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Abstract: As more clean energy sources contribute to the electrical grid, the stress on generation
scheduling for peak-shaving increases. This is a concern in several provinces of China that have
many nuclear power plants, such as Guangdong and Fujian. Studies on the unit commitment (UC)
problem involving the characteristics of both wind and nuclear generation are urgently needed.
This paper first describes a model of nuclear power and wind power for the UC problem, and then
establishes an objective function for the total cost of nuclear and thermal power units, including
the cost of fuel, start-stop and peak-shaving. The operating constraints of multiple generation unit
types, the security constraints of the transmission line, and the influence of non-gauss wind power
uncertainty on the spinning reserve capacity of the system are considered. Meanwhile, a model
of an energy storage system (ESS) is introduced to smooth the wind power uncertainty. Due to
the prediction error of wind power, the spinning reserve capacity of the system will be affected by
the uncertainty. Over-provisioning of spinning reserve capacity is avoided by introducing chance
constraints. This is followed by the design of a UC model applied to different power sources, such
as nuclear power, thermal power, uncertain wind power, and ESS. Finally, the feasibility of the UC
model in the scheduling of a multi-type generation unit is verified by the modified IEEE RTS 24-bus
system accommodating large scale green generation units.

Keywords: nuclear power generation; wind power generation; energy storage system; unit
commitment; Gaussian mixture model; spinning reserve

1. Introduction

Rapid growth in electrification together with more diversified clean power generation is causing
an increasing disparity between peak and valley energy demands. In addition, there is a growing trend
to integrate clean energy sources, like solar, wind and nuclear power, into the power grid. Most of
China’s nuclear power plants are distributed in coastal areas, and their capacity is still increasing.
The uncertainty of wind power and inflexible nuclear power generation means that the power grid
frequency fluctuates easily and aggravates the burden of power system peak-shaving. Therefore, it is
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urgent to study how to schedule a multi-type generation unit that includes nuclear power and wind
power for peak system operation.

Nuclear power plants are one of the key clean energy sources in China. In particular, the
proportion of nuclear power in coastal provinces such as Fujian and Guangdong is still increasing. For
safe operation, nuclear generation units usually operate at an invariant power to support the basic
load and do not participate in load tracking or peak-shaving.

At present, nuclear power plants in the United States, Japan, and France are participating in
peak-shaving. In [1], the feasibility and necessity of nuclear power plants participating in peak-shaving
of power systems are described, including analysis of the modes and characteristics of peak operation.
Fang et al. analyzed the feasibility of controlling the power of a pressurized water reactor nuclear
power unit through the control rod in [2]. The core simulation and operating characteristics of
AP1000 were studied in [3]. In [4], the ability and characteristics of peak-shaving with various nuclear
generation units were analyzed, and existing problems in nuclear power generation and strategies for
joint peaking operation of the other power sources were described. In [5], the advantage of nuclear
power generation participation in load-following was studied, and it was shown that a nuclear power
unit can directly participate in the system’s daily load peak-shaving based on the “12-3-6-3” mode, as
verified by actual data from the grid.

In summary, there are few studies on joint optimization scheduling with nuclear power,
non-Gaussian wind power generation, and energy storage. In [6], thermal and water joint optimization
generation was proposed with the aim of minimizing the total power generation system cost, while
also considering the constraints of pollutant emission and implementing suitable safety measures.
In [7], the authors considered the peak regulation features of a security operation for nuclear power
generation and used an objective function to quantify the total cost of thermal-nuclear-pumped storage;
however, the integration of non-gaussian uncertain wind power units was not considered.

The use of ESS can mitigate some of the problems associated with the unpredictable nature of
wind power generation [8]. ESS can function as a virtual power generation device by implementing
peak-shaving and load following by absorbing and discharging energy to meet the demands of the grid.
Energy storage technology, such as super conducting magnetic energy storage [9], thermal electric
energy storage [10] and batteries [11] is currently developing rapidly. Large-scale ESSs have been
considered for joint optimization scheduling [12,13].

The uncertainty associated with wind power causes difficulties in effective scheduling. A certain
number of spinning reserves is needed in power generation plans to handle the problems of wind
power and load uncertainty. Generally, reserve capacity is determined by a load demand ratio.
However, given the non-gaussian distribution of prediction error of wind power, the reliability and
economy needs of the power system cannot be guaranteed. There are two approaches to handle
the unit commitment (UC) models associated with wind power prediction error. First, according
to the uncertainty and probability distribution of wind power output, the system’s spin reserve
capability and confidence interval can be set, respectively [14,15]. Multi-scene technology can be
applied by analyzing the influence of wind power prediction error on generation scheduling results by
simulating the discrete scenarios of various wind power output uncertainties [16-18]. However, this is
a computationally expensive procedure.

The conventional UC problem associated with thermal power is a lack of features that can
be integrated with nuclear power and non-gaussian distributed random wind power combination
participate in joint peak-shaving. The spinning reserve capacity constraints considering uncertainty
and transmission line thermal security are derived with chance constraint conditions. The wind
power forecast error will affect the system’s reserve capacity uncertainty. Introducing a spinning
reserve chance constraint considering non-Gaussian wind power generation decreases redundant
over-provisioning. The ESS for a power station has been designed in the form of a scheduling
optimization model. Ultimately, a joint optimization model involving multi-type generation units is
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built and optimal day-ahead generation unit scheduling strategies are given and compared under
different situations.

2. Modeling of Nuclear and Wind Power

2.1. UC Modeling of Nuclear Power Generation

Load following control of a nuclear power plant is obtained by regulating the nuclear reactor
power. Generally, through controlling the concentration of the boron solution and the rod displacement
height, load following control of the reactor is achieved.

At present, most nuclear power plants in China are second generation pressurized water reactors
(PWRs). They have the capacity to participate in daily load tracking. Considering the restrictions
imposed by nuclear power ramp rate constraints and peak-shaving depth constraints, the PWR nuclear
power units can participate in daily peak-shaving in the “12-3-6-3” power output mode, i.e., they
operate at rated power for 12 h, then drop to a light-load power level after 3 h, continue to run at
lower power sustaining for 6 h, and then rise to rated power in 3 h before entering the next cycle.
The peak-shaving mode of “12-3-6-3” is shown in Figure 1.

In addition, with the development of nuclear power technology, AP1000, EPR and other three
generations of nuclear power units show more effective regulation performance, and participate
in daily load tracking; peak-shaving operation is also more flexible. They can achieve “15-1-7-1"
peak-shaving operation mode within 90% of the operating lifetime of the unit, as shown in Figure 1.
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Figure 1. Two nuclear power generation load following modes.

The nuclear power output model with peak-shaving characteristics should be considered in the
UC problem. The mathematical model of the output power is expressed as [7]:

Pnit=8it(PN,i min + APN i) + hit(PN,i min + 2APN i) + €itPN,i max + fitPN,i min ey

where,

eit+firt8irthi=1

e >ep—ep1 k=t t+1, ., t+Tf -1

fa>fi—faa k=t t+1, . t+T -1

hit1 = fit + git-1 — 1

eitr1 = it + git—1 — 1

Qitr1 = hip +eip 1 —1

fit+1 = it +hip—1 — 1
where, e;, fit, git, hir are all {0,1} variables, and denote the operation state index with respect to four
nuclear power operating levels: T; and Tl-f are the minimum running time of the rated power and the
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low power modes, respectively; Py ; max, PN i min are the maximum and minimum injected power; and
APy ; represents the power variation of a nuclear generation unit i within 1 h.

Under rapid variation of generation, traditional thermal power generation, creep fatigue may
come up in the main steam line. Meanwhile, service life of water pump, deaerator, and high pressure
heater will be reduced. In general, deep peak-shaving of nuclear power plant is arranged at the 65%
of fuel capacity. After, the depth of peak-shaving will be lowered. Under rapid variation of nuclear
generation, clad shell may bear limiting stress. Service life of nuclear generation will be reduced.

2.2. Modeling of Wind Power Generation Uncertainty

The random and fluctuating characteristics of wind power make it difficult to predict, and
therefore plan, flexible scheduling. The analysis of wind power uncertainty is of great significance to
UC models of wind farms. The forecast error of wind power output is expressed as:

Py = Pf + AP, )

where, P, represents the actual power, Py denotes the forecasted wind power, and AP, represents the
forecast error.

In theory, the forecast errors of wind power belong to Gaussian distribution. Due to the
different forecast methods, time scales and geographical environments of wind farms, the probability
distribution of the forecast error shows different distribution, non-universal characteristics.

The Gaussian mixture model (GMM) is a linear combination of single Gaussian probability density
functions. It can accurately describe the probability density distribution of various shapes by adjusting
either the linear combination weights or the parameter estimates. The Gaussian mixture distribution
makes the forecast error modeling of wind power more accurate. The forecast error of wind power is
regarded as a random variable subject to Gaussian mixture distribution, and then the probabilistic
constraint model is transformed into the deterministic constraint model and solved using the chance
constraint programming theory. A detailed solution is provided in the Appendix A.

The variance can be solved by the clustering algorithm [19]; the equivalent mean and covariance
are expressed as:

W =) wj ®)
jel
o = —— Y cojh )
" o G
1
Om = W—ij[aﬁ (1 — pm) (1 — pim) "] ©)
m jel

where, w; and wy, are the weight of the jth mixture component and the total weight, respectively, y;
and pi,, are the mean of the jth mixture component and the total mean, respectively, o; and oy, are the
standard deviation of the jth mixture component and the total standard deviation, respectively, and T
is determined by the x2-test with 99% confidence.

Prediction accuracy is improving with the development of new technology. It is assumed that
the forecast errors of load and wind power are subject to Gaussian distribution and Gaussian mixture
distribution, respectively. Here, 07, oy denote the standard deviation of the forecast error distribution
of load and wind power, respectively [16,20]. o can be solved by Formulas (3)—(5). Assuming that
the load and wind power forecast errors are uncorrelated random variables, the standard deviation of
the total forecast error can be expressed as [21]:

o=/ (0})" + (oy)"

(6)
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Considering the uncertain factors, additional spinning reserve capacity is needed to ensure the
security of generation scheduling. The spinning reserve capacity is mainly from thermal generation
units, and the spinning reserve capacity for total power system at each time scale is expressed as:

m, m,
Y Uit PG imax — iy Pt > Res; )

where Res; denotes the spinning reserve capacity at time ¢.
PZ.V;’ and Pj ; are introduced, which are equal to the expected values P}’Y and P; ; plus the error
values AP!Y and APy ;, respectively. Formula (7) is expressed as:

Y " i PGimax — Y gy Pe,it = Rest+ Y 2 APY + AP, ®)

Here, z; 4 Z?’:Zl APiVY -+ APp; is a random variable, and szl(-) denotes the inverse of the
cumulative distribution function. With application of the chance constraints, (8) is written by:

m
P (Zt <Y 0 (UitPgimax — Pojit) — Rest) > )
Then, the conversion of probability constraints and deterministic constraints is achieved by F; ! (-).

Y (43P imax — Pa,it) — Resy > M () (10)

where « denotes the confidence level.
According to the standard deviation of the total forecast error (6), (10) is further approximated as:

m 1/2
Y, (144Pa imax — Poj) > Rese +11(a) ((0h)” + (hy)?) (11

where 7(«) denotes cumulative distribution function at confidence level a, which can be acquired by
looking up the Gaussian distribution table.

3. UC Program Considering Multiple Generation Types

The UC program involving various generation types considers the constraints of each
generation unit’s operation characteristics together with the security constraints of the whole system.
The optimization goal is to minimize the operating cost of the grid by determining the operational
status of each generation unit. This paper mainly considers thermal power, wind power, nuclear
power, and energy storage.

3.1. Objective of UC

The objective of UC is to minimize the operating cost of the whole system, which mainly comprises
thermal and nuclear power expenses.

T mp
minOF = Y Y. (FCqit + STCgit + SDCq it)

=1i=1

' 5" my T m

+ Y Y8 Co+ X L FCn it (12)
=1i=1 t=1i=1
T my

+ tzl 'El (PN,imax - PN,it) : CN
=1i=

where, T represents the time horizon in one day (i.e.,, T = 24 h), t denotes the time period (hours),
and mg and m; denote the number of thermal power units and nuclear power units, respectively.
FCy i is the fuel cost of the nuclear power units, FCq; = ﬂiP(Z;,it + b;Pg it + c; is the quadratic
function, which represents the fuel cost of thermal power units; STCg ;; = st;y;; and SDCq;; =
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T my
sd;zi; represent the up/down cost of thermal generation units, respectively, Y. Z 8ci-Cg and
=1i=1

my
Z Y. (PN imax — Pn it) - Cn denote the peak-shaving costs of thermal power units and nuclear power
t=1i=1
units, respectively; and a;, b;, ¢;, Cg, Cn, st;, sd; denote the known cost coefficients of generators.

There, the quadratic function of the fuel cost should be linearized. Firstly, the interval [Pimm, Pl.max]
is divided into n equal-sized subintervals. Secondly, for a particular subinterval k, we define a variable
p¥, that varies between zero and the subinterval length AP}‘ . Furthermore, the relevant parameters of
subinterval k should satisfy the following constraints.

0<pf, <APfujy Vk=1:n

Pmax P_min
Apz - n :
Pl.kmi = (k—1) APf + pmin
k k
zfzn AP +P1 ini
Py = P-mmuit +2Pit (13
k _ k
Cz Jgni (Pz mt) +b Pz int +Ci
ifin: ( 1f1n) +bpf1n+cl
zfm Czkzm
5t = APF

where, s is the slope of the line segment between the start point and the end point in the subinterval k.
Finally, linear expression of the quadratic function of the fuel cost is as follows.

FCi,t = ( (Pmm) +meln+C1 M1t+ZS plt (14)

3.2. Constraints for Generation Units

The constraints of the conventional UC program include network safety, power balance and
minimum up/down time, etc. If the nuclear power, wind power and the energy storage participate in
day-ahead-scheduling, the impact of nuclear power plant peak-shaving operation characteristics and
wind power uncertainty on spinning reserve should be considered. These constraints are expressed
as follows.

3.2.1. Load and Generation Power Balance Constraints

The power balance constraints are expressed as:

2?21 Pg,ir + 2?1:11 Pyt + 271:21 PXY = Pr; (15)

where, Pg ;; and Py j; represent the output power of the thermal generation unit and the nuclear power
at time £, respectively, P "V represents the predicted power of the wind generation unit i at time #, and
Pr ; represents the system’s total load demand at time .

3.2.2. Minimum and Maximum Injected Power Constraints

The minimum and maximum injected power constraints are expressed as:

Uit PG imin < Pgit < Uit PG imax (16)

where, Pg ; yin and Pg ; juq represent the minimum power generation and maximum power generation
of the thermal power unit i, respectively; u; ; represents the operating status of unit i at time ; and
u;; = 0/1 represents that unit 7 is in the off/on state at time ¢.
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3.2.3. Reserve Capacity Constraints

According to Section 2.2, the spinning reserve capacity considering both the load and wind power
prediction uncertainty is expressed as:

172
Y o (Poimax — Poit) + Yoy (Pnjimax — Pr,it) > Resi+1(a) ((‘th)) + (ojy) ) (17)

3.2.4. Ramp Rate Constraints

In order to cope with changes in load and wind power output, thermal power units need to adjust
their output in time. The ramp rate constraints are expressed as:

Py — Py < RU; (18)
P14 — Py < RD;

where, RD; and RU; denote the down/up active power limit of unit i under normal operating
status, respectively.

3.2.5. Minimum Thermal Generation up/down Time Constraints

By discretizing the nonlinear startup cost, we can get a piecewise linear function. The formula of
the minimum up time is expressed as [22]:

Ti 1 uip =0
ST, > UTyg, Ve =G+ 1. T~ UT; +1 19)
YL uip—vyi; >0, Vk=T—-UT; +2...T
¢i = min{T, (UT; — U )ujs—0}
The formula of the minimum down time is expressed as:
ity iy =0
k+DT;—1

Yoo T  —uy > UTizgp Vk=&+1...T - DT, +1 20)

Yl l—uy;—z,;>0Y%=T-DT;+2...T
& = min{T, (DT; — $?)(1 — ujs—0)}

where, DT; and UT; denote the minimum down/up time of thermal generation unit 7, respectively; U’
and S denote the initial down/up time, respectively; and y;; and z;; denote the start-up/shut-down
status, respectively. The constraint that y; ; and z;; satisfy is expressed as:

Vit — Zip = Ujp — Ujp 1
Vit +zip <1 (21)
Vit Zig iy € {0,1}

3.2.6. Nuclear Power Peak Regulation Depth Constraints

The nuclear power peak-shaving depth constraints are expressed as:

_ Pnjimax — Pni

i = < Mmax (22)

P, N,i max
where, 7; represents peak-shaving depth, Py ; denotes power generation of nuclear plant i, Py ;max
is maximum power generation of nuclear plant, i.e., the capacity of nuclear plant. #max is maximum
peak-shaving depth. For example, the capacity of nuclear plant is 100 MW, the maximum peak-shaving
of 0.8, Py; can not be lower than 20 MW.
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The nuclear generation unit has various installed capacities, reactor types and thresholds, #max, of
maximum peak-shaving depth.
The constraint to be satisfied during depth peak-shaving of the thermal power unit is expressed as:

Pé,i min < Pcit < PG imax (23)
o = { P'Gimin — Pa,it Po,it < P'Gimin (24)
Gt =
0 Pg,it > P'G,i min

The basic and depth peak-shaving states are two states in which thermal power participates in
peak-shaving. The injected power threshold is denoted by P ; ., which is used to identify the two
states, i.e., peak-shaving cost compensation is only given when a certain peak-shaving depth is reached.
Where, P(/;,i min 18 the minimum limit of the injected power of the thermal generation that taking part
in the basic peak-shaving; and P; ;; is the injected active power with respect to the thermal generation
unit 7 at time ¢.

3.2.7. Load Following Constraints of Nuclear Generation Units

According to Section 2.1, the nuclear generation unit considering the peak-shaving characteristics
is expressed as:

Pn it=€itPN i max + fit PN i min + 8it (PN i min + APN i) + it (PN i min + 20PN ;) (25)
3.2.8. ESS Constraints

The ESS cannot exceed the maximum and minimum limits capacity:
SOC;s = SOCis 1 + (Piyne — Py /1a) At (26)

SOC,in < SOCt < SOCpax 27)

where, SOCjpx and SOC,,;,, denote the maximum and minimum limits of the residual capacity of the
ESS, respectively; SOC; is the storage capacity at time t. P{, and Pl-dt denote the charge/discharge power
at time £, respectively, 7. denotes the charging efﬁcienc/y; and 1’7,,1 represents discharging efficiency;
At denotes the interval time scale, is equal to 1 h.

Considering the current limitations of converters, the injected power of the ESS at each moment
cannot violate a certain power limit.

C C C
Pi,min < Pi,t < Pi,max (28)
d d d
Pi,min S Pi,t S Pi,max
where Pf,max and Pi”,lmax denote the maximum active power limits during charging and discharging
respectively. Here, the lower limits we set are Pf/mm = mein =0, Pf/max = Pi‘fmax = SOCpax.

Besides, the depth and timing of charge and discharge affect the life of the battery; relevant
constraint models need to be introduced for studying their influence on battery life.

3.2.9. Line Transmission Power Constraints

The line transmission power constraints are expressed as:

Y Per+ Y, Pui+PY—Liy— P+ P =Y Py (29)
geOl, heQi, jeqy
i — 0

. (30)

Pijy =
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— P < Py < P 31)

where 6;; denotes bus i voltage angle at time ¢, and x;; denotes the branch reactance between bus i and
bus j. P;ﬁfx represents the maximum active power flow limits for branch ij. (), represents all thermal
generation units at bus i, Q; represents all nuclear power units at bus i, and Q% represents all buses
linked to bus i.

Introducing the probability constraint, the line transmission capacity constraint is the joint
opportunity constraint when the line power is regarded as a random variable.

FCiy = (ai(Pimi“)2 + IoiPl-min +ci)ujr+ Zs;‘pf,t (32)
k

Equation (32) is transformed into a deterministic constraint as follows:
-1
Pyjy < PR — FApl.].,t (B1)

i -1
Pij,t > Pg}z.}n—i_FAPij,t (ﬁz)

(33)

where 1 and B, are the confidence level.

4. Case Study

The effectiveness of the proposed UC model is verified by the modified IEEE RTS-24 bus system,
which consists of 10 thermal generation units, two wind farms, two nuclear power stations and two
energy storage power stations. The cost coefficients of the generators are listed in Tables 1 and 2.
The daily load demand and wind power generation are shown in Figure 2. The quadratic function
of the fuel cost and the constraints of minimum up/down time are linearized by reference to the
literature [22]. The proposed UC mathematical model is solved with GAMS MINLP solver.

Table 1. Cost coefficients of thermal power units.

Number a;($/MW?h)  b;($/MWh) ¢;($/h) st;($) sd;($)

gl 0.00048 16.19 1000 52,000 13,000
g2 0.00048 16.19 1000 52,000 13,000
g3 0.0021 16.8 720 17,667 4367
g4 0.0021 16.8 720 17,667 4367
gb 0.002 16.6 700 17,667 4367
g6 0.002 16.6 700 16,667 4167
g7 0.001 16.19 800 50,000 12,000
g8 0.00068 16.19 850 50,000 12,000
g9 0.00068 16.19 850 50,000 12,000
g10 0.001 16.19 800 0 0

Table 2. Cost coefficients of nuclear power units.

Number a;($/MW?h)  b;($/MWh) c;($/h) P, pax($)

hl 0 9.33 7320 300
h2 0 9.33 7320 100

The total installed capacity of the wind farms connected to lines 8 and 21 is 200 and 50 MW,
respectively. The installed capacity of the nuclear power plant connected to buses 1 and 18 is 100 and
300 MW, respectively.

In the test system, the wind generation is linked to both bus 8 and bus 21. The Gaussian mixture
parameters of wind power forecast error are cgl) =07, ugl) =0, 01(1) =38, cél) = 0.3, uél) =4, (72(1) =2,
ng) = 0.8, u%z) =1, (71(2) =4, ng) =0.2, uéz) =5, (72(2) = 10. On lines 12 and 13, the corresponding
wind turbine output power transfer distribution factors (1) and B(?) are 0.26 and 0.42, respectively.
The detailed derivation of line transfer power probability is provided in the Appendix A.
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Figure 2. The hourly load demand and wind power prediction.
4.1. Impact on Cost of Peak Regulation with Nuclear Power
In this part, three schemes are designed for comparative analysis.

(1) Scheme one

Nuclear power units do not participate in peak-shaving scheduling and maintain stable operation
at full power.

(2) Scheme two

Nuclear power units participate in peak-shaving scheduling of the power system according to the
output pattern of “12-3-6-3". The peak regulation depth of two nuclear power units is set in advance
at 30%.

(3) Scheme three

The method of peak-shaving scheduling of the power system is the same as in scheme
two. The optimization solution is based on the joint optimal peak-shaving scheduling model.
The optimization cost results are shown in Figure 3.

800000702130 72?680 1383900 711560 1386000
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1381100
600000 e 1382000 <
v S
£ 500000 463320 452120 ™ 458870 1380000 §
S 400000 -,1375400 1378000 Eou
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== fuel cost of thermal power == peak regulation cost of thermal power
b——dstart-stop cost of thermal power &= fuel cost of nuclear power

== peak regulation cost of nuclear power =@=total cost

Figure 3. Cost comparison among peak regulation operation types.
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As can be seen in Figure 3, scheme three has the lowest total operating cost. At this time, the
optimal peak-shaving depth of the two nuclear power units is 0% and 29.8%, respectively. Shorter
start-stop operation times are the main reason for the reduced operational costs. For example, compared
to scheme one, the one-time stop operation cost of thermal power unit 3 (g3) is reduced in schemes
two and three with peak-shaving of nuclear power units.

4.2. Optimal Scheduling of the Proposed Multi-Type Generation Unit

Considering the joint dispatching model presented, including nuclear generation, the optimized
peak shaving depth of nuclear power is set to #77; = 30%, The injected power and up/down status of
10 thermal power units are shown in Figure 4, where we can see that the No. 5 and No. 6 thermal
power units (g5 and g6, respectively) are always in a stop state, which avoids the high up/down cost.

100 —

Generated power(MW)
S
o
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1 1 l 1 Il l Il 1 1 Il
12 13 14 15 16 17 18 19 20 21 22 23 24
Time(h)

L1 1
1.2 3 4 5 6 7 8 9 101"
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Figure 4. Injected active power of thermal generation units.

The optimized peak regulation output curves of the No. 1 and No. 2 nuclear power plants
(h1 and h2) are shown in Figure 5, respectively. The output of nuclear generation follows the system
demand, which effectively decreases the peak-valley load distinction. Figure 6 shows the charging and
discharging active power of ESS on both bus 8, 21, and the total power at each time.
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Figure 5. Injected active power of nuclear generation plants.
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Figure 6. The hourly dispatch of the energy storage system (ESS) in a unit commitment (UC) problem.
4.3. Energy Storage Parameters Impact on System Cost

The ESS has both charging and discharging active power characteristics, which play an important
role in peak-shaving.

For the UC model considering ESS, different energy storage parameters have different influences
on the total cost. Table 3 illustrates that the overall system cost decreases when the active power
capacity charging and discharging power limit increase.

Table 3. Total cost under different ESS parameters.

ESS Parameters (Energy Storage Upper

Limit/MWh, Power Upper Limit/MW) Total Cost/$

80, 16 1.3337 x 10°
100, 20 1.3336 x 10°
150, 30 1.3264 x 100
200, 40 1.3239 x 10°

4.4. Impact of Capacity Confidence Coefficients on System Cost

Taking into account uncertainty when modelling reserve capacity gives more dexterity spare for
power system scheduling.

To capture different degrees of net power fluctuation, different confidence levels are set. Figure 7
shows the hourly deterministic reserve capacity in comparison with the probabilistic reserve constraint
at various confidence levels. Besides, as shown in Figure 8, the overall cost rises with confidence
level increasing.
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Figure 7. Reserve capacity under various confidence setups.
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Figure 8. Total costs with different confidence level.
5. Conclusions

This paper presented a UC program that incorporated various generation types, such as thermal
power, nuclear power, wind generation and ESS. The introduction of a nuclear power plant eases the
peak-shaving pressure, decreases the up/down frequency of the conventional thermal power unit,
and reduces the operational expenses. This ESS model makes scheduling more flexible, thus serving as
an important adjunct function to generation system scheduling. This allows the grid to make full use
of clean energy, such as solar and wind energy. In addition, a GMM has been applied to model wind
power with non-gaussian uncertainty, and the spinning reserve setting of the system is more rational;
this provides the dispatcher with more comprehensive choices. Regarding the influence of uncertainty
on system scheduling, some alternatives have not yet been considered, and these will be studied in
our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

ucC unit commitment

ESS energy storage system
PWRs pressurized water reactors
GMM  Gaussian mixture model
OF objective function

Appendix A

The power forecast error probability density function of wind farm represented by the GMM is
expressed as:

FO@ar) =Y g0, ap) (A1)
k=1

where, m denotes the number of single Gaussian distributions in the GMM, and c]((i), u ](ci), lgi) denote the
weight coefficient, mean and standard deviation, respectively, of the kth single Gaussian distribution
in wind farm i.

The total uncertain power of the system is expressed as:

Pun = Apw1 + Bpwa + - -+ + Apwn (A2)

where, N is the number of wind farms. Compared to the forecast error of wind power output power,
the forecast error of load is small, so the forecast error of the load is ignored.

The change of active power flow of branch s—t caused by the change of node active power output
Ap is AP;_; in power system power flow analysis.

APg =Gt APy (A3)

where, G;_;; is the distribution factor of generator output power transfer of node j for line s—t.
Considering that multiple nodes are connected to the wind farm, the influence of all wind turbines on
a branch should be considered. The linear relationship between the power error of the line s—t and all
wind farm errors is expressed as:

AP;_; = ﬁ(l)Ap(l) + ‘B(Z)Ap(z) et ‘B(NW)AP(NW) (A4)

where, B1)B(2) ... B(Nw) are constant coefficients, which can be obtained by the wind turbine output
power transfer distribution factor matrix G.

Several properties of probability calculation are introduced. Suppose that x; and x; are two
independent random variables, and their probability density functions are f(*1)(-) and f(*2)(.),
respectively. y is the linear function of the random variables x; and x,, and its probability density
function is f)(.).

(1) Ify = hx; and h is a constant, then f) (y) = £ (y/h) /.
@) Ify =x1+xp, then f¥)(y) = 01 (y) @ F12) ().
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(3) If x; and x; are subject to the normal distribution and y = x1+xp, then v is still subject to the
normal distribution, the expected value of y is the sum of the expected values of x; and x, and
the variance of y is the sum of the variance of x; and x;.

According to the above properties, the probability density function of line power PG can be
deduced as follows:

3 3 3
f(s t) Z Z ZC (s=t) gls—1) p(s_t)) (45)
k=1m=1 n=1
where
o=t — C}({1)C1(13) _C(Nw)
=t = . t+:85t I/‘k +,Bst ‘uk +ﬁ(Nw _(Nw) (A6)
2
(0 0)'= (B M) + (B o-m”) Foot( g%st)z

where, p°~! is the expected value of the line power, which can be calculated by DC power flow.
The cumulative distribution function of p*~* is derived as follows:

S f

E(5—1) =" x)dx

3 3

y Y Cst)fp (L_lSt)(TSt) x)dx

k=1m=1 n=

3 3 3 p ) 2= (A7)
= Z c(s=1) f_ RS ¢(0,1,x)d

k:lm3:1 n=1

M
M
Mw
o
§
i

X.
—
3
,4
3

I

—

where, G(+) denotes the cumulative distribution function of the standard Gaussian function.
The probability density function of random error variable A p©*~) can be deduced as follows:

FE=D(Apt—1)= f,Af;(S*t) £ (x)dx
3 3 3 .
:kzl 21“ Z1C(S_t) —A:;( ! g(at=t, o=t x)dx
=1m= n=
LR e (A9
=Y X Z = e) (0,1, x)dx
kzlm:l” n=1 — g\, 1,
>y S s— Ap(5—t) _yy(s—)
:kglm);l“ n§1C( t)G(pg@i—fP)l>
where
o0 = (D). (No)
w Nw
:BS +ﬁst ]’lk +ﬁst ‘uk ) (A9)

<a<s—f )= (ol >> +(BC o-m”f o (B N 2

Through formula (A9), sequence pairs of cumulative distribution functions of the system error
and line power error variables are obtained:

[Punlzpun(Pum)]/ [PMVIZIFMYI(PMVIZ)} ’ [Pun3rFun(Pun3>]

(A10)
[Apl(s—f),p(s—f) (Apl(s_t))} , {APZ(S—f),p(S—f)(Apz(s—f))} , [Ap3(s_t),F(s_t)(Ap3(S_t))} .

where, the intervals of Py;,1, Pyn2, Puns - - - and Apy, Apa, Aps - - - are homogeneous, so the inverse value
of the cumulative distribution function corresponding to the specific probability value can be obtained
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by the sequence pairs query or the first order interpolation algorithm during the opportunity constraint
optimization process.
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