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Featured Application: The featured application of the proposed study is to develop the application
and describe the advantages of phased array ultrasonic technique for the inspection of composite
materials. The proposed method not only enhances the probability of detection of the defects in
composite materials, but also increases the distance over which the defects are detectable with a
single inspection location.

Abstract: Carbon- and glass fiber-reinforced polymer (CFRP and GFRP) composite materials have
been used in many industries such as aerospace and automobile because of their outstanding
strength-to-weight ratio and corrosion resistance. The quality of these materials is important for safe
operation. Nondestructive testing (NDT) techniques are an effective way to inspect these composites.
While ultrasonic NDT has previously been used for inspection of composites, conventional ultrasonic
NDT, using single element transducers, has limitations such as high attenuation and low signal-to-noise
ratio (SNR). Using phased array ultrasonic testing (PAUT) techniques, signals can be generated at
desired distances and angles. These capabilities provide promising results for composites where the
anisotropic structure makes signal evaluation challenging. Defect detection in composites based on
bulk and guided waves are studied. The capability of the PAUT and its sensitivity to flaws were
evaluated by comparing the signal characteristics to the conventional method. The results show that
flaw sizes as small as 0.8 mm with penetration depth up to 25 mm can be detected using PAUT, and the
result signals have better characteristics than the conventional ultrasonic technique. In addition, it has
been shown that guided wave generated by PAUT also has outstanding capability of flaw detection
in composite materials.

Keywords: phased array ultrasonic; composites; signal sensitivity; defect detection; nondestructive
testing (NDT)

1. Introduction

Carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP) composite
materials are widely used in a variety of applications such as aerospace structures, wind turbine
blades, the automotive industry, and mass transit [1–4]. Nondestructive testing/evaluation (NDT/E)
and inspection of these materials are necessary to control the quality of the parts and inspect for
anomalies in the structures to prevent catastrophic failure. Nondestructive techniques are widely
used for material evaluation and flaw detection [5,6]. Ultrasonic testing is one of the most commonly
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used NDT methods for various applications, where characteristics of ultrasonic signals, such as
reflection and scattering of ultrasound waves, are used for material properties evaluation and flaw
detection [5,7–10]. In ultrasonic testing, a piezoelectric transducer is commonly used for generation
of compression or shear wave which are propagating through the inspected media. When these
waves interact with media boundaries, they face reflection, transmission, and scattering from the
boundaries [5]. These scattering characteristics, the speed of sound wave, and travelling time provide
valuable information about the material properties and integrity. However, using conventional
ultrasonic methods for composite inspection can be challenging due to the anisotropic nature of the
composites structures [11–13]. Wave propagation in anisotropic composite structures is complex,
and random scattering as well as high attenuation of ultrasonic waves reduce the probability of defect
detection [14,15]. Several ultrasonic techniques have been used for inspection and characterization
of composite materials. Castellano et. al. (2018) introduced a new experimental approach for the
comparison between Quasi Static Indentation (QSI) damage and Low-Velocity Impact (LVI) damage in
polymer composites starting from the results of ultrasonic goniometric immersion tests [16]. In their
study, the differences and similarities between QSI and LVI damage starting from the analysis of the
variations of the acoustic behavior and by using a suitable anisotropic damage model developed in the
framework of the Continuum Damage Mechanics theory [16].

Phased array ultrasonic testing (PAUT) can overcome conventional ultrasonic method limitations
by providing the capability of signal focusing and steering at desired angles and locations [17–19].
In PAUT, a series of ultrasonic elements in a phased array transducer can provide the option to
activate each individual element in a programmed sequence [20,21]. A phased array unit includes a
computer-based instrument capable of driving multielements, as well as receiving and digitizing the
returning echoes based on the appropriate delay law for firing the elements. This is done by changing
the time between the outgoing ultrasonic pulses of each element so that the superimposed wave front
effectively steers and shapes the resultant final sound beam. This capability assists in generating
the desired type of ultrasonic signal and improving the wave characteristics in comparison to the
conventional single-element ultrasonic transducer. The PAUT method can also be used to generate
guided waves [22–26]. Guided waves are another type of ultrasonic wave, which provide useable
features for inspection of plate type structures. Guided waves can travel longer distances compared to
the other types of ultrasonic waves and can cover more area of inspection, making faster inspections
possible [19,27–29]. Chimenti (1997) comprehensively discussed the composite materials and their
inspection and characterization using guided waves [30].

In this work, we first compare the defect detection capability and sensitivity of the PAUT signals
with single element (conventional) ultrasonic (SEUT). The back wall reflection of bulk wave through
the thickness of composite samples was used to study the signal characteristics of the PAUT and
compare them with SEUT. The sensitivity of the signal to flaw detection was also studied using the
response signal from the artificially made defects in composite parts. Next, guided wave modes were
generated using the PAUT system for defect detection in sample plates. The guided waves generated
using PAUT were used to show the feasibility of flaw detection on composite plates.

2. Materials and Sample Preparation

2.1. SEUT Versus PAUT Methods

GFRP plates, extracted from a wind turbine blade, were used for the experiments as shown in
Figure 1a. The GFRP samples have various thicknesses of 4, 10, 12, 18, and 25 mm. In order to study
the sensitivity of flaw detection in both the PAUT and SEUT methods, various sizes of holes were
drilled on one side of the sample (with the largest thickness being 25 mm), as shown schematically in
Figure 1b.
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Figure 1. Samples used to evaluate capability and sensitivity of defect detection in single element 90 
ultrasonic (SEUT) versus phased array ultrasonic (PAUT) methods: (a) glass fiber reinforced polymer 91 
(GFRP) samples from a wind turbine blade and (b) schematic for the artificial hole locations in GFRP 92 
sample with 25mm thickness (Thk.). Sample size is 250 × 100 × 25 (L × W × Thk.) mm. Width of the 93 
sample is 100 mm and holes drilled in the middle of the width. 94 

2.2. PAUT Guided Wave Method 95 
Two different types of materials were used in this experiment, Aluminum (Al) and CFRP plates, 96 

as introduced in Table 1. The reason for selecting these materials for guided wave evaluation was 97 
that they were available in plate shape and desired thicknesses (in the range of 1 to 2 mm) for guided 98 
wave generation. For both Aluminum and CFRP samples, artificial defects, in the form of drilled 99 
holes, were made into the samples. Figure 2 shows a schematic for the location and depth of the 100 
artificial holes in both inspected samples. 101 

Table 1. Test samples description used for the phased array ultrasonic (PAUT) guided wave method. 102 

Sample 
Name 

Material Thickness 
(mm) 

Al-1 Aluminum 6063 (Plate) 2.2 
Al-2 Aluminum 6063 (Plate) 0.635 

CFRP 
Unidirectional Carbon Fiber Composite (5 layers of carbon 

fiber fabric) 1.0 

3. Experimental Setup 103 

Figure 1. Samples used to evaluate capability and sensitivity of defect detection in single element
ultrasonic (SEUT) versus phased array ultrasonic (PAUT) methods: (a) glass fiber reinforced polymer
(GFRP) samples from a wind turbine blade and (b) schematic for the artificial hole locations in GFRP
sample with 25mm thickness (Thk.). Sample size is 250 × 100 × 25 (L ×W × Thk.) mm. Width of the
sample is 100 mm and holes drilled in the middle of the width.

2.2. PAUT Guided Wave Method

Two different types of materials were used in this experiment, Aluminum (Al) and CFRP plates,
as introduced in Table 1. The reason for selecting these materials for guided wave evaluation was that
they were available in plate shape and desired thicknesses (in the range of 1 to 2 mm) for guided wave
generation. For both Aluminum and CFRP samples, artificial defects, in the form of drilled holes,
were made into the samples. Figure 2 shows a schematic for the location and depth of the artificial
holes in both inspected samples.

Table 1. Test samples description used for the phased array ultrasonic (PAUT) guided wave method.

Sample Name Material Thickness (mm)

Al-1 Aluminum 6063 (Plate) 2.2
Al-2 Aluminum 6063 (Plate) 0.635

CFRP Unidirectional Carbon Fiber Composite (5 layers of carbon fiber fabric) 1.0
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3. Experimental Setup

3.1. SEUT Versus PAUT Methods

It is important to understand how far an ultrasonic signal can travel through the composite
material while the back wall reflection is still detectable. This shows the capability of signal focusing
and propagation for an ultrasonic setup. The SEUT experiments were performed using three different
frequencies including 0.5, 1.0, and 1.5 MHz, where the attenuation of ultrasound signals at different
frequencies was evaluated. In the PAUT experiments, a 1.5 MHz, 16-element transducer was used
accompanying the related normal wedge. Both SEUT and PAUT transducer and setups are shown in
Figure 3.
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Figure 3. Experimental setup for capability and sensitivity evaluation: PAUT (left) and SEUT (right).

3.2. PAUT Guided Wave Method

Guided wave modes were generated on Al and CFRP plates by means of a commercially available
phased array probe and wedges. The procedure of plate wave generation and parametric evaluation
are described in detail in [8,18]. A 1.5 MHz phased array ultrasonic probe with 16 elements and related
60 degrees longitudinal wave wedge was used for guided wave generation and flaw detection. Figure 4
shows the setup used for inspecting the artificial defects (drilled holes) in CFRP sample. In CFRP
sample, guided waves were generated in direction of the fibers.
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Figure 4. Experimental setup for flaw detection in CFRP sample using PAUT guided wave method.

4. Results and Discussions

4.1. SEUT Versus PAUT Methods

4.1.1. Focusing Depth Comparison

Table 2 shows the signal characteristics in terms of signal-to-noise ratio (SNR) for SEUT and PAUT.
Data in Table 2 is plotted in Figure 5 and shows the relationship between the thicknesses of the GFRP
plates (i.e., wave traveling distance) and travelling time of ultrasound wave. It can be observed that
the velocities in the GFRP plate can be calculated as twice the slope of the graph, which are equal to
2 × 1.57 = 3.15 mm/µs for SEUT and 2 × 1.59 = 3.18 mm/µs for PAUT. Figure 6 shows an example for
typical signals for the back wall reflection in SEUT and PAUT methods in the 12-mm-thick composite
plate. As can be seen from the results in Table 2 and considering the form of the ultrasound signal
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shown in Figure 6, the features of the signals are clearer and better detectable using PAUT with lower
gain values. The wave velocity is important information in determining the depth and location of the
defects according to the ultrasound wave’s traveling time.

Table 2. Signal characteristics of back wall reflection for SEUT method with different frequencies and
PAUT method.

Frequency Method Sample Thickness
(mm) Gain (dB) Time (µs) Signal-to-Noise

Ratio

0.5 MHz SEUT GFRP

4 42 5.01 7.95

10 55.8 9.87 3.99

12 60.5 11.01 3.07

18 61 14.73 2.98

25 64.7 18.92 2.53

1 MHz SEUT GFRP

4 18.5 4.76 5.31

10 36 8.56 11.93

12 39.6 9.80 11.75

18 41.2 13.60 11.10

25 45.9 18.35 9.57

1.5 MHz SEUT GFRP

4 15.5 4.67 5.14

10 37 8.48 11.75

12 40.8 9.76 11.10

18 43 13.55 9.51

25 46.7 18.25 9.43

1.5 MHz PAUT GFRP

4 13 3.64 6.10

10 27 7.56 5.44

12 28.5 8.93 5.81

18 36 12.49 3.39

25 40 17.41 3.22
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Figure 6. Back wall reflection signals for GFRP: (a) SEUT method and (b) PAUT method.
(Freq. = 1.5 MHz, Thickness = 12 mm).

All the measured velocities are very close in value; however, the attenuation (i.e., gain values)
is improved for PAUT when compared to SEUT at 1.5 MHz. On the other hand, the quantitative
values in Table 2 show that SNR is, on average, two times larger for SEUT when comparing the peak
of reflected signal to the background noise. However, it should be mentioned that the resolution of
the peak and its location is much lower in SEUT which caused inaccuracy for detection purposes.
Higher local value of SNR in SEUT can be attributed to the interference of the signals for each element
in PAUT. Qualitatively, PAUT has more uniform and detectable signal with less jitter, specifically at
larger thicknesses. Figure 7 shows the gain values (for different inspection frequencies) in order to
reach detectable signal in different sample thicknesses. The plot shows that the SNR and signal’s
attenuation were improved in PAUT technique when compared to SEUT such that 7–20% less gain in
value was required to have detectable signal in case of 1.5 MHz transducers.
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characteristics evaluation using SEUT and PAUT techniques.

4.1.2. Sensitivity Comparison and Defect Detection

Figure 8 shows the signals associated with the defect (artificially drilled holes) reflections by SEUT
and PAUT methods. The depth of the hole can be determined based on the obtained velocity values,
as in Equations (1) and (2). Both SEUT and PAUT techniques provided results that are very close
to what was obtained by real time x-ray imaging (i.e., 11.175 mm) for validation. It was observed
that both SEUT and PAUT techniques can detect a 0.8 mm diameter hole as the minimum size and
sensitivity limit; however, PAUT method provides approximately 15% higher SNR for the defect signal.
We believe that in PAUT, lower SNR and better signal characteristics, such as higher focusing energy,
could assist in detecting smaller-sized defect sizes, and this needs further experimental evaluation.

Depth(SEUT) =
Time×Velocity

2
=

7.12× 3.07
2

= 10.9 mm (1)

Depth(PAUT) =
Time×Velocity

2
=

7.05× 3.23
2

= 11.4 mm (2)

In Figure 8, PAUT has a clearer and more easily detectable reflection from the defect (reflector),
as well as a better detectable back wall reflection. However, when looking at SEUT signal, due to
less smoothness in signal from one transducer element, it is more difficult to identify these reflection
locations. In addition, as can be seen from the data in Table 2, the gain value is a very important factor.
However in some cases the SNR in SEUT looks to be higher, but it was obtained with higher gain value.
This happened when a small decrease in the gain value, less than the values in Table 2, did not provide
a good detectable signal.
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Figure 8. Response signal for GFRP: (a) SEUT method and (b) PAUT method. (Freq. = 1.5 MHz,
Thickness = 25 mm, Hole Diameter = 0.8 mm, Hole Depth = 12mm).

4.2. PAUT Guided Wave Method

Tables 3 and 4 show the results for the signal response parameters for Al-1 and Al-2 samples.
In the dispersion curve of guided wave modes in plates, the smaller values of “fd” (i.e., frequency x
plate thickness) are more distinctive and, consequently, have a higher probability of detection [31].
In practical application specifically when the thickness of the plate structure is a fixed and known
value, only the frequency of inspection can be changed. So, for thicker structures, one should use
much lower frequencies, while for thinner structures, the range of possible frequencies will be wider
and higher frequencies can be used to increase the resolution. The effect of “fd” value in response
signals is presented in Tables 3 and 4. We find that, in lower “fd” values, the distance from which the
signal from the defect is still detectable is longer. The phase velocity for the generated guided wave
were calculated based on the theory and properties of the angle wedge. Based on these values, S0, A1,
and S1 modes were possible for the Al-1 sample (fd = 3.3 MHz.mm), and A0 and S0 modes are possible
for Al-2 sample (fd = 0.96 MHz.mm). The strongest reflection which also has the closest phase velocity
value to the theory were identified as the dominate wave modes. In this case it was A1 for Al-1 sample,
S0 for Al-2 sample, and S0 for CFRP sample. In Tables 3 and 4, signal parameters from the reflection
of the edge of the plate close to the hole, and from the hole are presented. These signal parameters
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include the arrival time and the amplitude of the signal at the edge of the plate and the defect. Figure 9
shows the change of the signal’s amplitude over the distance of the PAUT transducer from the edge for
Al-1 and Al-2. For Al-1 it was noticed that the hole’s signal has larger amplitude at a longer distance
compared to Al-2. This is attributed to the interference of the stationary wedge reflection signal and
the signal from the hole. Figure 10 shows typical signals for the experiments in Tables 3 and 4 for Al-1
and Al-2.

Table 3. Signal parameters for flaw detection in Al-1 sample.

Experimental Setup Parameters for PAUT Guided Wave Inspection of Al-1 Sample

Frequency
(MHz)

Thickness
(mm) Gain (dB) Element Qty.1 fd2 Element

Step3

1.5 2.2 30 4 3.3 1
1 Number of active elements at each sequence in phased array ultrasound transducer

2 frequency × plate thickness (MHz.mm)
3 Incremental steps in terms of number of elements at each sequence

Defect Detection Signal Characteristics

Experimental
Trials #

Hole
Diameter

(mm)

Signal
Distance of

Transducer from
The Edge (mm)

Arrival Time
(us) DTime

(us)

Amplitude
(%)

Edge Hole Edge Hole

1
1

Edge/Hole 50 58.07 47.61 10.5 53.9 46.6

2 Edge/Hole 100 87.99 70.27 17.7 33.1 24.3

3 Edge/Hole 150 109.77 92.34 17.4 10.3 21.1

Table 4. Signal parameters for flaw detection for Al-2.

Experimental Setup Parameters for PAUT Guided Wave Inspection of Al-2 Sample

Frequency (MHz) Thickness
(mm) Gain (dB) Element Qty.1 fd2 Element

Step3

1.5 0.635 30 4 0.96 1
1 Number of active elements at each sequence in phased array ultrasound transducer

2 frequency × plate thickness (MHz.mm)
3 Incremental steps in terms of number of elements at each sequence

Defect Detection Signal Characteristics

Experimental
Trial #

Hole
Diameter(mm)

Signal
Distance of

Transducer from
The Edge (mm)

Arrival Time
(us) DTime

(us)

Amplitude
(%)

Edge Hole Edge Hole

1

1

Edge/Hole 50 39.19 28.15 11.0 100 15.5

2 Edge/Hole 100 57.78 46.45 11.3 100 11.5

3 Edge/Hole 175 85.08 74.34 10.7 82.7 7.8

4 Edge/Hole 200 94.09 83.05 11.0 77.7 4.5
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Table 5 shows the results of PAUT guided wave signal parameters for the CFRP sample. In Table 5,
the arrival time of the reflection signal from the plate edge and the defect (hole) are presented
(See Figure 2 for reference). The difference between the arrival times from the plate edge and from the
defect (hole) was calculated. Considering the wave velocity, which was experimentally determined in a
previous work [8], the distance between the plate edge and defect (hole) was determined experimentally.
Comparing the distance between the plate and the defect (hole) which was determined experimentally
with the actual location (as designed = 30 mm) shows that the location of the defect (hole) can be
determined using the proposed technique within an acceptable range. When the size of the defect
(hole) is larger, there is a better probability of detection, and the accuracy in determining the location of
the defect (hole) is higher. In addition, when there is less interference between wave modes, such as in
the case of larger distances, there is higher accuracy of detection. Better accuracy at larger distances
occurs because, when the travelling distance for the guided waves is short, these wave modes are
not stabilized and have many overlaps and low signal-to-noise ratio which cause higher inaccuracy.
Figure 11 shows a typical signal for the experimental result listed in Table 5 for CFRP. Figure 12 shows
the change in signal amplitude at different defect (hole) sizes for the experiments in Table 5 for CFRP.
The amplitude of the signal from the plate edge is inversely proportional to the hole diameter. However,
the amplitude of the signal from the hole is directly proportional to the hole diameter. As the hole
diameter increases (i.e., larger defect), a larger part of the ultrasonic energy is reflected by the defect
(hole), and consequently a smaller part will hit the edge.

Table 5. Signal parameters for flaw detection for CFRP.

Experimental Setup Parameters for PAUT Guided Wave Inspection of CFRP

Frequency (MHz) Thickness
(mm) Gain (dB) Element Qty.1 fd2 Element

Step3

1.5 1 35 4 1.5 1
1 Number of active elements at each sequence in phased array ultrasound transducer

2 frequency × plate thickness (MHz.mm)
3 Incremental steps in terms of number of elements at each sequence

Defect Detection Signal Characteristics

Experimental
Trial #

Hole
Diameter(mm)

Signal
Distance of

Transducer from The
Edge(mm)

Arrival Time
(us) (Edge/Hole) DTime

(us)
Ddist
(mm)

Edge Hole

1
0.8

Edge/Hole 50 25.64 13.81 11.83 48.9

2 Edge/Hole 100 35.6 24.54 11.06 45.7

3 Edge/Hole 150 46.11 37.08 9.03 37.3

1
1

Edge/Hole 50 26.76 14.07 12.69 52.5

2 Edge/Hole 100 35.62 26.11 9.51 39.3

3 Edge/Hole 150 45.97 37.28 8.69 35.9

1
1.2

Edge/Hole 50 24.52 14.11 10.41 43.0

2 Edge/Hole 100 36.24 26.89 9.35 38.6

3 Edge/Hole 150 46.25 37.36 8.89 36.7
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5. Conclusions

Conventional (single-element) ultrasonic testing and phased array ultrasonic testing (PAUT)
methods are evaluated for inspection of composite materials. The capability comparison tests for
waves traveling through the composite materials indicate that thickness of up to 25 mm could be
tested in both SEUT and PAUT methods; however, the stability of the signal parameters is higher in
PAUT and detectable signal can be observed at lower gain values. The calculated velocity from the
capability experimental part was 3.1 mm/µs, which is close to the estimated and expected velocities
in composite plates and was used to identify the flaw’s location. From the sensitivity comparison
experimental results, it can be seen that a 0.8 mm diameter hole can be detected as the minimum size
by both SEUT and PAUT, but PAUT generally has a better signal regarding SNR. However, PAUT does
not increase the sensitivity by a big factor, but because of lower noise and jitter and better signal
characteristics it may be possible to find smaller defect sizes such as 0.7 or 0.6 mm with PAUT as well.
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Guided waves can also be generated using phased array ultrasonic probes and wedges with lower
frequencies. Experimental results show that the different size of flaw (0.8, 1, and 1.2 mm diameter
holes) can be detected by means of generated guided waves with the PAUT method. While the
determination of the exact location of the flaw is affected by the dispersion characteristics of the guided
waves, PAUT is a promising technique for detecting the size and location of defects in CFRP and GFRP
composite materials.
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