
applied  
sciences

Article

Brain-Like Navigation Scheme based on MEMS-INS
and Place Recognition

Chong Shen 1 , Xiaochen Liu 1 , Huiliang Cao 1, Yuchen Zhou 1,2,* , Jun Liu 1,*, Jun Tang 1,
Xiaoting Guo 1, Haoqian Huang 3 and Xuemei Chen 4

1 Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, School of
Instruments and Electronics, North University of China, Taiyuan 030051, China;
shenchong@nuc.edu.cn (C.S.); s1706093@st.nuc.edu.cn (X.L.); caohuiliang@nuc.edu.cn (H.C.);
tangjun@nuc.edu.cn (J.T.); guoxiaoting@nuc.edu.cn (X.G.)

2 Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
3 College of Energy & Electric Engineering, Hohai University, Nanjing 210098, China; hqhuang@hhu.edu.cn
4 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;

chenxue781@126.com
* Correspondence: 1506014440@st.nuc.edu.cn (Y.Z.); liuj@nuc.edu.cn (J.L.)

Received: 22 February 2019; Accepted: 22 April 2019; Published: 25 April 2019
����������
�������

Abstract: Animals have certain cognitive competence about the environment so they can correct their
navigation errors. Inspired by the excellent navigational behavior of animals, this paper proposes a
brain-like navigation scheme to improve the accuracy and intelligence of Micro-Electro-Mechanical
System based Inertial Navigation Systems (MEMS-INS). The proposed scheme employs vision to
acquire external perception information as an absolute reference to correct the position errors of
INS, which is established by analyzing the navigation and error correction mechanism of rat brains.
In addition, to improve the place matching speed and precision of the system for visual scene
recognition, this paper presents a novel place recognition algorithm that combines image scanline
intensity (SI) and grid-based motion statistics (GMS) together which is named the SI-GMS algorithm.
The proposed SI-GMS algorithm can effectively reduce the influence of uncertain environment factors
on the recognition results, such as pedestrians and vehicles. It solves the problem that the matching
result will occasionally go wrong when simply using the scanline intensity (SI) algorithm, or the slow
matching speed when simply using grid-based motion statistics (GMS) algorithm. Finally, an outdoor
Unmanned Aerial Vehicle (UAV) flight test is carried out. Based on the reference information from
the high-precision GPS device, the results illustrate the effectiveness of the scheme in error correction
of INS and the algorithm in place recognition.

Keywords: inertial navigation system; visual navigation; place recognition; image matching

1. Introduction

Navigation technology plays a significant role in our life. Even in an unfamiliar environment,
we can easily get the current location and reach our destination with the help of GPS. Nevertheless,
GPS may be blocked in some environments, such as the places between tall buildings in cities, deep-sea
area, deep mountains and forests, etc. Micro-Electro-Mechanical System Inertial navigation system
(MEMS-INS) demonstrates its unique superiority, which can calculate the next-point location based
on the continuously measured self-motion velocity and direction information, rather than external
information, so it has a vast application scope. Whereas, the navigation information of INS is generated
by the integration of velocity and direction information measured by sensors, so the error will increase
over time, thereby resulting in poor positioning accuracy over a long time [1–3]. Additionally, inertial
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sensors suffer from large measurement uncertainty at slow motion [4]. It has undoubtedly become one
of the research hotspots to reasonably and effectively reduce these accumulated errors and improve
the intelligence of the INS in recent years.

Studies have shown that the navigation strategies which integrate one or more navigation means,
such as GPS [5–7], Spectral Redshift [8], Polarized Light [9] etc., with INS can obtain complementary
advantages and achieve better navigation results. The Unmanned Aerial Vehicle (UAV) has played an
increasingly important role in various fields in recent years [10], to achieve better navigation results,
GPS/INS is the most widely used integrated navigation system especially for UAVs [11–13]. However,
in GPS blocked environments, the GPS/INS system would be shut down and go back to INS standalone
mode and the navigation error would be accumulated [14]. As a common integrated navigation
method for UAVs, visual navigation also has many drawbacks [15]. On the one hand, the performance
of visual navigation is inversely proportional to the velocity. Another limitation of visual sensors is due
to their inability to distinguish rotational from translational motion, since it requires the summation of
six motion components. Moreover, the mentioned integrated navigation systems are still simply a
combination of different devices without any intelligent ability. To endow INS with intelligent ability,
the attention of researchers is turned to the biological world.

Many animals have outstanding navigation ability, such as pigeon post, old horse knowing the
way, etc. Whether across a myriad of rivers, thousands of hills, in a mighty storm or some other
severe weather event, these amazing animals always know the way back home. Many people are
good at recognizing the way too, and they seem to have a high-resolution map embedded in their
mind so that they will not get lost somehow. It shows that a living organism can obtain the perception
of external information just by its own organs, which can be transformed into accurate navigation
information through a certain biological mechanism. The Nobel Prize in Physiology or Medicine in
2014 revealed this mystery for us. As early as in 1971, John O’Keefe discovered a type of neuron in an
encephalic region called hippocampus in the rat brain, which was responsible for remembering location
features [16]. More than 30 years later, May-Britt Moser and Edward Moser demonstrated that there
was a mechanism for establishing spatial coordinate system in an animal’s brain, which could generate
path integration by obtaining motion information from speed cells [17] and head-direction (HD)
cells [18,19]. In imitation of this mechanism, Michael E. Milford conducted the mathematical model
of a rat brain, and established the SeqSLAM bionic navigation algorithm by using the vision-driven
navigation system and achieved good results in outdoor navigation experiments [20]. SeqSLAM is a
pure visual navigation algorithm, of which the core sensing information only come from the visual
odometer. In fact, when animals or humans reach a familiar environment, the path integrator will
be reset to adapt to the external environmental information sensed by the eyes. It means that the
integrated position error can be corrected when animals or humans come into a familiar environment,
where it can be recognized as an absolute position reference, therefore, the navigation accuracy can be
remarkably enhanced by intermittently eliminating accumulated errors. The crux of stimulating such
error correction mechanism of organisms lies in whether it is capable of rapidly and accurately matching
current visual scenes with the feature scenario in “memory.” SeqSLAM uses an algorithm based on
image grayscale information to conduct closed-loop detection of scenes. It’s advantages include the
small computing amount and excellent real-time, but it has poor robustness and is vulnerable to
environmental factors. By contrast, other visual matching algorithms such as Vector Field Consensus
algorithm (VFC) [21], Guided Locality Preserving Matching algorithm (GLPM) [22] and Grid-based
Motion Statistics algorithm (GMS) [23] are based on feature points. Most of these algorithms usually
perform feature extraction first [24,25], and then match the extracted feature points in some way [26].
Therefore, they usually have highly accurate matching results, but the computation cost still needs to be
improved for real-time application. To effectively eliminate the accumulative position errors of INS and
enhance its intelligence, this paper first investigates the navigation mechanism of rats. The investigation
finds that the reason why rats can eliminate the accumulative errors caused by path integration is
that they have certain cognitive competence about the environment. Inspired by this, this paper
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combines vision and INS together, putting forward a brain-like navigation scheme. This system can
recognize “spots in memory” during movement to perform error correction for INS at those spots.
Additionally, to better solve the place recognition problem of the scheme, this paper compares and
analyzes traditional grayscale based matching methods with feature point based matching methods,
and at last proposes a place recognition algorithm which is named SI-GMS. Experimental results
suggest the scheme mentioned above can considerably improve the positioning accuracy of INS.
The main contributions of this paper are summarized as follows:

The paper presents a “brain-like navigation” scheme based on the principle of rat brain navigation
cells. The proposed brain-like navigation scheme corrects position errors caused by path integration
through visual information, which improves the position measurement precision and intelligence level
of INS.

The paper introduces a place recognition algorithm that integrates gray information and feature
point information of images specific to the proposed brain-like navigation scheme. This algorithm has
numerous advantages including real-time and accurate matching results. It can effectively overcome the
shortcomings of the traditional place recognition algorithms, such as missed judgement, misjudgment
and poor environmental suitability.

The paper is organized as follows: Section 2 is the proposed brain-like navigation model. Section 3
is the description of proposed place matching algorithm. Experiment and comparison results are
presented in Section 4. The paper ends with a conclusion in Section 5.

2. Proposed Solution

Some animals have excellent navigation skills. For example, ants can directly go into their nests
after foraging for food and migratory birds can fly over thousands of miles a year without getting lost.
Humans also can remember different scenes for navigation. After years of research, the winner of the
2014 Nobel Prize in Physiology or Medicine discovered the brain localization system cells for animal
navigation mechanisms [17]. To date, the primary neuronal cells related to animal’s environmental
cognition that have been found mainly include place, head-direction (HD) and speed cells.

2.1. Place Cells

According to the experiment carried out by O’Keefe and Conway [12], when a rat runs to a
particular area, certain cells fire consistently. If the rat runs to other areas, several other cells fire.
These cells are called place cells. The figure below shows the trajectory of the rat in the open room.
The orange point indicates the position of the rat when certain cells are active at a particular position,
and the light orange round spot indicates the theoretical field of the cells in these positions (Figure 1).
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Figure 1. Certain cells are active at a particular position.

The orange dots indicate that the place cells at this position are firing, and the black line represents
the path of rat movement. When the rat reaches a specific site, cells are fired at a specific location,
which indicates the position of the rat in the field.
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2.2. HD Cell

In 1984, physiologists Ranck [17,18] identified HD cells at the presubiculum of rats, thereby
elucidating the mechanism by which the animal encodes the direction of its own motion. Experiments
have shown that when a rat’s head is oriented in a certain direction, certain HD cells are firing.
When the head deviates from this direction, this firing gradually decreases. As shown in Figure 2,
the preferred direction of HD cells is at an angle of 150◦. When the rat’s head is oriented in this
direction, the strength of the electrical signal could peak.
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2.3. Speed Cell

In 2015, after winning the Nobel Prize in Physiology or Medicine, May-Britt Moser and Edvard
Moser [17] discovered that some nerve cells can increase their firing rate proportional to the increase of
moving speed. By investigating the firing rate of such cells, it was possible to determine the speed at
which an animal moves at a given point of time. The researchers named these cells as speed cells.

In their experiment, the researchers placed a rat in a top-opened box and induced it to run freely
by randomly throwing food. The experiment was conducted in a dark environment to avoid the
impact of visual information. Simultaneously, during data analysis, the effect of rat behavior on speed
cells was avoided by ignoring the changes in cell viability of all moving speeds <2 cm/s. The activity
intensity was embodied by a simple linear decoder [17], consisting of a distribution field and linear
filter (Figure 3). The activity state information was transmitted to the pose cell where HD and place
cells were fused, and then affected the linear track.
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2.4. Proposed Brain-Like Navigation Model Based on Vision and INS

As indicated by research on physiology, the phenomenon that the animal’s place cells are activated
in the environment is determined by path integration, which is a consequence of integrating internal
cues include directional heading and distance computations. Naturally, errors in path integration
accumulate over time. When rats are placed in a familiar environment, the path integrator will be reset
to be adapted to the external environment information perceived by the eyes. It has been demonstrated
by these studies that rats can integrate the internal and external information for accurate navigation
in various environments. In a familiar environment, the positioning error can be corrected with the
external perceptive information as an absolute reference, and the same is true for human beings.
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By simulating the navigation mechanism of these species, we put forward an intelligent brain-like
navigation model based on vision and INS.

The attractor network model of place cells constructs a measurement model corresponding to
the relative position in the actual external environment. The place cells model adopts continuous
attractor networks, where the place cells on the fringe are connected to the ones on the other fringe and
form an annular shape. The continuous attractor networks model creates a stable activity packet via
the wraparound excitatory connections on the same neural plate. This attractor network is driven by
the path integration system and reset by the graphic information derived from the current position.
By using two-dimensional Gaussian distribution to construct χx,y which is the weight connection
matrix of excitability, χx,y is expressed by:

χx,y = e−(x
2+y2)/E, (1)

where x and y are the distances between units in X and Y coordinate respectively, and E is the width
constant for position distribution.

The place cell activity matrix P is used to describe the activity in the place cells. The variable
quantity of place cells’ activities induced by local excitation is given by:

∆P(X, Y) =
SX−1∑
i=0

SY−1∑
j=0

P(i, j)χx,y, (2)

where SX,SY are the dimensions of the two-dimensional matrix of the place cells in the space and
represent the attractor sub-model’s range of activity on the neural plate. The precondition for the
iteration of place cells and the matching of the visual template is to pinpoint the relative position
of place cells attractors in the neural plate. The relative position coordinates are expressed by the
subscript of the weight matrix, which is calculated by the equations:

x = (X − i)(modSX), (3)

y = (Y − j)(modSY). (4)

Each place cell receives the global inhibitory signal in the same manner as an entire network.
The symmetry of the excitatory and inhibitory connection matrix is a guarantee for proper neural
network dynamics, which keeps the attractors in the space from unrestricted excitability. The variable
quantity of place cells’ activities induced by inhibitory connection weight is given by the equation:

∆P(X, Y) =
SX∑
i=0

SY∑
j=0

P(i, j)Ψx,y − ξ, (5)

where Ψx,y is the inhibitory connection weight, ξ controls the level of global inhibition. The activities
of all place cells are nonzero and have undergone the normalization procedure. Pt+1(X, Y), the firing
rate of place cells with path integration is given by:

Pt+1(X, Y) =
∆X+1∑
i=∆X

∆Y+1∑
j=∆Y

αi, jPt(i + X, j + Y), (6)

where αi, j is the residual. ∆X and ∆Y are the offset values via rounding down, which is determined by
speed and direction, as shown in Equation (7):[

∆X
∆Y

]
=


⌊
Ci
→
eθv cosθ

⌋⌊
C j
→
eθv sinθ

⌋ , (7)
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where b c refers to rounding down, Ci and C j are the constants for path integration; v is the current
velocity which is achieved from speed cells; θ is the current head direction which is achieved from HD
cells, and

→
eθ is the unit vector pointing at θ.

Similar to the mechanism of biological autonomous navigation, the INS is a type of autonomous
system that neither relies on external information nor radiates energy outwards. By measuring the
angular rate and acceleration of the carrier in the inertial frame of reference, the navigation information
such as speed, yaw angle and position within the navigation coordinate system can be obtained after
calculation. Nonetheless, error exists in the system output, and the error will be accumulatively
increasing due to the fact that the position of INS is obtained via integral.

Regarding living rats, the place cells’ relative position of firing is also obtained by path integration.
However, when a rat comes into a familiar environment, rats will reset the firing for all the spatial
cells involved in the path integration. The renewal of coordinates is in effect the renewal process
of spatial cells’ firing, whereas the renewal process at the close-loop point is the reset process of
spatial cells. Based on this mechanism, the brain-like navigation model based on vision and INS is
proposed. This system is capable of conducting real-time detection on whether the current visual
information is matched with the pre-stored visual template. If it is successfully matched, it means that
a “familiar place” is reached. Subsequently, the spatial cells within the entire path integration network
will undergo a firing reset procedure, so as to regain the firing state of the previous close-loop point.
Via this method, the accumulated errors can be effectively eliminated, and the navigation accuracy of
INS will be increased.

The model overview is as follows:

Model: Brain-like navigation model based on vision and INS

1. The camera captures a frame of RGB image
2. Collect the motion state information of the object, and renew speed cells and HD cells
3. Execute path integration of spatial cell
4. Obtain spatial geometric coordinates via geometric transformation
5. Execute the image matching algorithm and obtain the return value U of the matching result using (19)
6. If U == True
7. Read the location coordinates of the template image
8. Reset the firing for place cells
9. Correct the position errors
10. End if

The schematic diagram of the proposed brain-like navigation scheme is shown in Figure 4. The real
trajectory of the UAV is a straight blue line that starts from point A, followed by point B, point C and
point D. However, due to the accumulated errors, the trajectory of INS will gradually deviate from the
real track. The red dots are visually corrected points, at which the place cells are reset. The brown
dotted line represents the reckoned trajectory of the UAV and the purple line represents the trajectory of
pure INS. It can be found that the trajectory of INS after visual correction is closer to the real trajectory
of the UAV, and the navigation accuracy has also been significantly improved.

The brain-like navigation scheme studied in this paper is mainly applied to UAV. However,
the landscape features near the ground are complicated due to various interference factors. The key to
realize the proposed scheme is a fast and accurate place recognition algorithm. Therefore, this paper
proposes a fast and accurate place recognition algorithm for the proposed brain-like navigation system
in the next section.
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3. Algorithm

To achieve the effect of the proposed brain-like navigation scheme, the UAV needs to have the
functions of memory and recognition to the scene. The memory process can be simulated by storing the
coordinates and images of key locations in advance, including intersections, buildings, etc. Recognition
refers to the UAV recognizing the template image corresponding to the scene and returning its real
coordinate value when passing close to the location of the previous memory, to make the cell reset
firing and eliminate the accumulated error. Traditional image matching algorithms generally consist of
three categories, which are respectively based on grayscale [27], feature [28] and relation [29]. It is
necessary for image matching algorithms to take both efficiency and precision into consideration.
Michael Milford proposed place recognition algorithms RatSLAM and SeqSLAM based on continuous
multi-frame image information in 2004 and 2012 respectively [17,22], and the algorithm of comparing
the similarity of gray information between two images in a certain area was employed to determine
whether the place cell node was encountered. This algorithm does not require large calculation and
has the ideal real-time performance, but the algorithm tends to be affected by external environmental
factors including weather and traffic conditions. This algorithm calculates the similarity value between
the two graphs and comparing it with the threshold, thus knowing that whether the location of the
image is in one place. If the threshold value is set too low, it may have omissions in judgment, but if
too large, it may generate errors in judgment. Grid-based motion statistics (GMS) [20–22] is proposed
for fast and ultra-robust feature correspondence. Compared with the traditional SIFT feature matching
algorithm, GMS eliminates the incorrected matching points more effectively with an execution speed
of 30 frames per second on the PC, which meets the real-time requirements, but the speed is getting
slower on the lower computer and not suitable for real-time application. To solve the above problems,
a novel place recognition algorithm for place cell correction is proposed by integrating these two
algorithms with complementary advantages.

3.1. Scanlines Intensity Algorithm

The scanlines intensity (SI) algorithm is for identifying the place by comparing the similarity of
the intensity profile of two image scanlines. In detail, the algorithm is to make the template image
shift above the reference image, and calculate the difference between the normalized values of the
two intensities, then sum them up. The smaller the sum of the differences, the more similar the two
images are.



Appl. Sci. 2019, 9, 1708 8 of 20

For template image T and reference image B, T(x,y) and B(x,y) are the intensity values (grayscale
value) of corresponding pixel points on the image respectively. Taking the reference image B as an
example, the sum of the intensity values of the j-th column is calculated as S j

S j =
m∑

i=0

B(i, j) (8)

where m represents the number of rows.
The intensity of each column is normalized to obtain the normalized set I of the reference image.

I j =
S j

n∑
j=1

S j

, (9)

I = {I1, I2, I3, · · · , In}, (10)

where I j represents the normalized result of the j-th columns, n represents the number of columns.
The normalized set I′(I′ = {I′1, I′2, I′3, · · · , I′n}) of template image T can be obtained similarly.
The similarity of two images is represented by β.

β =
n∑

i=1

abs
(
Ii − I′i

)
. (11)

The smaller the β, the more similar the two images are.
When the camera is applied to a UAV, if the relative height and inclination of the camera remain

the same as that of the ground, two different images taken at the same location, but different times
can be considered as having horizontal deviation without vertical deviation. Therefore, the region
of interest (ROI) of the template image can shift above the reference image, the similarity of the
corresponding region of the two images after each shift can thus be calculated, and the value of β′,
which is the minimum value of all similarity values calculated after each shift, is taken as the final
similarity of the two images.

β′ = min

 min
0≤s≤o f f ect


W∑

i=1+s
abs(Ii−I′i−s)

W−s

, min
0≤t≤o f f ect


W∑

j=1+t
abs

(
I′j−t−I j

)
W−t


 , (12)

where β′ is the final similarity of the two images, o f f ect is the maximum shift, and W is the width
of ROI.

The threshold is set as h, if β′ ≤ h, then the two images are considered to be matched successfully.
As shown in Figure 5, the picture on the left and the picture in the middle are two images taken at

different times in the same place, whereas the picture on the right is taken in another different place.
Taking the image in the middle as the template, it can be seen that the scanline profile of the template
image is similar to the image on the left, but different to the image on the right.

The advantages of this algorithm are that little computation is required and the real-time processing
requirements can be met. The disadvantage is that the accuracy is not high enough, and environmental
variation factors including light, pedestrians and other vehicles may lead to misjudgment and
low reliability.
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Figure 5. Raw image, region of interest (ROI) area and the scanline profile of the image.

3.2. Grid-Based Motion Statistics Algorithm

Grid-based motion statistics algorithm (GMS) is a simple statistics-based solution to the feature
matching problem. The general process of algorithm execution is: firstly, perform any kind of detection
and the description calculation of feature points (ORB features are used in our experiment). Then,
perform a BF (Brute Force) algorithm and finally perform a GMS to eliminate the mismatch.

The principle of the GMS algorithm is as follows.
For a certain matching point (xi,x′i ), Ni is the score of the match which can be thought as a measure

of neighborhood support. It can be deduced that Ni obeys a binomial distribution:

Ni ∼

{
B(M, pr), if xi is the right match point
B(M, pw), if xi is the wrong match point

, (13)

where M is the number of supporting features of xi in its neighborhood. pr is the probability that,
when

(
xi, x′i

)
is the correct match, the matching points corresponding to other feature points in the

neighborhood of xi are in the neighborhood of x′i . pw is the probability that, when
(
xi, x′i

)
is the wrong

match, the matching points corresponding to other feature points in the neighborhood of xi are in the
neighborhood of x′i .

The mean value and standard deviation are:{
µr = Mpr, sr =

√
Mpr(1− pr) if xi is the right match point

µw = Mpw, sw =
√

Mpw(1− pw) if xi is the wrong match point
. (14)

The target function is:

max G =
µr − µw

sr + sw
. (15)

In order to turn the above theoretical analysis into an algorithm that can be used in practice, four
problems need to be considered:

(a) Efficient calculation of the score through grid-cells;
(b) Grouping match neighborhoods for robustness;
(c) Number of grid-cells to use;
(d) Calculation of the effective threshold S;
The solutions are summarized as follows:
(a) Divide the image into G = 20 × 20 grids, iterate through each potential cell-pair once to

compute the scores, accept all true matches between cell-pairs.
(b) For robustness purposes, group the cell-pairs, i.e., neighborhoods that match. A 3× 3 = 9 grid

around the network is calculated, as shown in the red region in Figure 6.
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For grid m and grid n, the similarity score is calculated by the following formula:

Smn =
9∑

i=1

∣∣∣Ωmini

∣∣∣, (16)

where
∣∣∣Ωmini

∣∣∣ is the number of matching points between grid mi and grid ni.
(c) The number of grids is usually the empirical value G = 20× 20 cells for 10,000 features.
(d) Categorize the cell-pairs into the true set and the false set by thresholding Smn.

C(m, n) =

1, if Smn > α
√

ti

0, otherwise
, (17)

where α = 6 is determined from experiment and ti is the total number of features present in a single
cell of the nine cells in Figure 6. The value of C(m, n) indicates whether the grid area where m and n
are a pair of corrected matching points.
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The advantages of GMS are high matching accuracy, strong adaptability to the environment
and almost zero misjudgment rate of the scene. Meanwhile, compared with the traditional feature
matching algorithm, the matching time cost of GMS is significantly reduced, which basically meets
the requirements of real-time processing (it takes about 31 ms to process a pair of images under the
configuration Intel i7 CPU+GTX980 GPU). The disadvantage is that when the algorithm is applied to the
lower computer, the computing speed is becoming slower than that on the desktop, and the real-time
performance still needs to be improved. Moreover, this algorithm is applicable on images of different
scales, but such application may produce matching errors when applied to actual scene matching.
For example, when the UAV is flying over from far to near, a large number of successful matching
points appear for images taken within a certain distance from the place of template images (Figure 7).Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 20 
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Figure 7. For a particular template (the image on the left part), images taken within a certain distance
(the image on the right part) from it will produce a great number of points that match the template
image successfully, which reduces the accuracy of positioning.
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3.3. The Proposed SI-GMS algorithm

The above two algorithms have some disadvantages when applied to the actual scene matching
independently. Therefore, a combination image matching algorithm based on SI and GMS is proposed,
the advantages of SI on fast matching and GMS on accurate matching are all possessed.

Step 1: SI algorithm is used to calculate the similarity β′ of the reference image R and template
image Ti, where Ti ∈ T, T is the set of all template images, and Ti is the i-th template. The threshold
value h can be slightly adjusted to avoid omissions in judgment. If β′ < h, the two images are considered
relatively similar, then go to the next step; otherwise, read the next frame of the reference image.

Step 2: the longitude and latitude coordinates calculated by INS are read to calculate the distance
to the location of the template image successfully matched:

D =

√[
Ti(x) − It(x)

180
×πR

]2

+

[
Ti(y) − It(y)

180
×πR

]2

, (18)

where
{
Ti(x), Ti(y)

}
represents the latitude and longitude coordinates of template Ti,

{
It(x), It(y)

}
represents the coordinate value returned by INS at time t, R is the radius of the earth.

When D ≤ σ, the data is considered valid and the next step is executed, where σ is the maximum
reasonable distance between the position obtained by INS and place matching.

Step 3: the matching results that satisfy the distance constraint are checked by GMS algorithm.
If the number of successful matching points N between the two images is greater than the threshold
value Ω, it is considered as a correct set of matching points; otherwise, it is omitted.

U =

True N ≥ Ω

False N < Ω
, (19)

where U represents the matching result.
The completion of the above three steps helps the system meet the real-time matching requirements

and effectively eliminates some matching points of misjudgment. The proposed SI-GMS algorithm is
shown as follows:

Algorithm: SI-GMS algorithm

1: Calculate the scanline intensity of two images.
2: Find the minimum difference β′ of the intensity distribution using Equation (12)
3: If β′ < h then
4: Read the latitude and longitude information returned by INS
5: Calculate the distance D between the coordinates of the template and the coordinates returned from INS
using Equation (18)
6: If D < σ then
7: Detect the feature points of the two images
8. Match the feature points
9. Use GMS to eliminate erroneous matching points
10. Counting the number of remaining points N
11. If N > Ω
12. Output the latitude and longitude coordinates of the current face template image
13. Return True
14. End if
15. End if
16. End if
17. Return False
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We used some groups of images from KITTI, which is a publicly available standard dataset, to test
the proposed SI-GMS algorithm. As shown in Figure 8:

Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 20 

2: Find the minimum difference 'β  of the intensity distribution using Equation (12) 
3: If ' hβ <  then 
4: Read the latitude and longitude information returned by INS 
5: Calculate the distance D  between the coordinates of the template and the coordinates 
returned from INS using Equation (18) 
6:   If D σ<  then 
7:      Detect the feature points of the two images 
8.      Match the feature points 
9.      Use GMS to eliminate erroneous matching points 
10.     Counting the number of remaining points N  
11.     If N > Ω  
12.       Output the latitude and longitude coordinates of the current face template image 
13.       Return True  
14.     End if 
15.   End if  
16. End if 
17. Return False  
 
We used some groups of images from KITTI, which is a publicly available standard dataset, to 

test the proposed SI-GMS algorithm. As shown in Figure 8: 

 

Figure 8. Two groups of images from KITTI. 

The similarity values 
'β  of these two groups of images are calculated as 0.051 and 0.039 

respectively. In addition, the number of the successfully matching points after using the GSM 
algorithm are 114 and 178 respectively. As shown in Figure 9: 

   
Figure 9. The successfully matching points after using the grid-based motion statistics (GMS) 

algorithm. 

Figure 8. Two groups of images from KITTI.

The similarity values β′ of these two groups of images are calculated as 0.051 and 0.039 respectively.
In addition, the number of the successfully matching points after using the GSM algorithm are 114 and
178 respectively. As shown in Figure 9:
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4. Experimental Test and Comparison

4.1. Experiment

To verify the proposed brain-like navigation scheme and the SI-GMS algorithm, experiments were
carried out. The experimental results fully demonstrate the reliability of the proposed scheme and
the superiority of the proposed algorithm. The experimental platform used in the experiment is a
six-rotor UAV equipped with a self-made brain-like navigation system, which consists of a LattePanda
(a kind of card type computer), a MEMS INS (consisted by STIM 202 and 1521 L), a camera and a
high-precision GPS device (NovAtel ProPak6) used as reference (Figure 10). We used a laser ranging
module (TW10S) to make the height of the UVA relative to the ground unchanged. Detailed equipment
parameters are given in Tables 1–3.
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Table 1. Characteristics of the Micro-Electro-Mechanical System based Inertial Navigation Systems
(MEMS-INS)/GPS.

Gyroscope (STIM202)
Bias 0.5◦

√
h

Scale Factor 200 ppm
Random Walk 0.2◦/

√
h

Accelerometer(1521L) Bias 0.5%–1%
Scale factor 0.5%–1%

GPS (NovAtel ProPak6)
Position accuracy 1 cm + 1 ppm
Velocity accuracy 0.03 m/s

Time accuracy 20 ns

Table 2. The performance parameters of the camera.

Performance Parameter

Power 5 V/240 mA
Working temperature −10~70 ◦C

Sensor Sony IMX179
Lens Size 1/3.2 inch
Pixel size 1.4 um

Signal-to-noise Ratio 40 dB/69 dB
Pixel size 1280 × 720

Frame rate 12 fps
Low illumination 0.5 lux

Sensitivity 0.65 V/lux-sec@550 nm

Table 3. The performance parameter of LattePanda.

Performance Parameter

Processor Intel Cherry Trail Z8350 Quad Core 1.8 GHz
Operation System Windows 10

Ram 4 GB DDR3L
Storage Capability 64 GB

GPU Intel HD Graphics 200-500 MHZ
Power 5 V/2 A

Dimension of board 88 × 70 mm/ 3.46 × 2.76 inches

LattePanda is a single board computer with Windows 10 operating system and rich I/O interfaces,
mainly undertaking the task of implementing the image matching algorithm in the experiment. The INS
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mainly acquire the position, velocity and direction information. The INS communicate with LattePanda
through the serial port protocol, so that the precise position information fed back by LattePanda after
place matching can be received in real time and its position can be corrected when the place cell is
activated. The power of the entire device is supplied by a USB and placed at the front of the six-rotor
UAV. A camera is connected to the LattePanda to capture RGB images at 12 fps, which is then used for
matching with the visual template when the UAV is flying. High-precision GPS is applied to provide
the reference coordinate while acquiring the template images.

We conducted two sets of experiments. The experimental sites are located on a direct flight area
about 2 m from the ground and 500 m in length for experiment 1 and an approximately 280-meter-long
folding airspace for experiment 2 (shown as the red tracks in Figure 11), and the UAV flight at a speed
of around 5 m/s. The position of the nodes of place cells for the visual matching is as shown in Figure 11.
The place cells are activated for three times throughout the entire process for each experiment (at the
green points in the Figure 11).
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4.2. Comparison of Algorithms

Before the experiment is carried out, a ROI (region of interest) should be delimited first, therefore
the computation cost can be further reduced, and the matching result would be more accurate and
reliable. The area should include as many scenario features as possible on both sides of the road and try
to avoid uncertainties such as pedestrians and vehicles on the road (the area inside the blue rectangle
in Figure 12).Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 20 
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Figure 12. The ROI in this experiment.

In this experiment, the value of the threshold h of the SI algorithm is set as 0.075 by experiences,
and the scanline profiles at the place where the nodes of place cells are located are shown as the following:

The three similarity values β′ of the three nodes shown in Figure 13 are 0.069, 0.066 and
0.0704, respectively.
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Figure 13. The captured images and their scanline profiles at the place where the three templates
are captured.

However, the misjudgment of place matching happens sometimes when the SI algorithm is
used independently. For example, in experiment 1, a misjudgment happens, as shown in Figure 14.
The calculated β′ value there is 0.0743 (Figure 14), which is smaller than the threshold h = 0.075.
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Figure 14. The specific locations on the map, raw images and their scanline profiles where the
misjudgment happened. (The value of β′ of these two images is 0.0743.).

Therefore, the SI algorithm, which is only based on the scanline intensity profile, is considered not
reliable, and would cause serious consequences in the actual application if misjudgment occurs.

The scanline intensity of the acquired images is calculated and compared to the scanline intensity
of the template images, and the acquired image would be retained, and its location would be thought of
as a potential place cell node if the calculated similarity is less than 0.075. Then the position constraint
is applied, which means that the potential node is matched properly only if the distance between the
coordinate value given by the template image and INS is less than 100 m. After that, the template image
and the acquired image are matched by using the GMS algorithm. The matching result is considered
reliable if the number of matching points (N) that are successfully matched meets the constraint of
N ≥ Ω. The place cell is then firing to reset. The constraint of Ω = 75 is set for this experiment, and a
total of no more than 500 characteristic points are detected for a single image. The experimental results
indicate that the proposed SI-GMS algorithm can effectively improve the recognition accuracy of place
cells, as shown in Figure 15. From Figure 15 we can see that: at the nodes of the place cells, the numbers
of feature points where the real-time acquired images successfully match the visual template are 115,
248 and 100 for experiment 1, and 97, 183 and 204 for experiment 2, respectively. Therefore, the three
nodes could be considered as trustworthy nodes of place cells.Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 20 
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However, as shown in Figure 16, at the misjudged location by the SI algorithm, only three
characteristic points are successfully matched by using the GMS algorithm, which means that the
misjudgments could be effectively avoided.
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Figure 16. The number of the successfully matched feature points of these two images is only three,
whereas the value of β′ calculated by the scanline intensity algorithm is 0.0743.

By using LattePanda, the time of matching a pair of images only takes 53 ms by GMS. However,
in practical applications, there would be many template images. This means that each acquired
image is matched to multiple template images. Take the number of templates as 10 as an example,
the matching time cost approximately 624 ms when using GMS algorithm, which is impossible to
meet real-time requirements. Whereas, the SI-GMS algorithm proposed in this paper only performs
the GMS algorithm on images of which the SI algorithm matches successfully. It takes no more than
27 ms to match per frame and 76 ms for 10 template images on average, then the real-time application
requirements can be reached. The algorithm execution time mentioned above is the time when the
algorithm runs on the CPU and ignore the initialization time of the algorithm. Table 4 shows the
execution time comparison of several algorithms.

Table 4. Comparison of the execution time.

SI GMS SI-GMS (Average)

Single template <10 ms 53 ms 27 ms

Ten templates 58 ms 624 ms 76 ms

Twenty templates 110 ms 1335 ms 148 ms

4.3. Comprehensive Comparison Results

The final experimental results are shown in Figure 17:
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As shown in Figure 17, the black curve is the true UAV trajectory, the blue curve is the trajectory
measured by pure INS, the purple curve is the trajectory of the results after using the Seqslam algorithm,
and the green curve is the trajectory measured by the proposed brain-like navigation scheme. We can
see that the positioning error of INS is accumulated when it works. However, after place cell recognition
and position correction, the accumulation of INS errors could be effectively reduced, thus the navigation
accuracy is improved. In experiment 1, according to the high-precision GPS reference information,
the actual coordinates at the terminus are 38.017588◦N, 112.44490◦E, whereas the coordinates calculated
by pure INS are 38.017921◦N, 112. 44493◦E, and the error distance is about 37.2 m. Meanwhile, by using
the proposed brain-like navigation scheme, the coordinates at the terminus calculated are 38.017513◦N,
1122.44489◦E, and the error distance is only 8.4 m. It turns out that the navigation accuracy of INS has
been improved by about 28.8 m per 500 m. As for experiment 2, the value of this data is about 16.6 m
per 500 m. Tables 5 and 6 gives the latitude and longitude information of two groups of experiment
terminus, and Table 7 shows the error comparison of several methods.

Table 5. Coordinates at terminus of experiment 1.

High Precision GPS Pure INS Brain-Like Navigation Scheme SeqSLAM

North latitude (◦) 38.017588 38.017921 38.017513 38.018032

East longitude (◦) 112.44490 112.44493 112.44489 112.44489

Table 6. Coordinates at terminus of experiment 2.

High Precision GPS Pure INS Brain-Like Navigation Scheme SeqSLAM

North latitude (◦) 38.016407 38.016305 38.016394 38.016269

East longitude (◦) 112.44755 112.44756 112.44758 112.44771

Table 7. Distance error.

Pure INS SeqSLAM Brain-Like Navigation Scheme

Error of expt.1(m/500 m) 37.2 53.1 8.4

Error of expt.2(m/500 m) 22.8 56.4 6.2

It is obvious that the positioning accuracy can be improved by using the proposed brain-like
navigation scheme compared to the pure vision-based algorithm and pure INS.

5. Conclusions

This paper has proposed a brain-like navigation system scheme to improve the intelligence
level of the INS. Compared with pure INS, by incorporating visual information, the scheme can
effectively eliminate the accumulated error of INS. Aiming at the place recognition problem in the
scheme, this paper also proposes a place recognition algorithm that takes both image gray information
and image feature points information into consideration. Experimental results demonstrate that this
algorithm is superior to the traditional image matching algorithm in terms of calculation speed and
accuracy, and this scheme is also practical and reliable.

As for future work, more sensors can be introduced into the system for further promotion,
like polarized light and magnetic sensors. In order to save time when creating the template image
database, we are trying to replace the existing database with image data from Google Earth. We also
consider using the position error information to refine the equivalent biases of the gyroscopes and
accelerometers, which is a major source of errors in the unconstrained IMU integration. Besides,
we are going to perform more longer experiments that include indoor complex areas to test the
algorithm further.
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