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Featured Application: The research work proposes an avenue of image segmentation that can
simultaneously reduce computational complexity and filter image pollution for clinical investigations.

Abstract: Techniques of automatic medical image segmentation are the most important methods for
clinical investigation, anatomic research, and modern medicine. Various image structures constructed
from imaging apparatus achieve a diversity of medical applications. However, the diversified
structures are also a burden of contemporary techniques. Performing an image segmentation
with a tremendously small size (<25 pixels by 25 pixels) or tremendously large size (>1024 pixels
by 1024 pixels) becomes a challenge in perspectives of both technical feasibility and theoretical
development. Noise and pixel pollution caused by the imaging apparatus even aggravate the difficulty
of image segmentation. To simultaneously overcome the mentioned predicaments, we propose a new
method of medical image segmentation with adjustable computational complexity by introducing
data density functionals. Under this theoretical framework, several kernels can be assigned to conquer
specific predicaments. A square-root potential kernel is used to smoothen the featured components
of employed images, while a Yukawa potential kernel is applied to enhance local featured properties.
Besides, the characteristic of global density functional estimation also allows image compression
without losing the main image feature structures. Experiments on image segmentation showed
successful results with various compression ratios. The computational complexity was significantly
improved, and the score of accuracy estimated by the Jaccard index had a great outcome. Moreover,
noise and regions of light pollution were mostly filtered out in the procedure of image compression.

Keywords: data density functionals; denoising; image segmentation; image compression

1. Introduction

Automatic identification and segmentation of medical imageries benefit the planning and
guidance of modern surgery [1–5], clinical investigations [6–10], rehabilitation [11–13], and so forth.
High-quality reconstructive anatomical morphology provides convenience on surgery planning and
the understanding between organ functionalities and pathological diagnosis. The corresponding
investigations regarding neural circuitries of human brains also provide constructive consequences on
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research progress of connectome [14] and clinical diagnoses related to Alzheimer’s and Parkinson’s
diseases [15]. Thus, among these applications, robust automatic methods of segmentation for large-scale
medical imageries can efficiently save extensive and tedious manual interventions while dealing
with humongous tissue labeling and clinical process setting. Among those developed techniques,
state-of-the-art methodologies on the field of magnetic resonance image (MRI) processing successfully
combined several merits from interdisciplinary methods [16–18] and exhibit an opportunity to track
brain regions related to relevant diseases [19,20]. For instance, precise identification and segmentation
of subthalamic nucleus from three-dimensional medical imageries facilitate the automatic planning of
deep brain stimulation, and the clinical result has also shown clinical potential for relieving the motor
symptoms of advanced Parkinson’s disease [8,21,22].

The automatic segmentation methods often can only have commonplace performance when there
is a large ratio of the whole image size to the size of the desired tissue area. The tiny desired tissue area
within an image and the poorly defined boundaries between the desired tissue area and its neighboring
regions limit the feasibility of segmentation methods. For instance, since there is a large ratio of the
whole brain tissue to the subthalamic nucleus, the image segmentation of the tiny subthalamic nucleus
(approximately 6 mm × 4 mm × 5 mm) from their neighboring regions such as putamen, substantia
nigra, zona incerta, and so forth [23], is always an open problem for the clinical investigations of deep
brain stimulation. Besides, the contemporary MRI techniques for identification and localization of brain
tissues, such as T2-weighted-imaging [24,25], susceptibility weighted imaging [26–28], fluid-attenuated
inversion recovery [29–31], and so on, often fail to distinguish desired minuscule tissues from their
surrounding structures in clinical MRI processes. Furthermore, the anatomical information regarding
the tiny tissues is only caught in few MR images during the acquirement processes. For physically
localizing the subthalamic nucleus in the procedure of deep brain stimulation, a compensation
method is to utilize the technique of intraoperative microelectrode recording to extract electric signal
differences between the subthalamic nucleus and its neighboring regions. However, this method
requires significant neurosurgical expertise and lengthens the surgery duration [8,23]. Therefore,
to solve these essential problems in medical applications, the adopted methods should focus on
the identification and the localization of the tiny desired anatomical tissues and their surrounding
regions by only utilizing the information acquired from medical images. Meanwhile, to reduce
extensive and tedious manual interventions and for the convenience of visualization, the applied
method should execute artificial intelligence approaches for automatically achieving the goals of image
segmentation and pattern recognition. Considering the preprocessing of the medical imageries on
data compression and denoising would be valuable for large-scale medical images to pursue further
execution efficiency [11,12,32].

To resolve the issues of image compression, state-of-the-art techniques based on the frameworks of
wavelet transform [33–37] and neural networks [38–44] in probabilistic perspectives have brought about
their fruitful achievements. The wavelet-transform-based techniques usually use a specific wavelet
technique based on the Mallat filter [37] to decompose images of interest into a dyadic decomposition
structure. Then, those generated sub-band samples become easy to be quantized and coded. Technically,
the main features of the downsize images can be easily further extracted for image compression by
partitioning the employed images into hierarchical trees. Among the relevant techniques, the method
of embedded block coding with optimized truncation [33] and the algorithm of spatial partitioning of
images into hierarchical trees [34] are two typical and popular techniques of image compression in
practical applications. Neural-network-based methods provide another avenue for image compression.
The technique of recurrent neural networks (RNN) and the long-short-term memory (LSTM) method
can be applied to the problems of compression ratios on images of arbitrary size [38,39]. The meshes
over an image of interest only need to be trained once, and re-training is unnecessary while changing the
size of the image or the compression ratio. The reconstruction accuracy only relates to the connectivity
of intra-mesh and the representation code. Then, the well-trained encoder model can have good
efficiency. Experimentally, the Google research team provided their study result using the RNN with
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LSTM [38,39]. Improvements of 8.8% area under the rate-distortion curve and about 33 dB of peak
signal to noise ratio guarantee the quality of their proposed method. The technique of convolutional
neural network (CNN) is also a powerful method in the field of machine vision. Since the AlexNet
won the champion of ILSVRC 2012 [45], the CNN technique has replaced conventional hand-crafted
feature extraction and classifiers. The CNN technique provides an end-to-end approach [42,43] and
elegantly reinforces the accuracy of pattern recognition and the efficiency of image compression [44,45].
Despite the outstanding performance, the mentioned techniques of image compression also have some
intrinsic problems embedded in their mathematical frameworks. First, most mentioned techniques
were developed to focus on the compression of large-scale imagery. Therefore, these techniques
would fail to reconstruct small-scale or low-resolution images mathematically. Secondly, most of the
assumptions of those proposed techniques could not match the real image data structures. For instance,
these techniques assume that the high-resolution image will have more high-frequency information.
Last, the worst problem is that the mentioned technique would cost more CPU estimation time in
training processes due to their high computational complexity [46,47].

To the purpose of medical image segmentation, the edge-based active contour models [5,9,10,48]
and the machine learning methods [5,9,32,48–53] are two main solutions regarding the medical image
segmentation. The edge-based active contour models were developed based on the concept of energy
minimization, starting with the well-known snake model [54,55]. Among the energy minimization
approaches, the level set methods have received much attention [56–60]. A planar closed curve is
defined to execute the active model on medical images of interest, using a zero-level set of a level
set function. Then, a level set equation is used to estimate the evolution of the level set function.
The level set equation often includes an edge stop function with a Gaussian kernel, a potential function,
and several energy parameters regarding the distance regularization energy, the length terms, and the
area term [48]. Additionally, the energy parameters always need to be estimated by experiments or
simulations. Once the level set equation, as well as the energy parameters, is well-defined, edges of
components of the medical images can be efficiently determined. Meanwhile, the users have to initially
define the foreground and background to train the classifiers by themselves. The level set function
typically requires re-initialization to avoid irregularities during its evolution [48]. Thus, the naïve
active contour models have inevitable inconvenience on the issues of determination of the energy
parameters, the intrinsic algorithmic properties, and the intervention of marking the foreground and
background of the region of interest.

To circumvent these deficiencies, state-of-the-art machine learning methods in probabilistic
perspectives have brought several useful techniques [5,9,10,32,48–53]. By combining the graph theory
with topological priors [53], morphologies of three-dimensional biological images could be delineated
and reconstructed visually. These machine learning-based algorithms rely on some prerequisites to
fulfill the biological structure recognition, such as the seeding voxels [52], the regular curves, the
shape of axons, the designated sizes [5], and so forth. Among these investigations, the method of
spectral matting [53] provides a sequential searching to extract biological components by optimizing a
Laplacian-type cost function under a well-defined window size of the cost function. Bayesian Sequential
Partitioning algorithm [52] is also an applicable method for reconstruction of three-dimensional
biological configuration. However, the time complexity caused by the detection of voxel growth
is a challenging issue. The CNN-based algorithms also have the issue of high computational
complexity [49–51]. Therefore, with user-supervised interventions and the computational complexity
would probably become inevitable under the frameworks on the mentioned methods.

Therefore, to achieve the purpose of medical image segmentation with appropriate computational
complexity and to simultaneously resolve the issues of image segmentation and image compression,
the techniques of data density functionals based on the density functional theory [32] is utilized
in the article. Under the proposed theoretical framework, all information of employed medical
imageries is globally mapped into a specific energy space to estimate the relevant energy functionals.
Since the medical images are analyzed globally under the proposed method, global or partial image
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compression is allowed. Similar components also can be identified and localized by their connectivity
and significance. Thus, distortion might be avoided. Two types of medical imageries, MRI and cell
culturing, were utilized to validate the feasibility of the proposed method. The proposed method
reveals its potential on the trade-off between accuracy and computational complexity in medical image
segmentation and its relevant biomedical applications.

2. Theoretical Framework of Data Density Functionals

Each pixel of a medical image is referred to as a physical particle under the framework of the data
density functionals, and the structural features are measured by mapping all of the pixels into specific
physical spaces. Local pixel intensities of a specific region in a pixel space signify corresponding
local intrinsic inertia in a physical space. A region retaining high intrinsic inertia will similarly
have high pixel intensity, and thus these physical particles in this region should have large data
weightings. In other words, the local inertia emphasizes the local significance in a perspective of
machine learning. Physically, the intrinsic inertia of particles can be measured by the kinetic energy.
Thus, under the proposed framework, a kinetic energy density functional was employed to measure
the image significance. On the other hand, from a physical perspective, potential energy represents
particle-particle interaction by measuring local physical intensities as well as particle-particle distances.
High intensities or short particle-particle distances will both cause high potential energy. In the pixel
space, the fact of short pair-pixel distances represents that these pixels have similar image features.
Pixels that have similar image features in a specific region simply indicate that they might belong
to an image cluster. Thus, a potential energy density functional is employed to measure the image
similarity. Theoretically, the mentioned image significance and the image similarity between image
pixels can be, respectively, expressed using two-dimensional kinetic and potential energy density
functionals [11,12,32]:

t[n] = 2π2
·n(r), (1)

and

u[n] �
1
2

N∑
i=1

n
(
r′i
)

||r− r′i ||r,r′i

, (2)

where n(r) and r′i are a pixel intensity located at r and a location of a source point, respectively.
The symbol r represents an observed point in the physical space. The factor, N, is the data length and i
is the location index of ith pixel point. Generally, the data length N = H ×W, where H and W are the
height and the width of an image, respectively.

For image segmentation, a nonlinear combination of kinetic and potential energy density
functionals is utilized to catch boundaries of particle-clusters, and then the result is mapped back
into the original pixel space. Thus, a studied image can be divided into several featured components
depending on the segmented results in the physical space. Physically, the theoretical form of a
combination of kinetic energy and potential energy is called a Lagrangian, and it physically represents
the actions of a physical system. Subtracting the potential energy from the kinetic energy formulates
the mathematical form of the so-called action. Under the proposed framework, similarly, a Lagrangian
density functional can be estimated by taking the kinetic energy density functional to subtract the
potential one. A set of zero-points estimated form the Lagrangian density functional indicates a
balance between the local significance and the local similarity. According to the potential energy
density functional shown in Equation (2), u[n](r) is a global sum of the multiplication of the pixel
intensity n

(
r′i
)

and the kernel 1/||r− r′i ||. It means that the value of potential energy density functional

at r is an average of n
(
r′i
)

from r′i s with respect to ||r− r′i ||. Thus, the values of the potential energy
density functionals will be smoothed by the averages estimated by the surrounding pixel intensities
with respect to their corresponding distances. In other words, the profile of similarity of an image
is smoothing. Thus, the balance between the local significance and the local similarity is equal to a
zero-point estimated by taking a local weighting to subtract a local mean. An enclosed curve constituted
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by a set of zero-points constructs a boundary of a specific featured pixel component. The value of
Lagrangian density functional adjacent to the boundary should transfer its plus/minus sign. Physically,
the boundary represents a limitation of the action, and particles enclosed by the boundary should
not interact with other particles outside. Under the same concept, the featured pixel components
adjacent to the boundary should have a significant discrepancy. Thus, under the proposed method,
a discrepancy of a studied medical image can be expressed as [32]:

L[n] = γ2t[n] − γu[n]. (3)

The adaptive scaling factor γ in Equation (3) is used to resolve the issue of dimensional mismatches
occurred in mapping the pixel into a specific physical space. The theoretical form is expressed as:

γ =
1
2

〈
u[n]

〉〈
t[n]

〉 . (4)

It should be emphasized that the adaptive scaling factor is automatically defined by the system of
interest.

〈
u[n]

〉
and

〈
t[n]

〉
, respectively, represent the global averages of the utilized tow-dimensional

kinetic and potential energy density functionals.
According to the mathematical postulation of density functional theory [32], the dimensional

mismatch between kinetic and potential energy density functionals can be balanced using the adaptive
scaling factor γ in Equation (4). Thus, the postulation provides a convenience to directly employ
any useful form of energy density functional. As mentioned, the kernel 1/||r− r′i || of the simple
potential energy density functional in Equation (2) smoothens the profile of the similarity. Thus,
various mathematical forms of kernels can be used to construct other structural features within a
studied image. For the purpose, the Yukawa-like and square-root potential forms are, respectively,
further utilized to construct the structural featured properties of local edge sharpening and global
fuzzification. The mathematical form of the Yukawa potential provides an elegant property to explain
physical phenomena occurred in an extreme short distance [61]; thus, the potential form is employed
to construct sharpened profiles of boundary edges within a medical image. For the simplification and
the convenience of usage, the form of Yukawa potential energy density functional is expressed as:

uYukawa[n] �
1
2

N∑
i=1

n
(
r′i
)
e−r′i

||r− r′i ||r,r′i

. (5)

On the contrary, to study the blur characteristics, a square-root potential kernel is used, and the
mathematical form of the square-root potential energy density functional is expressed simply as:

uSR[n] �
1
2

N∑
i=1

n
(
r′i
)

√
||r− r′i ||r,r′i

. (6)

Two type medical imageries, a set of MRIs having brain tumors and cell culturing images, were
utilized for the potential study and the method validation. Experimentally, each potential kernel
revealed their superior properties in each kind of medical image dataset. Meanwhile, sharpened
kinetic energy density functionals were also used for the discrepancy study, and specific intensity
normalization procedure was then proposed for the tasks of image segmentation.

3. Segmentation Results of Brain MRIs and Cell Culturing Images

An open source dataset of brain MRIs with distinct tumor profiles [62] was applied in the
potential kernel study. For denoising in the physical space, a global average of Lagrangian density
functional

〈
L[n]

〉
was used as a threshold value for the component segmentation in each corresponding

MRI dataset. Values of Lagrangian density functional lower than
〈
L[n]

〉
were directly filtered out.
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Meanwhile, effects of sharpened kinetic energy density functionals were also introduced into the
datasets. The pixel intensity was first normalized to [0, 1], and then to take its squared value for
component sharpening. Additionally, parallel computing was used for reduction of computational time
in the MATLAB programming environment. Since there is no ground truth for each employed image,
each segmentation result without compressing was utilized as the ground truth and then a common
measurement of similarity, Jaccard index [48], was used for similarity comparisons. Meanwhile,
the computational time of aacg employed image with a specific compression ratio was recorded for
exhibiting the relationship between the Jaccard index and the compression ratio.

Figure 1 illustrates the results of image segmentation utilizing various potential kernels and
sharpened kinetic energy density functionals. The original MR images are illustrated in Figure 1(a1,b1),
respectively, and regions of interest (ROI) are also indicated in both original images using red
rectangular windows. The size of each window was set to be 80% length and width of each image
to avoid catching undesired featured components from skulls. The segmentation results, shown in
Figure 1(a2,a4,b2,b4), were obtained using the simple potential kernel in Equation (2), while those
shown in Figure 1(a3,a5,b3,b5) were obtained using the square-root potential kernel in Equation (6).
Morphologies of kinetic energy density functional of employed original MR images are, respectively,
illustrated in Figure 1(a6,b6). Then, morphologies of potential energy density functionals with the
simple potential kernel are, respectively, shown in Figure 1(a7,b7), while those with the square-root
potential kernel are, respectively, shown in Figure 1(a8,b8). From the profiles of the potential energy
density functionals, it is obvious that the smooth performance of using the square-root potential
kernel was better than that of the simple potential kernel. For instance, the spot indicated by the red
arrow inserted in Figure 1(a7) became smooth when replacing the simple kernel using the square-root
potential kernel, and the result is shown in Figure 1(a8). Thus, the segmentation result was also
smoothened, as shown in Figure 1(a3). By comparing Figure 1(a2,a3), the fragmentary parts of the
segmentation result using the simple kernel was mended by means of the square-root kernel. Similarly,
the high energy part indicated by the red arrow shown in Figure 1(b7) was smoothened by taking the
square-root kernel, and the smoothing segmentation result is shown in Figure 1(b3). It is noted that, in
the tentative experiments, the segmentation consequences using the Yukawa potential kernel did not
exhibit obvious benefits compared to the simple one in the employed MR images.

Additionally, the unique property of the global estimation of the proposed framework might have
a benefit on the issues of image compression. Differing from the wavelet-transform-based techniques to
partition imageries into hierarchical structures or the neural-network-based methods to map imageries
into features space, the proposed method directly reconstruct the structural features of imageries in
specific physical spaces. Thus, the proposed framework has no additional prior assumptions onto
the imageries and need not to extract image features in advance. To retain the characteristics of the
proposed framework, only simple linear downsampling was used for the image compression and then
all segmentation results were reconstructed using the bicubic interpolation. Then, the performances
were checked using the common Jaccard index (JI) [48]:

JI =
(result)∩ (ground truth)
(result)∪ (ground truth)

. (7)
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Figure 1. Two original MR images, as shown in (a1,b1), sourced from Ref. [62] were employed to study
performances of those utilized potential kernels. Regions of interest in each MR image were defined
to avoid undesired segmentation results from skulls by red rectangular windows. According to the
estimated morphologies of energy density functionals, shown in the late two columns, the segmentation
results were obtained using the proposed framework and are as illustrated in second and third columns,
as respectively shown from (a2) to (a5) and from (b2) to (b5). It is noted that the potential kernel used
in (a7) and (b7) was the simple potential kernel, while that used in (a8) and (b8) was the square-root
potential kernel.

Statistically, the numerator and the denominator of JI, respectively, represent the areas wherein
pixels from segmentation result and ground truth are overlapped and union. Due to the lack of ground
truth from the employed MR images, the segmentation result of each original MR image was assigned
to be the ground truth. The comparison of various compression ratios is illustrated in Figure 2.
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Figure 2. The segmentation results with the compression rate of 125%, 167%, 250%, and 500% are
respectively shown in (a) row. Then, all of them were reconstructed using the bicubic interpolation.
It is obvious that aliasing edges also appeared, as indicated by the red arrows in (a) row, after the
strong image compression. The (b,c) rows, respectively, illustrated the union and the intersection areas
between the testing images and the ground truth. (d) The curves of computational times and scores of
the Jaccard index with various compression ratios.

For estimating scores of the Jaccard index, the segmentation result illustrated in Figure 1(a3) was
employed to be as a pseudo-ground truth. Then, four values of compression ratios, 125%, 167%, 250%,
and 500%, were used to test the performance of the proposed method for tumor segmentation of
tremendously small size medical images. The segmentation results with various compression ratios are
sequentially shown in the first row of Figure 2. It should be emphasized that each segmentation image
was reconstructed using a bicubic interpolation after corresponding image compression. The results,
shown in Figure 2a, reveal the ability of the proposed method for automatically catching featured
components from extreme small size medical images. However, the simplified reconstruction also
caused some undesired consequences. As indicated by the red arrows shown in the last two columns
of Figure 2a, some aliasing edges appeared. Those undesired aliasing edges significantly affected
the scores of the Jaccard index. To estimate the scores of the Jaccard index and visually exhibit the
consequences, the profiles of union and intersection areas between each reconstructed image and the
pseudo-ground truth are, respectively, illustrated in Figure 2b,c. The curves of computational time and
the Jaccard index are illustrated in Figure 2d. The illustration shows that, even when the compression
ratio was set to be 500%, the score of the Jaccard index could have a nice value, about 0.7, while the
computational time was only 0.3 s.
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Furthermore, to test the performance of the proposed method in the image segmentation of
tremendously large size medical images, a set of cell culturing images was utilized. The pixel sizes of
the original cell culturing images are 1200 pixels by 1600 pixels. The pixel intensity in each case of
the cell culturing image was first normalized to [0, 1], its global mean was subtracted, and the values
lower than zero were set to be zero for preliminary denoising. Since the cells are specifically the only
substance of foreground image, thus differing from the mentioned approach, the Yukawa potential
kernel was assigned for measuring the specific local property. Figure 3 illustrates the segmentation
results with and without dealing with the compression processes. The profiles of kinetic and potential
energy density functionals of the original image, as shown in Figure 3a, are depicted in Figure 3b,c,
respectively. As expected, the profile of the potential energy density functional was similar to that
of the kinetic one. The reason is that the Yukawa potential is an extreme short potential; thus, it can
significantly exhibit local properties of a physical particle of interest. The difference between the
Yukawa potential energy density functional and the kinetic one is that the kinetic one has an extreme
abrupt edge while the Yukawa one has a relatively alleviative edge due to the slight interaction adjacent
to the boundaries. This means that the image boundaries can also be defined using the proposed
Lagrangian density functional. In other words, the employed Yukawa potential kernel is suitable for
measuring specific substance with strong localization. The segmented background and foreground
are, respectively, shown in Figure 3d,e, while the corresponding compressed images with a 10-time
compression ratio are, respectively, shown in Figure 3f,g. Then, the profiles of corresponding pixel
areas of union and intersection are sequentially shown in Figure 3h,i. Figure 3j exhibits the curves of
scores of the Jaccard index and log-computational time. As expected, the compressed results from the
large size image had high scores of the Jaccard index as they still had enough featured components
even after a 10-time image compression.

To test the performance of anti-noising of the proposed method, a cell-culturing image that
has severe light and noise pollution was employed as an input image in the study. As illustrated
in Figure 4a, the original size of the employed image is also 1200 pixels by 1600 pixels. Thus,
computational times of this set should be similar to that of the image shown in Figure 3a. The noise
was randomly distributed in the image, and the red arrows depicted the regions that have severe
light pollution. The segmented background and foreground images of the original are illustrated in
Figure 4b,c, respectively. As expected, the regions having severe pollution, such as indicated by the
red arrow in Figure 4b, were also mapped back to the original image. The Yukawa potential kernel
also enhanced the noise and the light spots. Then, several speckles caused by the noise also appeared
in the foreground and background images. To inhibit the undesired featured components caused by
the noise and the light pollution, the original image was compressed with a 10-time compression ratio
and the segmentation results are illustrated in Figure 4d,e. Obviously, the noise and light pollution
were sufficiently inhibited, thus the undesired featured components from those issues were filtered
out by the global density functional estimations. The score of the Jaccard index of this reconstructed
background image was 0.9178 and the computational time was about 5.7 s. To exhibit the comparison
between the contemporary method and the proposed algorithm, a segmentation result by employing
the Otsu’s method [63] is illustrated in Figure 4f. The Otsu’s method exhibited superior performance
in time saving. It only costed 1.0 s to extract all of the borders of the cells. On other hand, it was also
obvious that the method filtered out all information about intercellular substances inside each cell.
It might cause an inconvenience on studying cell morphologies.

To search the limitation of the Otsu’s method and the proposed algorithm, a set of images with
artifacts were also employed and the segmentation results are illustrated in Figure 5. Figure 5a,d
exhibits the cell culturing images having artifacts with intensities of 1 and 0.5, respectively. Then,
Figure 5b,c, respectively, shows the segmentation results by means of the Otsu’s method and the
proposed algorithm in the case of Figure 5a. Similarly, Figure 5e,f shows the case of Figure 5d. In the
case of Figure 5a, these two methods almost failed to extract the images of cell bodies from the original
image. Meanwhile, a slight border extension of the artifact happens in Figure 5c, as indicated by the
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red arrow. By comparing the outcomes in Figure 4, the undesired components caused by the noise
was extracted by the Otsu’s method, as indicated by the red arrow in Figure 5e. Then, an extended
border of the artifact and a fragmented cell extracted by the proposed algorithm are illustrated in
Figure 5f. Under the circumstance of employing the artifacts, the proposed algorithm could still extract
the information of the intercellular substances inside each cell.
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Figure 5. The comparison of cell segmentation between the Otsu’s method and the proposed algorithm.
Two artifacts with different intensities were added into the original image from Figure 4a to study
the performances of these two methods. The intensity of the artifact in (a) is 1, while that in (d) is
0.5. The segmentation results (b,c) show the limitations of the methods. Then, the results (e,f) show
the acceptable profiles of cell image segmentation compared to those in Figure 4e,f, respectively.
The important information regarding the intercellular substances inside each cell were also extracted
by the proposed algorithm (f).
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4. Discussion

Two different types of medical images were utilized to validate the proposed image segmentation
method. The physical properties of the simple, square-root, and Yukawa potential kernels were
investigated in detail to realize the diversity of reconstruction of the medical images in physical
spaces. The square-root potential kernel exhibited a better smoothing performance than the simple
one, whereas the Yukawa potential kernel focused on the local featured structures of the images.
The experimental results reveal the feasibility of the proposed method for automatic medical image
segmentation. Then, the images with various compression ratios were used to test the performance
of the proposed method by extracting the featured components from both tremendously small and
large imageries. As shown in Figure 2a, the compressed image with a 10-time compression ratio only
had a size of 22 pixels by 22 pixels. The computational time and the score of the Jaccard index were,
respectively, 0.3 s and 0.7. Thus, the segmentation result reveals that the proposed method could extract
featured components from a tremendously small medical image. On the other hand, the proposed
method provides an alternative for image denoising issues by reducing the image size, estimating
the global density functionals, and then mapping back into the pixel space with original image sizes.
The experimental result (Figure 4e) shows the successful inhibition of the noise and the light pollution
compared to the image shown in Figure 4c. Furthermore, the limitations of the proposed algorithm are
illustrated in Figure 5c,f.

5. Conclusions

Under the framework of data density functionals, the proposed method provides an avenue for
medical image segmentation with adjustable computational complexity. It can automatically obtain
the smoothened segmentation results by introducing the square-root potential kernel. Meanwhile,
by utilizing the Yukawa potential kernel, the foreground and the background of a medical image can
be easily segmented. Furthermore, the technique can also be used to inhibit the noise and the light
pollution that occur in medical images.
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