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Abstract: In order to obtain high-accuracy measurements, traditional air quality monitoring and
prediction systems adopt high-accuracy sensors. However, high-accuracy sensors are accompanied
with high cost, which cannot be widely promoted in Internet of Things (IoT) with many sensor nodes.
In this paper, we propose a low-cost air quality monitoring and real-time prediction system based on
IoT and edge computing, which reduces IoT applications dependence on cloud computing. Raspberry
Pi with computing power, as an edge device, runs the Kalman Filter (KF) algorithm, which improves
the accuracy of low-cost sensors by 27% on the edge side. Based on the KF algorithm, our proposed
system achieves the immediate prediction of the concentration of six air pollutants such as SO2, NO2

and PM2.5 by combining the observations with errors. In the comparison experiments with three
common predicted algorithms including Simple Moving Average, Exponentially Weighted Moving
Average and Autoregressive Integrated Moving Average, the KF algorithm can obtain the optimal
prediction results, and root-mean-square error decreases by 68.3% on average. Taken together, the
results of the study indicate that our proposed system, combining edge computing and IoT, can be
promoted in smart agriculture.
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1. Introduction

The IoT (Internet of Things) is an important part of the new generation of information technology. It
refers to a huge network formed by combining various information sensing devices with the Internet [1].
In recent years, the widespread use of IoT terminal equipment has led to a spurt of terminal data and
connections, requiring a more computationally efficient IoT network architecture to enable timely data
analysis and processing. At the same time, IoT business is continuously derived and widely used in
smart agriculture, smart home, intelligent transportation and other fields. Many special application
scenarios, such as security monitoring, real-time road condition information collection, automatic
driving, etc., require the network to further reduce the data transmission delay [2]. The processing and
computing power of the traditional wireless network architecture is insufficient to support the deep
coverage and massive connection of the intelligent IoT. Moreover, the cloud computing platform is
far from the IoT terminal, which is difficult to meet the real-time data requirements of low-latency
services [3].

The proposed edge computing [4] provides a new way to solve the development bottleneck of
IoT and is considered to be the key enabler of IoT. Edge computing refers to an open platform that
integrates network, computing, storage and application core capabilities on the edge of the network,
which nears the things or data source. It provides edge intelligence services, to meet the key needs
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of industry digitalization in agile connectivity, real-time business, data optimization, application
intelligence, security and privacy protection, etc. Edge computing features are like human nerve
endings, which can self-process simple stimuli and feedback the processed features to the cloud brain.

Smart agriculture makes the application of IoT technology in traditional agricultural production
more “intelligent” by using sensors and software to control agricultural production through mobile
platforms or computer platforms. In smart agriculture, establishing a real-time monitoring and
prediction system for air quality (AQ) is the most basic and most important solution [5]. The prediction
for AQ is based on the analysis of the monitoring data. In other words, the accuracy of the monitoring
data affects the accuracy of the prediction to a certain extent [6]. At the same time, the Environment
Agency also has specified specific values for AQ [7]. Once current AQ exceeds the threshold, people
should take appropriate countermeasures. However, when the prediction is inaccurate, it will lead
to decision errors. In order to obtain high-precision monitoring data, many AQ monitoring schemes
currently existing use high-precision sensors. However, high-precision sensors are often accompanied
by higher costs. A complete system consists of multiple sets of sensors [8], so there is a trade-off

between cost and accuracy. In addition, in a traditional IoT-based AQ monitoring system, the data
collected by the sensing layer needs to be uploaded, analyzed and processed in the cloud computing
platform at the network layer [9]. However, in China, most agricultural areas are in remote locations
and harsh environments limited by bandwidth and network connectivity [10]. The timely uploading of
monitoring data and the analysis of prediction results cannot be guaranteed, which affects the timeliness
of decision-making. Therefore, edge computing with real-time computing power should be considered
to solve the bottleneck of traditional cloud computing solutions in agricultural application scenarios.

In order to improve the real-time performance and reduce the cost of the traditional monitoring
system, this paper combines edge computing and IoT application in smart agriculture. Under a
relatively low hardware cost, the air quality monitoring and prediction system based on the Kalman
Filter (KF) algorithm can greatly improve the accuracy, both in monitoring and predicting values.
By flexibly arranging inexpensive sensors throughout the monitoring area, the system monitors the
concentration of six air pollutants such as SO2, NO2, CO, O3, PM2.5 and PM10 in real time. According
to the dynamic characteristics of different air pollutants, the KF algorithm constructs the short-term
dynamic prediction model via 100 iterations of the initial sampling data with error. Therefore, the
instantaneous prediction of pollutant concentrations is achieved, and the sensor accuracy is improved
from the algorithm level on the edge side. This process of correcting the monitoring data to obtain
the best predictive value is a local process, which is used as a concrete example of edge computing.
Raspberry Pi (RPi) 3B is a low-power, low-cost card computer with a built-in quad-core 1.2 GHz 64
bit processor, which has very good computing and processing power. Therefore, this paper chooses
RPi as the carrier of edge computing and the central node of the sensor network. After collecting
the monitoring data from various sensors, RPi runs the KF algorithm to obtain the best prediction
results of various air pollutant concentrations, and then uploads the monitoring data and prediction
results to the cloud through the Wi-Fi module. The cloud stores data and sends feedback to client
requests. Through this marginalized low-cost wireless solution, farmers and agricultural experts can
collect more accurate concentrations of air pollutants, and analyze the current and subsequent AQ
through the client, which provides a more real-time, accurate and scientific basis for taking appropriate
control measures.

2. Related Work

There are a wide range of studies covering the issue of application of edge computing on
IoT [11–19], as well as monitoring [20–28] and prediction [29–37] for AQ.

2.1. Edge Computing on IoT

The continuous decline in sensor prices and computing costs has changed the architecture of
traditional IoT with more “things” to be connected to the Internet, resulting in pushing computing to
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the edge of the network [11,12]. As more networked devices become available, edge computing [13] is
an important change required to make IoT systems more efficient and scalable, which will be used in
all walks of life, especially in some areas where cloud computing is inefficient. Compared to cloud
computing, edge computing shows the following advantages [14]. (1) A focus on real-time, short-cycle
data analysis and better support big data analysis for cloud applications. (2) Real-time or faster data
processing and analysis. Data processing is closer to data sources, rather than in an external data center
of the cloud, so latency can be reduced. (3) Low cost. It costs less on data management solutions for
local devices than on the cloud and data center networks. (4) Higher application runtime efficiency. As
latency decreases, applications can run more efficiently at a faster rate. (5) Impairing the role of the
cloud also reduces the likelihood of a single point of failure, and reducing the reliance on the cloud
also means that some devices can run offline smoothly.

From autopilot to smart agriculture, edge computing on IoT has been used in many areas.
Companies like PointGrab and Gooee partner to provide IoT enabled lighting solutions with the help
of real-time edge computing [15]. Brzoza-Woch et al. present a fog-enabled embedded system for
environmental monitoring [16]. Intel partner with AVOB to develop edge-enabled remote control and
monitoring for IoT based smart energy management [17]. Datta et al. propose an IoT architecture for
connected vehicles and utilized fog computing as a platform for providing IoT services to connected
vehicles [18]. Bakheder et al. use cloudlets for big data analytics in a mobile cloud computing
environment [19].

The development of smart industry requires not only the high cloud but also the ubiquitous
edge computing. Regardless of the efficiency of use of IoT applications, time delays or security
considerations, edge computing is the key to the popularity of the IoT.

2.2. Air Quality Monitoring System

With the rise of IoT and the combination of miniaturized sensor devices and wireless technologies,
nowadays, many of the AQ monitoring solutions are based on the traditional IoT architecture to
build a remote monitoring system for AQ [9]. Composed of various sensor devices, the perception
layer identifies various air parameters and collects the data. The network layer, composed of wireless
technology, network management system and cloud computing platform, transmits and processes
data information collected from the perception layer, then makes corresponding decisions according to
current AQ conditions. The application layer presents relevant information back to the user.

Gómez et al. [20], designed and used an IoT-based, multi-purpose architecture for monitoring
environmental variables in urban areas. In their four-tier architecture, customer service interface
handles requests from clients via the HTTP protocol, when the management layer receives the data and
stores it in the database. Raipure and Mehetre [21] proposed a large city pollution monitoring system
based on wireless sensor network. The system uses AVR (Atmel AVR) ATmega-32 microcontroller
to transfer the values from ADC (Analog to Digital Converters) to the server, and uses a Bluetooth
microcontroller to build a communication channel between gas delivery to the server. In the agricultural
sector, Shinde et al. [22] established an IoT-based monitoring and control system for AQ in greenhouses.
Xiaojun et al. [23] proposed a system which can reduce hardware costs to the previous 1/10 by replacing
monitoring devices that use traditional empirical analysis with sensor networks in IoC (Inversion of
Control) technology. Kiruthika and Umamakeswari [24] used the Raspberry Pi to build an IoT-based
low-cost air quality monitoring system. As shown in Figure 1, the RPi [25–27] just as a sensor network
node, only collects monitored data and pushes data to the gateway layer. The gateway layer filters
and predicts data, then uploads the results to the cloud layer through the ESP 8266 wireless module.
The cloud layer analyzes the received data and responds to various requests from the client. Similarly,
Jadhav et al. [28] also used the RPi as a bridge between the sensor network and the web server. The
reasons that the above solutions adopt RPi are due to its low cost and card-like features.
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Figure 1. Functional model of the proposed system.  
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or periods by the average of a set of recent actual data. Because of its simple calculation method, it is 
very suitable for immediate prediction. Donnelly et al. [30] propose the Exponentially Weighted 
Moving Average model (EWMA). The principle of the model is the different weighting factors of the 
pollutant data in different historical periosd on the prediction process. Without considering the 
periodicity, the influence of the variable far from the target period is relatively low. Therefore, the 
prediction results based on EWMA model are smoother and closer to recent data than the SMA. The 
Autoregressive Integrated Moving Average (ARIMA) [31,32] model is widely used in AQ prediction. 
The model filters the non-stationary factors in the original sequence by using the data difference 
method, so that the model can obtain better prediction results. 

Although the traditional statistical-based prediction model has better performance in terms of 
interpretability and computational cost, it is limited by the single feature expression and lacks the 
ability to deal with complex prediction problems such as nonlinear processes. With the development 
of ML, many studies have chosen to use ML methods or multi-mode fusion [33,34] to predict AQ. In 
the study of Rybarczyk and Zalakeviciute [35], based on the J48 decision tree algorithm, two different 
decision models are constructed to predict the concentration of PM2.5 in the two adjacent regions. In 
the study of Raipure and Mehetre [21], the ID3 algorithm in the decision tree is applied to calculate 
the percentage of air pollutants. The algorithm is used to predict specific areas and provide early 
warning information for highly polluted areas. Xiaojun et al. [23] propose a multi-input and multi-
output AQ prediction model based on ANN (Artificial Neural Network). Based on the relationship 
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Although the existing studies have proposed a very mature and extensive AQ monitoring
program, in China, most agriculture areas are in remote locations and in harsh environments [10]. Data
analysis and processing through the cloud computing solution at the network layer cannot meet the
requirements of low latency [7]. In addition, the accuracy of the sensors selected in the existing studies
will be different, which will have different degrees of influence on the accuracy of the monitoring data,
thus failing to guarantee the scientific nature of the prediction results.

2.3. Prediction Model

In recent years, many studies on air quality have focused on prediction air pollutant concentrations
and assessing AQ in a given area. There are two main methods for constructing predictive models:
traditional statistical methods and methods based on machine learning (ML) or multi-model fusion.

At the statistical method level, Lanzafam et al. [29] propose a model of AQ prediction based on
Simple Moving Average (SMA). The model predicts the concentration of pollutants in the next period or
periods by the average of a set of recent actual data. Because of its simple calculation method, it is very
suitable for immediate prediction. Donnelly et al. [30] propose the Exponentially Weighted Moving
Average model (EWMA). The principle of the model is the different weighting factors of the pollutant
data in different historical periosd on the prediction process. Without considering the periodicity, the
influence of the variable far from the target period is relatively low. Therefore, the prediction results
based on EWMA model are smoother and closer to recent data than the SMA. The Autoregressive
Integrated Moving Average (ARIMA) [31,32] model is widely used in AQ prediction. The model filters
the non-stationary factors in the original sequence by using the data difference method, so that the
model can obtain better prediction results.

Although the traditional statistical-based prediction model has better performance in terms of
interpretability and computational cost, it is limited by the single feature expression and lacks the ability
to deal with complex prediction problems such as nonlinear processes. With the development of ML,
many studies have chosen to use ML methods or multi-mode fusion [33,34] to predict AQ. In the study
of Rybarczyk and Zalakeviciute [35], based on the J48 decision tree algorithm, two different decision
models are constructed to predict the concentration of PM2.5 in the two adjacent regions. In the study of
Raipure and Mehetre [21], the ID3 algorithm in the decision tree is applied to calculate the percentage of
air pollutants. The algorithm is used to predict specific areas and provide early warning information for
highly polluted areas. Xiaojun et al. [23] propose a multi-input and multi-output AQ prediction model
based on ANN (Artificial Neural Network). Based on the relationship between current and past 24 h
of pollutant concentration, a 24 h prediction network is established. To predict ozone concentrations,
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Sousa uses multiple linear regression and ANN based on principal components [36]. Feng Xiao and Li
Qi [37] propose ANN to predict the average daily concentration of PM2.5 two days in advance based
on AQ trajectory analysis and wavelet transform.

3. Materials and Methods

3.1. The Proposed System Architecture

The hardware part of the system is mainly composed of Raspberry Pi, the sensor network and the
Wi-Fi module. The software part is mainly the cloud data storage and client system. Composed of
several types of sensors, the sensor network realizes real-time monitoring of the concentration of air
pollutants such as SO2, NO2, CO, O3, PM2.5, and PM10. After the periodic sampling is completed,
the sensor network sends the various pollutant concentration data to the RPi. As the carrier of edge
computing, RPi runs the Kalman Filter algorithm after receiving the data. Then, after several iterations
and updates in a very short time, the predicted values of various pollutant concentrations at the
next moment are obtained. After completing the relevant prediction work, RPi uploads the data
to the cloud through the Wi-Fi module. The cloud stores the data, communicates with the client,
and presents the user with information, such as the current air quality status and the trend of each
pollutant concentration.

3.2. Hardware

3.2.1. Raspberry Pi

Raspberry Pi 3 Model B: The Raspberry Pi (RPi) 3B [38] is a portable and powerful SBC (Single
Board Computer), meaning that it runs a full operating system and has sufficient peripherals (memory,
CPU, power regulation) to start execution without the addition of hardware. It has been proved to be
an immediate access due to the low price of $35. By adding an SD storage, it is possible to quickly have
a fully working computer running Raspbian, a Debian-based Linux operating system, which is free
and optimized for the RPi hardware. The RPi has a built-in quad-core 1.2 GHz 64 bit CPU, which gives
it very good computing and processing power. Therefore, in many of IoT applications, RPi has been
deployed as an edge node, see for example [39–42].

Based on the processing power and computing characteristics of the RPi, this paper also uses the
RPi as the edge computing device and the central node of the sensor network (as shown in Figure 2).
The RPi periodically reads parameter data from various sensors based on the corresponding connection
pins. After obtaining the monitoring data, the background process is awakened from the sleep state,
actively runs the Kalman Filter algorithm, and calls the monitoring data to iteratively update it (see
Section 4 for details). When the calculation is completed, the predicted data of various air pollutant
concentrations at the next moment can be obtained. At this point, the RPi will upload the prediction
results and monitoring data to the cloud through the Wi-Fi module, and the cloud stores the data.

3.2.2. Sensors

(1) ZH03A Laser Dust Sensor
The ZH03A laser dust sensor (Zhengzhou Winsen Electronics Technology Co., Ltd., Zhengzhou,

China), with a minimum resolution particle diameter of 1.0 micron, is a versatile, miniaturized module
that uses the principle of laser light scattering to detect dust particles present in the air. By designing
different channels to distinguish the size of the particles, the PM2.5 and PM10 concentration values can
be obtained separately. Besides, ZH03A has good consistency, stability, real-time response, and also
provides a rich interface with digital output, PWM (Pulse Width Modulation) output and analog output.
The 24 bit data packet is sent to the RPi by UART (Universal Asynchronous Receiver/Transmitter)
transmission, and the PM2.5 and PM10 concentrations are obtained by reading the value of the specific
bit. The price of ZH03A is around $11.
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(2) SGA-700 Intelligent Gas Sensor
The SGA-700 series of intelligent gas sensor (Shenzhen Singoan Electronic Technology Co., Ltd.,

Shenzhen, China) modules carry out signal amplification, data processing, temperature and humidity
compensation, and it has the benefits of a smaller size, lower price and more stable performance.
SGA-700 can directly output voltage signals such as 0.4–2 V, 0–1.6 V, 0–4 V, 0–5 V, and serial port signals
are reserved. The standard signal after processing can be directly collected and uploaded to the control
host RPi. The price of the SGA-700 series gas sensor is less than $3. SGA-700-CO, SGA-700-NO2,
SGA-700-SO2 and SGA-700-O3 are used to measure CO, NO2, SO2 and O3 concentrations, respectively.

(3) ESP8266 Wireless Sensor
The ESP8266 (ESPRESSIF SYSTEMS (SHANGHAI) Co., Ltd., Shanghai, China) is a low-power,

low-cost, highly integrated Wi-Fi microchip with a full TCP/IP stack, which adds Wi-Fi capabilities to
the RPi via a UART serial connection. When the RPi is networking, it can send the predicted results of
each pollutant and the data monitored by the sensor to the cloud.

At present, the price of the existing AQ monitoring system ranges from $750 to $3000, while the
total cost of our proposed solution is only around $75, which has been reduced by nearly one-tenth,
and each module is easily accessible.

3.3. Kalman Filter Algorithm

The traditional statistical method-based prediction model [43] has the advantage of high
interpretability and low computational cost. Its prediction principle is based on linearly fitting
historical data. Therefore, the predicted result can have higher precision when the trend of change
is not severe. However, it is no longer applicable when the concentration of various air pollutants
is not a stable sequence. For example, the concentration of pollutants, such as PM2.5, PM10, and
SO, will suddenly increase due to the increase in vehicle exhaust emissions when traffic is at a peak
in the morning and evening [44]. Therefore, models such as SMA, EWMA, and ARIMA [29–32]
cannot effectively predict these change points, but these data have higher predictive value (directly
corresponding to measures).

In the application scenario of AQ prediction based on IoT devices, the prediction model is
limited by the storage capacity and computing power of the device itself. In order to achieve higher
prediction accuracy, many ML models not only require a large amount of historical data for training
(storage problem), but also have a high time complexity throughout the training process (calculation
problem) [45]. For example, the decision tree model [21,35] can improve the prediction accuracy via
the increase in the number of training samples and the depth of the tree, however, the time complexity
O(N ×M×D) is also multiplied (N is the number of samples, M is the vector dimension, and D is the
tree depth). The ANN [23,36,37] also has the similar problem. Therefore, although the ML model
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has higher prediction accuracy, it cannot meet the requirements of the edge computing node for the
lightweight model.

In order to solve the shortcomings of the above models, and in the case of ensuring the prediction
accuracy, the space complexity (storage) and time complexity (calculation) of the model are simplified
as much as possible, making it adaptable to the application scenario of edge computing. This paper
proposes an AQ prediction model based on the Kalman Filter (KF) algorithm.

The KF is an efficient autoregressive filter model (recursive filter model) [46]. It occupies very
little memory and only needs to retain data for one state on the system, rather than a long span of
historical data. The actual measured data are used to correct the prediction results, which can reflect
the objective results in the most realistic way. The operation speed of the KF is very fast, so it is very
suitable for solving real-time problems and applying to the edge computing of IoT.

The core idea of the KF is to use a set of state-space expression equations to represent a dynamic
system, and to predict the system state x̂k|k−1 (called prior estimate) at the next moment k according to
the optimal estimate (prediction) x̂k−1 of the system state at time k− 1. At the same time, the system
state at time k is observed, and the observed value zk is obtained. Due to the observation error, zk and
x̂k|k−1 deviate from the truly accurate system state, so the predicted value x̂k|k−1 needs to be corrected by
the observed value zk. Then the optimal estimate (prediction) x̂k of the system state at time k is obtained.

The KF algorithm is different from the general timing prediction method [47]. Firstly, there is
no need to assume that the error term satisfies the normal distribution. Secondly, it can estimate the
system state based on a set of incomplete observations (some time points missing in time series data)
or that contain noise (measurement error). Furthermore, compared with the model based on single
observations, the KF considers the joint distribution of observations according to time series data at
different times and estimates the unknown factors that may affect the system. Therefore, the prediction
of the KF will be more accurate.

In summary, the KF algorithm has the following characteristics:

1. The object of the KF algorithm research is a stochastic process, with sequential data.
2. The goal of filtering is to predict all random processes even with useless noise.
3. Differing from the least squares method, the white noise existing in the dynamic system or the

observation error existing in the observation data does not need to be filtered. The statistical
characteristics of this noise information will be used by the model in the prediction process.

4. The KF algorithm uses a recursive algorithm, and spatial state representation equations are
used to construct time-domain filters for prediction of multidimensional random variables (the
predicted system state consists of multiple features).

5. Compared to the ARIMA model, the time series data used for prediction can be smooth or not.
6. The prediction process only considers the process noise, the noise generated by the observation

method and the statistical characteristics of the system at the current time point. Besides, the
model calculation is small, which is very suitable for real-time prediction.

Based on the characteristics of the Kalman Filter algorithm, this paper constructs the KF algorithm
on the edge device (Raspberry Pi) to predict the concentration of various air pollutants in real time.
Although there are certain measurement errors in low-cost sensors and processing noises in the
model, the KF can improve the accuracy of sensors from the algorithm level by combining the errored
observation data. Moreover, the predicted value of the next moment can be obtained from the data of
the previous moment, so that the system has predictability for various pollutants and improves the
decision-making efficiency. As shown in Figure 3, the KF is used in the edge computing environment
of this paper.
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4. Results

4.1. Basic Dynamic System Model

The mathematical basis of the Kalman Filter algorithm is the linear algebra and Hidden Markov
model. We can use the following equation to describe a basic dynamic system:

xk = Fkxk−1 + Bkuk + wk (1)

It means that each xk (the signal values) may be evaluated by using a linear stochastic equation.
Any xk is a linear combination of its previous value xk−1 plus a control signal uk and a process noise wk.
And most of the time, there is no control signal uk, which is a certain external factor that affects the
system. Fk is a state transition matrix acting on xk−1, and Bk is a control input matrix acting on uk. wk is
the process noise at time k, that is, the influence of external uncertainty factors on the system, and we
assume that its statistical characteristics are in accordance with the mean normal value of 0, and the
covariance matrix is a multivariate normal distribution of Qk, which satisfies:

p(wk) ∼ N(0, Qk) (2)

At the same time, at time k, the observed value zk of the sensor to the real state xk of the system
satisfies the following equation:

zk = Hkxk + vk (3)

The equation tells that any measurement value zk (which we are unsure of its accuracy) is a linear
combination of the signal value xk and the measurement noise vk. Hk is the observation transfer matrix,
which maps the real space xk of the dynamic system into the observation space. vk is the measurement
noise, and it conforms to the multivariate normal distribution with a mean of 0 and the covariance
matrix of Rk, which satisfies:

p(vk) ∼ N(0, Rk) (4)

The process noise wk and measurement noise vk are statistically independent.
The basic structure of the KF algorithm can be obtained from the above equations, as shown in

Figure 4. The circle represents the vector, the square represents the matrix, the asterisk represents the
Gaussian noise, and the dotted square in the lower right corner of the asterisk represents the covariance
matrix corresponding to the noise.
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4.2. Kalman Filter Algorithm Implementation

The Kalman Filter algorithm is an autoregressive filtering model. Therefore, the optimal estimate
of the system state at the current time, can be obtained by the optimal estimate of the system state at
the previous moment and the observation of the system state at the current time.

Firstly, the state of the KF is represented by the following two variables:

• x̂k|k represents an estimate of the system state at time k;
• Pk|k represents the covariance matrix of the state estimation error at time k, which measures the

accuracy of the estimation.

The KF estimates a process by using a form of feedback control: the filter estimates the process
state at some time and then obtains feedback in the form of (noisy) measurements. As such, the
equations for the KF fall into two groups: time update equations and measurement update equations [48].
The time update equations project forward (in time) the current state and error covariance estimates to
obtain the a priori estimates for the next time step. The measurement update equations are responsible
for the feedback—i.e., for incorporating a new measurement into the a priori estimate to obtain an
improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the measurements
update equations can be thought of as corrector equations. Indeed, the final estimation algorithm
resembles that of a predictor-corrector algorithm for solving numerical problems as shown in Figure 5.
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4.2.1. Prediction

The first step of the algorithm is prediction, also known as time update. The prior estimate and
covariance matrix of a prior estimate error in the current period is obtained according to the optimal
estimation and covariance matrix of the estimated error of system state at the last moment, expressed
by the following equations: {

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk
Pk|k−1 = FkPk−1|k−1FT

k + Qk
(5)

where Fk, Bk and Qk are the state transition matrix, the control input matrix, and the covariance matrix
of the process noise, respectively.

Since the a priori estimate x̂k|k−1 is not the optimal estimate at time k, it is necessary to correct
x̂k|k−1 in combination with the observation of the sensors.

4.2.2. Correction

In the correction stage of the algorithm (measurement update), the following three values are first
calculated: 

Φk = HkPk|k−1HT
k + Rk

Kk = Pk|k−1HT
k Φ−1

k
z̃k = zk −Hkx̂k|k−1

(6)

In Equation (6), Hk is the observation transfer matrix, which maps the real space xk of the dynamic
system into the observation space. Rk is the covariance matrix of the observed noise, Φk is the covariance
matrix of the observed margin, and Kk is Kalman gain. zk is the observation at time k, and z̃k represents
the observation margin, which is the difference between the actual observation and the observation
obtained by the a priori estimation.

The three values obtained by the above calculation are used to update the filter variables x̂k|k−1
and Pk|k−1 to obtain the optimal estimate x̂k|k and the covariance matrix Pk|k of the estimation error of
the system state at time k. {

x̂k|k = x̂k|k−1 + Kkz̃k
Pk|k = (1−KkHk)Pk|k−1

(7)

4.2.3. Setting Parameters

In the Kalman filter-based air quality prediction model proposed in this paper, it is assumed
that all kinds of pollutants do not change state every hour and there are no control variables, so in
Equation (5), Fk can be set as an identity matrix and the value of Bkuk is zero. In Equation (6), Rk is the
covariance matrix of the measurement error of sensors, and zk is an observation matrix consisting of
observations of various pollutant concentrations by 100 samples in first 10 min/h (100 samples are
required because, after several experiments, the algorithm can achieve optimal convergence and steady
state after 100 iterations).

In Equation (6), the process noise error Qk is usually difficult to predict as we typically do not
have the ability to directly observe the process we are estimating. Statistically speaking, excellent
filter performance can be obtained by tuning the filter parameter Qk. The tuning is usually performed
off-line, frequently with the help of another (distinct) Kalman Filter in a process generally referred to
as system identification. Then, under the condition that Qk is actually constant, both the estimation
error covariance Pk|k and the Kalman gain Kk will stabilize quickly and then remain constant [49]. In
this paper, assuming that Qk is a constant value Q, then we can determine the value of Q for each
pollutant. The smaller the Q value, the higher the trust in the prediction model. If Q is 0, it means that
only the prediction model is trusted. And as Q decreases, the system will converge more easily, but
when Q is reduced to a certain extent, continuing to decrease may cause the system to start diverging.
Conversely, a larger Q value indicates a lower degree of trust in the predictive model, and accordingly,
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the degree of trust in the measured value is increased. If Q tends to infinity, it means that only the
measured value is trusted.

This paper uses the grid search method to tune the Q, the specific process is as follows.
(1) Select data.
The Panyu Middle School (PMS) in Guangzhou, Guangdong Province, China, is an official

monitoring site, so we assume that the data published on this site is true and accurate [50]. we select
the air pollutant concentration data released by the monitoring site from 0:00 on 12 February 2019 to
23:00 on 15 February 2019 as the actual value (a total of 96 data points in four days). Each data point in
the data set corresponds to the concentration value of each type of pollutant at each hour. At the same
time and place, by using the sensor network of our system to monitor, the observation data of various
pollutant concentrations during this period is obtained, which is used as the measured value (similarly,
a total of 96 data points in four days).

(2) Define search interval.
When Q = 0, since the proportion of the observations is very small, the value of the posterior

estimate xk is basically not updated during the iterative process, and the trend tends to be gentle.
Taking the Kalman Filter to predict the CO concentration as an example. Figure 6a shows the iterative
convergence process at Q = 0 (a total of 96 iterations). In the figure, the blue line is the output of the
KF algorithm in each iteration (a posterior estimate xk), the plus sign is the observed value with errors
by the sensors, and the green line is the data of the monitoring site, indicating the true value. When
Q = 1, the model trusts the observations at this time, and the update of the posterior estimate xk is
more affected by the observations. Therefore, the trend will basically coincide with the measured
values, as shown in Figure 6b.
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(3) Calculate the predicted value.
Q performs 1000 searches in the range of (0, 1). In each search process, for each Q, the KF algorithm

performs 96 iterative updates in conjunction with 96 measurements. Finally, all the predicted values of
a posteriori estimate xk can be obtained, from the initial value to the convergence process, i.e.,:

x(Qn)96×1 = [x1, x2, · · · , x96] (8)

(4) Calculate RMSE.
In the case where Q takes a different value Qn, the RMSE (root-mean-square error) between each

predicted value xk and the corresponding true value is calculated:

RMSE(x, x̂)Qn
=

√√
1
m

m∑
i=1

(xi − x̂i)
2 (9)
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where x is the true value, i.e., the data of the monitoring site, and x̂ is the predicted value calculated by
the KF. Then for each Q value Qn, a corresponding RMSE(x, x̂)Qn

is output.
(5) Compare RMSE(x, x̂).
In step (4), since x̂ contains the predicted value in the non-converged state of the system, the RMSE

value is relatively large during the parameter tuning process. In addition, for each type of pollutant,
the original RMSE has different ranges, since the absolute value calculated from the predicted values
and true values is different. Therefore, the RMSE(pollutant), where the pollutant represents the SO2,
NO2, CO, O3, PM2.5, PM10, respectively, is normalized by the commonly used min-max normalization
method to have the same range. After normalization, each RMSE(pollutant) range is between (0,1),
resulting in intuitive comparison. Figure 7 reflects the trend of normalized RMSE of six types of
air pollutants during the process of Q search. The smaller the value of RMSE, the less unconverted
predicted value will be reflected in the side, which indicates that the faster the model converges and
the better the fitting effect. At this time, the value of Q is more favorable to predicting the pollutants
(the trend of different pollutants is different, so the optimal value of Q for each type of pollutant will
be different. According to the model built in this paper, the more stable the change, the smaller the
optimal value of Q will be).
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(6) Best Q
From Figure 7, we can get the optimal value of the process error Q as follows:

Qbest(SO2, NO2, CO, O3, PM2.5, PM10) = [0.467, 0.273, 0.089, 0.572, 0.151, 0.133] (10)

In the tuning process, when Q is taken to Qbest, the iterative convergence process for each type of
pollutant concentration that uses the KF algorithm for prediction is shown in Figure 8.
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It can be seen from the figure that when Q = Qbest, the KF algorithm can converge after about 60
iterations, and the predicted result after convergence can more accurately reflect the change of the
true value.

(7) Test Q.
Taking the predicted CO concentration as an example, it is tested whether the optimal prediction

effect can be obtained when the optimal value of Q is taken. From step (6), we can have Q(CO) = 0.089
and use the KF algorithm to predict the concentration of CO at 0:00 on 16 February 2019. The
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convergence process of the algorithm is shown in Figure 9. The plus sign is the observation value
obtained by sensors sampling 100 times for CO concentration within 10 min from 23:00 to 23:10 on the
15 February 2019. The blue line is the process of the KF algorithm combined with error observations
for 100 iterations. In this test, the last value after convergence of the blue line (model) will be used as
the predicted value at 0:00 on the 16 February 2019. The green line is the concentration of CO at 0:00 on
the 16 February 2019 of the monitoring site, which will be the target of this prediction. As can be seen
from the figure, the model converges quickly when Q is constant and optimal. Not only the error of
the observation is corrected, but also the predicted result (the last point on the blue line) is very close
to the true value after the model converges.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 25 
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Figure 9. The convergence process that the Kalman Filter algorithm predicts the CO concentration at
0:00 on 16 February 2019 with Q(CO) = 0.089.

According to Equation (7), with the iteration of the KF, the value of the error covariance matrix Pk
will constantly change. When the system enters a steady state, the value of Pk converges to a minimum
estimated variance matrix. The Kalman gain Kk at this time is also optimal. Therefore, in the process of
prediction and correcting CO concentration by the KF algorithm, we can also check the convergence
of Pk to judge whether the system has entered the steady state. As shown in Figure 10, Pk basically
stabilizes when iterating about 50 times, indicating that the model has converged at this time.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 25 

 
Figure 9. The convergence process that the Kalman Filter algorithm predicts the CO concentration at 
0:00 on 16 February 2019 with 𝑄(𝐶𝑂) = 0.089. 

According to equation (7), with the iteration of the KF, the value of the error covariance matrix 𝑃  will constantly change. When the system enters a steady state, the value of 𝑃  converges to a 
minimum estimated variance matrix. The Kalman gain 𝐾  at this time is also optimal. Therefore, in 
the process of prediction and correcting CO concentration by the KF algorithm, we can also check the 
convergence of 𝑃  to judge whether the system has entered the steady state. As shown in Figure 10, 𝑃  basically stabilizes when iterating about 50 times, indicating that the model has converged at this 
time. 

 
Figure 10. The convergence process of the error covariance matrix 𝑃  when Kalman Filter algorithm 
predicts the CO concentration at 0:00 on 16 February 2019 with 𝑄(𝐶𝑂) = 0.089. 

5. Discussion 

5.1. Accuracy Improvement Analysis 

One of the differences between the Kalman Filter algorithm and other time series prediction 
models is that the statistical information of process noise and observation error can be effectively 

Figure 10. The convergence process of the error covariance matrix Pk when Kalman Filter algorithm
predicts the CO concentration at 0:00 on 16 February 2019 with Q(CO) = 0.089.



Appl. Sci. 2019, 9, 1831 15 of 23

5. Discussion

5.1. Accuracy Improvement Analysis

One of the differences between the Kalman Filter algorithm and other time series prediction
models is that the statistical information of process noise and observation error can be effectively
utilized in the prediction process, which can correct the a priori estimation of the model. Therefore,
from the predictive perspective, the KF uses observation data obtained by the sensor network to
improve prediction accuracy. From the monitoring perspective, even with low-cost and low-precision
monitor sensors, the KF can correct the error of the measurement data from the algorithm level, which
improves the accuracy of sensors on the side.

In order to verify that the KF algorithm can effectively improve the accuracy of sensor observations,
this paper designs a comparing experiment to obtain the error size. The experiment compares the
predicted value of the KF and the observed value of the sensor with the data of the official monitoring
site, respectively. The main indicators for measuring errors includes MSE (mean-square error), RMSE
and MAE (mean-absolute error). The experimental results are shown in Table 1.

Table 1. Error comparison between the Kalman Filter prediction and sensors observation.

Type Algorithm MSE RMSE MAE

SO2
Kalman Filter 0.0754 0.2747 0.2032

Sensor 0.1265 0.3557 0.2775

NO2
Kalman Filter 1.6172 1.2717 1.0659

Sensor 2.8765 1.6960 1.3334

CO
Kalman Filter 0.0003 0.0185 0.0138

Sensor 0.0004 0.0195 0.0163

O3
Kalman Filter 41.3410 6.4297 5.7242

Sensor 69.3231 8.3260 6.8198

PM2.5
Kalman Filter 0.0110 0.1047 0.0805

Sensor 0.0165 0.1285 0.0991

PM10
Kalman Filter 0.0071 0.0842 0.0613

Sensor 0.0133 0.1152 0.1006

For a more intuitive explanation about improving the specific accuracy by the KF, the percentage
decline of MSE, RMSE and MAE are calculated based on Table 1, respectively. The results are shown
in Table 2. Based on the data in Table 2, the error of prediction by the KF is 27% lower than that of
monitored by sensors on average, which indicates that the KF algorithm can improve the accuracy of
sensors to some extent.

Table 2. Acceleration accuracy of prediction value by the Kalman Filter.

Type MSE_Diff(%) RMSE_Diff(%) MAE_Diff(%)

SO2 40.3723 22.7810 26.7748

NO2 43.7776 25.0184 20.0589

CO 25.0023 5.0527 15.2650

O3 40.3647 22.7761 16.0641

PM2.5 33.6763 18.5606 18.7659

PM10 46.5858 26.9149 39.0487

Mean 38.2965 20.1840 22.6634
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5.2. Predictive Ability Analysis

Although Section 5.1 proves that the KF algorithm can improve the accuracy of the sensors, it
does not explain the advantages of the KF in predicting performance. Since most ML-based prediction
models are limited by the storage power (requiring a large amount of historical data for training
to obtain better prediction results) and computing power (model training and prediction processes
are computationally intensive tasks, requiring high computational components like CPU) of edge
computing nodes, they are not suitable for use in IoT scenarios [45]. Therefore, this paper designs the
comparison experiment between KF algorithm and three other commonly used time series prediction
algorithms that are based on statistical methods, including SMA (Simple Moving Average), EWMA
(Exponentially Weighted Moving Average) and ARIMA (Autoregressive Integrated Moving Average).

SMA, EWMA, and ARIMA need to use historical data for training. In order to have a comparative
judgment criterion, this paper selects the data of various air pollutant concentrations per hour from 15
to 16 February of 2019, in PMS, which is used as the training set for model and as the comparison data
for the algorithm prediction results.

(1) Kalman Filter Prediction.
First of all, determine the hyperparameters of the KF algorithm as described in Section 4.2.3. Then,

in the actual prediction process, the observation data used by the KF in the correction state is the hourly
monitoring data of the air pollutant concentration in PMS (from 0:00 to 23:00 on 16 February 2019). The
specific process of each prediction is as follows: (1) during each prediction period, the sensors of the
system sample 100 times of the concentration of each air pollutant in the first ten minutes; (2) the KF
algorithm is iteratively updated based on the sampling data; (3) the results of the iterative convergence
are used as the predicted values of each pollutant concentration in this period.

(2) SMA Prediction
SMA is a method for predicting the average value for a certain period in the future. The method

calculates the arithmetic mean of several historical data in the past and uses the arithmetic mean as the
predicted value for the later period [51]. SMA can be expressed as:

Ft = (At−1 + At−2 + At−3 + . . .+ At−n)/n (11)

where Ft is the predicted value for the next period, and n is the number of periods of the moving average,
generally between 3 and 200. At−1 is the actual value of the previous period, and At−2, At−3, At−n are
the actual values of the first two periods, the first three periods and the first n periods, respectively.

The number of n is determined by the experimental results of multiple cross-validation [52] on
the training set before the SMA prediction. It is found that the prediction effect is best when n = 3.
Therefore, in the actual prediction process, the model input data of the first period (predicted value at
0:00 on the 16 February 2019) is the three-hour data from the monitoring site, which is from 21:00 to
23:00 on 15 February 2019. The model input data of the second period (predicted value at 1:00 on the
16 February 2019) is the data from 22:00 to 23:00 on 15 February 2019 and 0:00 on 16 February 2019. By
analogy, the predicted values of 24 h on the 16 February 2019 are obtained.

(3) EWMA Prediction
EWMA is an improvement to SMA and is a common sequence processing method [53]. This

applies a non-uniform weighting to time series data so that a lot of data can be used, but recent data
is weighted more heavily. As the name suggests, weights are based upon the exponential function.
Formulated as follows:

EWMAt = λYt + (1− λ)EWMAt−1(t = 1, 2, . . . , n) (12)

where EWMAt is the estimated value at time t, Yt is the observation at time t, n is the number of
observations to be monitored including EWMA0, and 0 < λ ≤ 1 is a constant that determines the depth
of memory of the EWMA. The parameter λ determines the rate at which “older” data enter into the
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calculation of the EWMA statistic. A large value of λ (closer to 1) gives more weight to recent data and
less weight to older data, while a small value of λ (closer to 0) gives more weight to older data. In this
paper, the value of λ is 0.4, and the model input of each period is the same as the SMA.

(4) ARIMA Prediction.
The ARIMA model, also known as the differential autoregressive moving average model,

transforms nonstationary time series into stationary time series, learning from historical data to
patterns that change over time [54]. After learning, this rule is used to predict the future. The ARIMA
model can be written as ARIMA(p, d, q) and is an extension of the ARMA(p, q) model. In ARIMA(p, d, q),
parameters p, d and q are non-negative integers, p is the order (number of time lags) of the autoregressive
model, d is the degree of differencing when the time series becomes stationary, and q is the order of the
moving-average model. ARIMA(p, d, q) can be expressed as:1− p∑

i=1

∅iLi

(1− L)dXt =

1− q∑
i=1

θiLi

εt (13)

where L is a lag operator. Since the parameters of each difference in the model need to be determined
before the ARIMA prediction, this paper selects the 70 h data of the monitoring site before 0:00 on 16
February 2019 as the training set for the ARIMA model. The specific training process is: (1) determine
the minimum difference order d that transforms the original data into a stationary sequence S; (2)
calculate the autocorrelation and partial autocorrelation coefficients of sequence S, to determine the
values of p and q; (3) estimate the parameters of each difference after completing the ARIMA model.

(5) Comparison.
In order to compare the prediction accuracy of KF, SMA, EWMA, and ARIMA more intuitively, the

verification data set selected is the concentration of various air pollutants collected by the monitoring
site on 16 February 2019, in PMS. Three evaluation indicators, MSE, RMSE, and MAE are also chosen
to measure the performance of each model. As shown in the following table:

As illustrated in Table 3, the MSE, RMSE, and MAE of the KF in predicting the concentration of
each pollutant are the lowest, compared with the other three algorithms. In detail, the average RMSE
is reduced by 68.3%. That is to say, the KF algorithm shows the smallest prediction error as a whole,
and its prediction performance is the best.

Table 3. Error comparison of each algorithm.

Type Algorithm MSE RMSE MAE

SO2

Kalman Filter 0.0834 0.2888 0.2292
ARIMA 0.4382 0.6620 0.4411
EWMA 0.4202 0.6483 0.4696

SMA 1.2255 1.1071 0.5978

NO2

Kalman Filter 2.0523 1.4326 1.1996
ARIMA 10.6014 3.2560 2.4728
EWMA 12.8009 3.5778 2.9709

SMA 19.7065 4.4392 3.5870

CO

Kalman Filter 0.0005 0.0228 0.0186
ARIMA 0.0022 0.0468 0.0223
EWMA 0.0019 0.0432 0.0313

SMA 0.0042 0.0649 0.0402

O3

Kalman Filter 49.8062 7.0574 6.1945
ARIMA 132.2546 11.5002 8.8032
EWMA 175.5706 13.2503 11.0526

SMA 262.6821 16.2075 13.6848

PM2.5

Kalman Filter 0.0071 0.0844 0.0681
ARIMA 0.2679 0.5176 0.2840
EWMA 24.3083 4.9303 2.0415

SMA 73.3370 8.5637 2.5652

PM10

Kalman Filter 0.0076 0.0871 0.0671
ARIMA 0.2967 0.5447 0.3236
EWMA 36.6994 6.0580 2.5465

SMA 111.3152 10.5506 3.3696
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5.3. Predictive Trend Comparison

This section presents the predictive trend of four algorithms KF, SMA, EWMA and ARIMA via
comparing the predicted values with the published values by the official monitoring site. As shown in
Figure 11, the predicted values of four algorithms and real values at different moments reveal whether
the four algorithms can accurately reflect the characteristics of the data. It is a 24 h prediction trend for
the concentration of six pollutants SO2, NO2, CO, O3, PM2.5 and PM10 on 16 February 2019, in PMS.
The black solid line represents the data collected in PMS, as a benchmark for comparison. The dashed
line in four different colors is the predicted value according to four different algorithms, including
SMA, EWMA, ARIMA and KF.
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As illustrated in Figure 11, compared with the data of the official monitoring site, the prediction
results of the KF for six kinds of air pollutant concentrations are the closest to the real data. The KF
shows the best prediction effect reflecting the characteristics of real data at different times.

In detail, the blue dotted line reflects the trend of SMA algorithm for various pollutants. On the
whole, SMA is only effective when dealing with horizontal historical data, such as the time from 2:00
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to 5:00 in Figure 11c and the time from 2:00 to 23:00 in Figure 11e,f. However, data with trend or step
characteristics, such as Figure 11b,d, the moving average does not always reflect its trend well, showing
obvious hysteresis. Since it is an average value, the predicted value always stays at the past level, and
it cannot be expected to cause higher or lower fluctuations in the future. However, fluctuations in the
concentration of various air pollutants are not always horizontal, so the results of SMA predictions
will produce very large deviations.

The orange dotted line reflects the predicted trend of the EWMA algorithm among various
pollutants. As can be seen from the figure, the EWMA algorithm is very effective for the processing of
horizontal historical data. Although the prediction of trend or step data has been greatly improved
compared with SMA, there is still significant hysteresis. The results of each pollutant concentration
prediction are still far from the data released by the official monitoring site.

The green dotted line reflects the predicted trend of the ARIMA algorithm for various pollutants.
Overall, compared with SMA and EWMA, the ARIMA can better reflect the trend of data, whether for
horizontal or step data. However, ARIMA requires that the time series data be stable or to be stable
after being differentiated, so in a short period of time, ARIMA can get a good prediction effect. When
the data suddenly fluctuates, as illustrated in Figure 11a, the concentration of SO2 suddenly rises at
6:00 and 8:00, ARIMA still shows obvious hysteresis, resulting in large errors in the prediction results.

The red dotted line reflects the prediction trend of the KF for various pollutants. It can be seen from
the figures that even though the system uses inexpensive sensors with low precision, the correction of
the KF algorithm can make the prediction results of various pollutant concentrations very close to the
data of the official monitoring site. The KF can well reflect the trend of the data both in step-type data
(Figure 11b) and horizontal data (Figure 11e), showing no obvious hysteresis or very large volatility.

Based on the above analysis and comparison results, the KF is very suitable for the air quality
monitoring and prediction system proposed in this paper. After the hyperparameter is determined, the
KF does not need to train the historical data. Therefore, the calculation amount of the model is so small
during each iteration and update process that it can be completed quickly on the RPi. By correcting the
model by the real-time monitoring data of the sensors, the trend of various pollutant concentrations
can be accurately reflected, and the problem of low sensor accuracy is solved from the algorithm level.

5.4. Client Interface Design

After the KF algorithm completes the prediction of the concentration of the pollutants at the next
moment, RPi will send the prediction results and monitoring data to the cloud, which stores the data
in the database and feedbacks results to the client. Users can view the current air quality and the latest
24-h AQI (air quality index) trend through the browser’s access, as shown in Figure 12.
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6. Conclusions

Based on the application of edge computing and IoT in smart agriculture, this paper establishes a
low-cost air quality monitoring and prediction system via Raspberry Pi, which is an edge device to run
the Kalman Filter algorithm. Compared to the traditional air quality monitoring and prediction system
that processes in the cloud, this paper puts the machine learning algorithm on the edge, which can
avoid the problem of data transmission delay due to bandwidth and network connection limitations
in the agricultural environment, and improves the real-time decision-making. By running the KF
algorithm on the RPi, which has strong computing power and is used as the edge device, the immediate
predictions of six type of air pollutants such as SO2, NO2, CO, O3, PM2.5 and PM10 are realized.
Compared with the other three algorithms SMA, EWMA and ARIMA, it can be seen that even with
low-accuracy sensors, the error of the prediction results based on the KF is the smallest. RMSE is
also reduced by an average of 68.3%. In addition, compared with the observation data of sensors, the
accuracy of the predicted value by the KF algorithm is improved by 27%, which improves the accuracy
of sensors from the aspect of the algorithm. Compared to other air quality monitoring equipment, the
cost of our proposed solution is reduced by at least 10% with the same observation accuracy. In other
words, our proposal avoids the trade-off between cost and accuracy in traditional solutions.

In the process of applying the Kalman Filter algorithm to predict the concentration of various air
pollutants, this paper ignores the influence of the external environment on concentration of pollutants.
Such factors as factory emissions, wind speed, and other factors will have a direct impact on the
current concentration of pollutants. In future work, if we can get this data, we can further improve
the accuracy of the model. For the proposed system, the edge computing layer based on the sensor
network and the Raspberry Pi was designed to be too centralized [55]. When the RPi that is in the
center breaks down, the problem of disaster recovery backup will emerge, resulting in long-term
paralysis of regional functions (requiring human intervention to troubleshoot) and data loss. At the
same time, the monitoring and early warning mechanism of the edge computing layer itself is not
perfect. In summary, it is necessary to consider the above two problems on the algorithm and the
system when applying the system to the actual production environment in the future.
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26. Vujović, V.; Maksimović, M. Raspberry Pi as a Sensor Web node for home automation. Comput. Electr. Eng.
2015, 44, 153–171. [CrossRef]

27. Li, S.; Da, X.L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]

http://dx.doi.org/10.1016/j.proeng.2015.06.106
http://dx.doi.org/10.1016/j.proeng.2013.02.146
http://dx.doi.org/10.3390/su9020313
http://dx.doi.org/10.3390/electronics5020029
http://dx.doi.org/10.3390/electronics5040072
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1016/j.comnet.2017.10.002
https://blogs.intel.com/iot/2016/06/07/intel-iot-solutions-transforming-smart-buildings-ground/
https://blogs.intel.com/iot/2016/06/07/intel-iot-solutions-transforming-smart-buildings-ground/
http://dx.doi.org/10.1016/j.procs.2017.05.296
http://dx.doi.org/10.1016/j.compeleceng.2015.01.019
http://dx.doi.org/10.1007/s10796-014-9492-7


Appl. Sci. 2019, 9, 1831 22 of 23

28. Jadhav, G.; Jadhav, K.; Nadlamani, K. Environment monitoring system using raspberry-Pi. Int. Res. J. Eng.
Technol. (IRJET) 2016, 3, 4.

29. Lanzafame, R.; Monforte, P.; Patanè, G.; Strano, S. Trend analysis of air quality index in Catania from 2010 to
2014. Energy Procedia 2015, 82, 708–715. [CrossRef]

30. Donnelly, A.; Misstear, B.; Broderick, B. Real time air quality forecasting using integrated parametric and
non-parametric regression techniques. Atmos. Environ. 2015, 103, 53–65. [CrossRef]

31. Zhu, J.; Zhang, R.; Fu, B.; Jin, R. Comparison of ARIMA model and exponential smoothing model on 2014 air
quality index in Yanqing county, Beijing, China. Appl. Comput. Math. 2015, 4, 456–461. [CrossRef]

32. Kadilar, G.Ö.; Kadilar, C. Assessing air quality in Aksaray with time series analysis. In Proceedings of the
AIP Conference Proceedings, Antalya, Turkey, 18–21 April 2017; AIP Publishing: Melville, NY, USA, 2017;
Volume 1833, p. 020112.

33. Xia, X.; Zhao, W.; Rui, X.; Wang, Y.; Bai, X.; Yin, W.; Don, J. A comprehensive evaluation of air pollution
prediction improvement by a machine learning method. In Proceedings of the 2015 IEEE International
Conference on Service Operations and Logistics, And Informatics (SOLI), Hammamet, Tunisia, 15–17
November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 176–181.

34. Taneja, S.; Sharma, N.; Oberoi, K.; Navoria, Y. Predicting trends in air pollution in Delhi using data mining.
In Proceedings of the 2016 1st India International Conference on Information Processing (IICIP), Delhi, India,
12–14 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

35. Rybarczyk, Y.; Zalakeviciute, R. Machine learning approach to forecasting urban pollution. In Proceedings
of the 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador, 12–14 October 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

36. Sousa, S.I.V.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Multiple linear regression and artificial
neural networks based on principal components to predict ozone concentrations. Environ. Modell. Softw.
2007, 22, 97–103. [CrossRef]

37. Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2. 5 pollution
using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107,
118–128. [CrossRef]

38. Richardson, M.; Wallace, S. Getting Started with Raspberry PI; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012.
39. Chang, H.; Hari, A.; Mukherjee, S.; Lakshman, T.V. Bringing the cloud to the edge. In Proceedings of the 2014

IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada,
27 April–2 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 346–351.

40. Ujjainiya, L.; Chakravarthi, M.K. Raspberry—Pi based cost effective vehicle collision avoidance system using
image processing. ARPN J. Eng. Appl. Sci 2015, 10, 1819–6608.

41. Pannu, G.S.; Ansari, M.D.; Gupta, P. Design and implementation of autonomous car using Raspberry Pi. In.
J. Comput. Appl. 2015, 113, 22–29.

42. Senthilkumar, G.; Gopalakrishnan, K.; Kumar, V. Embedded image capturing system using raspberry pi
system. Int. J. Emerg. Trends Technol. Comput. Sci. 2014, 3, 213–215.

43. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer Series in Statistics; Springer: New York, NY, USA, 2009.

44. Lipfert, F.W.; Wyzga, R.E.; Baty, J.D.; Miller, J.P. Traffic density as a surrogate measure of environmental
exposures in studies of air pollution health effects: Long-term mortality in a cohort of US veterans.
Atmos. Environ. 2006, 40, 154–169. [CrossRef]

45. Qiao, Y. A review of machine learning related algorithms based on numerical prediction. J. Anyang Inst.
Technol. 2017, 16, 71–74.

46. Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press:
Cambridge, UK, 1990.

47. Fildes, R. Forecasting, structural time series models and the Kalman Filter: Bayesian forecasting and dynamic
models. J. Opt. Res. Soc. 1991, 42, 1031–1033. [CrossRef]

48. Bishop, G.; Welch, G. An introduction to the kalman filter. Proc. Siggr. Course 2001, 8, 41.
49. Welch, G.F.; Bishop, G. SCAAT: Incremental Tracking with Incomplete Information. Ph.D. Thesis, University

of North Carolina at Chapel Hill, Chapel Hill, NY, USA, October 1996.
50. Guangzhou PM2.5 and Air Quality Index (AQI). Available online: http://pm25.in/guangzhou (accessed on

12 February 2019).

http://dx.doi.org/10.1016/j.egypro.2015.11.796
http://dx.doi.org/10.1016/j.atmosenv.2014.12.011
http://dx.doi.org/10.11648/j.acm.20150406.19
http://dx.doi.org/10.1016/j.envsoft.2005.12.002
http://dx.doi.org/10.1016/j.atmosenv.2015.02.030
http://dx.doi.org/10.1016/j.atmosenv.2005.09.027
http://dx.doi.org/10.1057/jors.1991.194
http://pm25.in/guangzhou


Appl. Sci. 2019, 9, 1831 23 of 23

51. Johnston, F.R.; Boyland, J.E.; Meadows, M.; Shale, E. Some properties of a simple moving average when
applied to forecasting a time series. J. Oper. Res. Soc. 1999, 50, 1267–1271. [CrossRef]

52. Osborne, J.W. Prediction in multiple regression. Pract. Assess. Res. Eval. 2000, 7, 1–9.
53. Ren, H.; Guo, J.; Sun, L.; Han, C. Prediction algorithm based on weather forecast for energy-harvesting

wireless sensor networks. In Proceedings of the 2018 17th IEEE International Conference On Trust, Security
and Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science
and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1785–1790.

54. Kumar, S.V.; Vanajakshi, L. Short-term traffic flow prediction using seasonal ARIMA model with limited
input data. Eur. Transp. Res. Rev. 2015, 7, 21. [CrossRef]

55. Cole, L.J.; Frantz, C.J.; Lee, J.; Ordanic, Z.; Plank, L.K. Centralized Management in a Computer Network. U.S.
Patent US4995035A, 19 February 1991.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1057/palgrave.jors.2600823
http://dx.doi.org/10.1007/s12544-015-0170-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Edge Computing on IoT 
	Air Quality Monitoring System 
	Prediction Model 

	Materials and Methods 
	The Proposed System Architecture 
	Hardware 
	Raspberry Pi 
	Sensors 

	Kalman Filter Algorithm 

	Results 
	Basic Dynamic System Model 
	Kalman Filter Algorithm Implementation 
	Prediction 
	Correction 
	Setting Parameters 


	Discussion 
	Accuracy Improvement Analysis 
	Predictive Ability Analysis 
	Predictive Trend Comparison 
	Client Interface Design 

	Conclusions 
	References

