1 and the output of “forget gate” ft as the part input of cell, then summing it with the

product of “input gate” output it and candidate information
→

Ct. The result of the calculation is the
updated Ct. This is the new candidate and it changes based on how much we decide to update each
state. The calculation processes are as follows:

it = σ(Wi · [ht−1, xt] + bi), (4)

→

Ct = tanh(WC · [ht−1, xt] + bC), (5)
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Ct = ft ∗Ct−1+it ∗
→

Ct, (6)

Finally, the output value is determined based on the filtered cell state. Firstly, the sigmoid
layer determines the output portion of the cell state. Then, the cell state is passed through tanh and
multiplied by the output of the sigmoid layer to obtain the result of the cell. The value range of the
sigmoid function is [0,1], which is most suitable for controlling the opening and closing of various
doors. This part of the calculation processes is shown as follows:

ot = σ(Wo · [ht−1, xt] + bo), (7)

ht = ot ∗ tanh(Ct), (8)

The key to the LSTM network is the cell state. As shown in Figure 3, the calculation process
runs through the horizontal line. It runs directly across the chain with only a small amount of linear
interaction and it will be easy to keep the information flowing on it.
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Therefore, LSTM network can successfully discover sequence relationships and we have added
an attention mechanism based on it. CNN network extracts the spatial features to obtain fixed-length
feature vectors, and the LSTM network identifies the video contents based on the input feature vectors.
We use the framework described in Figure 4, which combines attention-based LSTM with a deep CNN
to train spatial-temporal features on video sequences.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 12 
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The CNN is used as the encoder and the LSTM network is used as the decoder. In the decoding
process, we introduce the attention mechanism and learn the attention weights (α), thus the model
pays more attention to the effective area of the whole video [23]. The feature vectors for each frame are
weighted and then all video frame sequences (v) are simultaneously used as input φ(V) to the LSTM
network. The input to the attention-based LSTM model is as follows:

φ(V) =
n∑

i=1

αtivi, (9)

The learning of weight α is related to the state of a hidden layer unit on the LSTM network and
the feature vector of the current time. The correlation score of αti is as follows:

eti = tanh(W · ht−1 + U · vi + b), (10)

where ht−1 is the output of the hidden unit state at time t − 1, vi is the eigenvector of the video
frame i, and W, U, b respectively represent the weight matrix to be learned and the offset parameters,
the activation function is tanh. Normalization can be obtained as follows:

αti =
exp(eti)∑n

k=1 exp(etk)
, (11)

where αti represents the conditional probability (P(a|e)) of the video feature vector of the video frame
i at time t and the entire video feature vector, furthermore,

∑n
k=1 ati = 1. The closer the relationship

between the frame and whole video feature vector, the bigger the attention weight will become.
Then the attention-based LSTM network input at time t is as follows:

ht = frnn(ht−1,φ(V)), (12)

where frnn is a unit of LSTM, ht−1 is the state of the hidden layer unit at time t− 1, and φ(V) is the input
at time t after increasing the attention weights.

Although the introduction of the attention mechanism will increase the amount of computation,
it can selectively focus on the effective information in the video and reduce the interference of invalid
information, thus the performance level of the network model can be significantly improved.

2.3. CNN-LSTM With Attention Networks

Previous studies have shown that both CNN and RNN models can achieve better lip-reading
recognition performance alone [24]. We have found that the hybrid network of attention-based
CNN-LSTM can further improve performance. The sequence-based attention mechanism can be
applied to tasks related to time-series computer vision and assist the model in focusing on some
sequence information of the video.

Considering the influence of light, angle and clarity of the input images, we use a better quality of
the camera, and the proposed model is trained with RGB images. The part of CNN is improved by
using the model based on VGG19 and it does not include the last two fully connected layers (gray parts
of Figure 5), and we continue training the model based on pre-training parameters of ImageNet.
The structure diagram of VGG19 is shown in Figure 5, and the input of VGG19 is 224 × 244 pixel RGB
image. Thus, the output of CNN is 4096 × 10 and the attention mechanism is introduced to the LSTM
network to weight keyframes [25]. Thereafter, the network increases two fully connected layers and a
SoftMax layer for classification. The calculation process of SoftMax is as follows:

f
(
z j

)
=

ez j∑n
i=1 ezi

, (13)
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where z j represents the output value of the current time j, zi represents the output value of the time i,
and f (z) is the value of the function SoftMax map.
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Obviously, SoftMax converts the output to the probability of each result. The probability
value falls within the interval [0,1], and the probability sum is one. This form of results facilitates
subsequent calculations.

Finally, the model output is a 10-dimensional vector, and the highest prediction score is obtained
as the recognition result according to the SoftMax calculation method.

3. Experimental Dataset and Results

3.1. Dataset

The experimental dataset was performed on the audio-visual database we had created,
and 10 independent digital English utterances (numbers from zero to nine) were gathered from
six different speakers (three males and three females). Each speaker pronounced each word up to
100 times. The dataset was based on American English pronunciation and the pronunciation of
each number was divided into separate video clips. Each independent speaker was not trained in
professional pronunciation, and their first language was not always English. Thus, there might be
some differences in the lip movements of individual utterances. We collected numerous non-standard
samples for the dataset in order to facilitate a more extensive study of the lip-reading recognition
system. We collected videos from the frontal perspective of individual speakers who were sitting
naturally without any actions. The size of each frame of the original images was 1920 × 1080 resolution,
approximately 25 frames per second. In order to accurately locate the beginning and end of each
utterance unit, we used audio as an aid to separate each uttered word, each word lasted about 1 s. Then,
each isolated word video was further extracted into a fixed length of 10 frames. After processing each
video frame, we obtained a fix dimension of ROI at 224 × 224 pixels as standard inputs of CNN model.

3.2. Results and Discussions

In this section, we evaluated our proposed neural network model, and the results were analyzed
and compared in our dataset. The out-of-order dataset was randomly divided into 80% training dataset
and 20% test dataset. We used pytorch toolkit to carry out the CNN and the attention-based LSTM
network. It used a random gradient descent method to train the network in small batches of 50 units
with the learning rate of 0.001. The weight of CNN was based on the parameters of the pre-trained
model of VGG19, and the weight of attention-based LSTM and the full connection were randomly
initialized. The visualization of CNN model was shown in Figure 6.

In order to evaluate the improvement performance influenced by the attention mechanism,
we tested and compared the general CNN-RNN architecture. As shown in Figure 7, the proposed
network only added one calculation step (gray part) of the attention layer, and the other parts of the
two architectures were identical to the initial parameters of the architecture.
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The training dataset and the test dataset were respectively input into two CNN-RNN networks,
then we used the same CNN (VGG19) to extract the sequence features of 4096 × 10 and input them into
two different RNN networks. The losses, accuracies, and visualizations of the attention mechanism for
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In Figure 8, it could be seen that the recognition accuracy of the model with the attention
mechanism was higher. When the epochs were around 15 times, the loss tended to be stable and
it indicated that the optimal solution had been reached at this time. The accuracy of the proposed
network model was 88.2% in the test dataset and 84.9% for the contrastive network (CNN-LSTM).

Figure 9 shows the visualization of the attention mechanism, each line shows the weight of
attention at each moment from zero to nine, a deeper color represents a greater weight of attention.
It could be inferred that the attention area of each pronunciation was concentrated near the third and
seventh frames, because the third, fourth, seventh, and eighth frames contained the main information
of the lip motion. These frames were related to the video theme and contained a certain chronological
order, which were considered to be important video frames, the model assigned a large amount of
attention weight. This attention distribution showed that the attention mechanism optimized the
proportion of keyframe and achieved the requirement of allocating more information processing
resources to important parts. Therefore, our research used an architecture which was a fusion of CNN
and attention-based LSTM.

Obviously, the performance of our proposed architecture was more powerful. We tested the
English words in ten independent utterances in two models. The experimental results were shown in
Figure 10. The results show that the proposed model had higher accuracy in all independent digital
word utterances and it was stronger than the general CNN-LSTM model. Furthermore, according to
the analysis of the recognition results for each individual utterance of English words, the identification
of “two” was the easiest, “zero” was the most difficult to identify. Complex pronunciation was
difficult to recognize because of errors in individual pronunciation. The best-recognized utterance was
“two” because the speakers’ movements were consistent without regional differences, and the worst
identified utterance was “zero” because the lip movements of speakers were complicated and a part of
pronunciation required tongue to control syllables. Since the experimental data was not using the first
language of all speakers, the experimental result would be adversely affected. It could be inferred that
the accuracy of lip-reading recognition result would be higher if standard announcer’s pronunciation
videos were used. In addition, it was difficult to put it into practical applications. Therefore, the dataset
in this paper was closer to the actual application and it had high academic research value. As a
whole, the proposed model effectively improved recognition accuracy. It could be concluded that the
proposed model was stronger than the general CNN-LSTM structure in the performance of these ten
independent digital pronunciations.
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4. Conclusions

In this paper, hybrid neural network architecture of CNN and attention-based LSTM is proposed
for lip-reading recognition systems. Firstly, CNN (VGG19) extracted visual features from the mouth
ROI. Then, we used the attention-based LSTM to learn the sequence weights and sequence information
between the frame-level features. Finally, the classification was achieved by using two fully connected
layers and a SoftMax layer. The experimental dataset was built by us independently and it consisted of
three males and three females. American English pronunciation of numbers from zero to nine, and each
digital utterance were divided into independent video clips, each independent speaker was not
trained in professional pronunciation. The experimental results show that compared with the general
CNN-RNN model, the proposed architecture can effectively predict words from the sequence of lip
region images on our own dataset, and the accuracy of the proposed model is 88.2% in the test dataset
which is 3.3% higher than the general CNN-RNN. In future research, we will train the lip-reading
recognition model on datasets of real-time broadcast videos, including video samples from news
broadcasts and real-world environments to explore our proposed approach for speaker-independent
video speech recognition system.
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