
applied  
sciences

Article

Landslide Prediction with Model Switching †

Darmawan Utomo , Shi-Feng Chen and Pao-Ann Hsiung *

Computer Science and Information Engineering, National Chung Cheng University, No. 168, Sec. 1,
University Rd., Minhsiung, Chiayi 62102, Taiwan; du88@yahoo.com (D.U.); vincet0809@gmail.com (S.-F.C.)
* Correspondence: pahsiung@cs.ccu.edu.tw; Tel.: +886-5272-0411
† This paper is an extended version of paper published in the 2017 IEEE Conference on Dependable and Secure

Computing, held in Taipei, Taiwan, 7–10 August 2017.

Received: 30 March 2019; Accepted: 28 April 2019; Published: 4 May 2019
����������
�������

Abstract: Landslides could cause huge damages to properties and severe loss of lives. Landslides
can be detected by analyzing the environmental data collected by wireless sensor networks (WSNs).
However, environmental data are usually complex and undergo rapid changes. Thus, if landslides
can be predicted, people can leave the hazardous areas earlier. A good prediction mechanism is, thus,
critical. Currently, a widely-used method is Artificial Neural Networks (ANNs), which give accurate
predictions and exhibit high learning ability. Through training, the ANN weight coefficients can be
made precise enough such that the network works in analogy to a human brain. However, when there
is an imbalanced distribution of data, an ANN will not be able to learn the pattern of the minority
class; that is, the class having very few data samples. As a result, the predictions could be inaccurate.
To overcome this shortcoming of ANNs, this work proposes a model switching strategy that can
choose between different predictors, according to environmental states. In addition, ANN-based error
models have also been designed to predict future errors from prediction models and to compensate
for these errors in the prediction phase. As a result, our proposed method can improve prediction
performance, and the landslide prediction system can give warnings, on average, 44.2 min prior to
the occurrence of a landslide.

Keywords: landslide prediction; machine learning; neural networks; model switching

1. Introduction

Landslides are natural disasters which can cause huge damage to properties and severe loss
of lives. Many studies have focused on how to detect and monitor landslides. Though landslide
detections could be performed in real-time, there might not be enough time to react, so as to save
human lives and properties. In order to minimize the losses caused by landslides, an early prediction
mechanism, with pre-warnings, is necessary. Once the system can give an alarm in advance, people
would have more response time to evacuate before the landslide occurs.

There are several problems in landslide prediction. First, just as in most safety-critical applications,
landslide prediction also exhibits the same data imbalance problem, where the class of stable data
has much more data than the class of unstable data. Stable data, here, refers to the normal conditions
(where there is no landslide), while unstable data represents landslide-related information. Second,
a low true-positive rate (TPR) problem is often found in safety-critical applications, because of the
interference in learning between two or more classes in the datasets. For example, learning from
the normal stable conditions often affects the learning from the unstable (landslide) conditions, thus
resulting in a low TPR. Third, predictive applications are often faced with the problem of determining
an appropriate prediction horizon; that is, the size of the time window of past history to be used for
predictions. Finally, real-time applications face the problem of determining when to re-train the models.
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To address the above-mentioned four problems existing in landslide prediction, this work provides
a total solution in the form of an early warning system, called the Model Switch-based Landslide
Prediction System (MoSLaPS). To address the data imbalance problem, we adapt the popular Adaptive
Synthetic Sampling (ADASYN) method [1] to landslide prediction. To address the low TPR problem,
we propose a novel event-class model switch predictor design that significantly improves TPR. To
address the problem of customizing the prediction horizon, we also propose a novel dynamic tuning
method for the prediction horizon, in order to achieve the goal of early warning. To address the
problem of determining model re-training time, we propose a novel learning-based re-training method,
based on an error model which considers both the long-term and short-term accumulated errors.
Errors are also predicted, so re-training can be done earlier in preparation for future data changes; as a
result of which, our proposed system can achieve the goal of early warning.

Section 2 introduces some related work. Section 3 presents the proposed model switching method.
Section 5 presents and analyzes the experimental results. In Section 6, the conclusions and future work
are described.

2. Related Work

Landslide prediction methods can be classified into three types: Image analysis, machine learning,
and mathematical evaluation models. Table 1 shows a comparison among these types of methods.
First, image analysis uses Geographic Information Systems (GIS), which can collect, store, manage,
and analyze geographical data. By analyzing disaster data, such as history of landslides and data
on land development for agriculture, the risk of landslides can be predicted. The probability of
landslides is variable, as it is based on the number of layers of data used for analysis. Second, machine
learning techniques, such as Bayesian networks [2], neural networks [3], or genetic algorithm [4],
use computational intelligence to calculate the probability of landslides. These methods incorporate
different factors that might cause landslides to evaluate the probability of landslide occurrence. They
are not real-time, because they require huge computational times for prediction. Finally, mathematical
evaluation models use a single evaluate equation, such as Factor of Safety (FS) [5]. A hazard model is
combined with the physical concepts of mechanics and hydrographic data for the stability of slopes.
It is easy for simulation and fits a wide range of environments, but it is difficult to obtain the whole
hydrographic data as groundwater elevation is difficult to measure.

Table 1. Comparison of Landslide Detection/Prediction Methods.

Types Methods Advantages Accuracies

Image Analysis Geographical Suitable for Accuracy based
Information System [4] Large Area on number of layers

Machine Learning Bayesian Network [2] Simple Network 75%
Neural Network [3] Simple Network 67%

Genetic Algorithm [4] Optimal Solution 90%
Mathematical Evaluation SHALSTAB * [6] High Accuracy >90%

* Shallow Landsliding Stability Model.

Landslides occur when the down-slope shear stress is large. As shown in Equation (1) [5], the
Factor of Safety (FS) refers to the stability of the soils. It takes physical properties, including rainfall,
slope, and soil properties, into consideration. It can easily predict landslides with the trend of each
parameter. Therefore, to predict landslides, a FS equation is matched with these attributes. Three
regions of the FS value, based on the SHALSTAB model [6], are defined to distinguish between the
dangerous levels of a slope, as shown in Table 2. The Stable Region is classified as the stable class and
the Marginally Stable and Actively Unstable Regions are classified as the unstable class. Based on the
classes, different training samples are used to train multiple neural network predictors.
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with

• C: The effective coefficient (kPa);
• R: The rainfall intensity (mm/hr);
• T: The soil transmissivity (mm/hr);
• Z: The soil depth (m);
• ρw: The density of water (kg/m2);
• ρs: The density of soil (kg/m2);
• φ: The internal friction angle of the slope material (degree);
• θ: The slope gradient (degree); and
• α: The specific contributing area [5].

Table 2. Classification of Factor of Safety (FS) Levels.

Stable Region FS ≥ 1.3

Marginally Stable Region 1.3 > FS ≥ 1

Actively Unstable Region FS<1

Of particular mention is the work done by Lian et al. [7,8] on landslide displacement prediction
using Prediction Intervals (PIs) and an ANN switched prediction method. The authors employed
K-means clustering for dividing the landslide data into two classes; namely, a majority class (stationary
points) and a minority class (mutational points). Then, a weighted Extreme Learning Machine (ELM)
classifier was used to construct the switch rules. Finally, bootstrap and kernel-based ELMs were
applied to construct the PIs. This work was concerned with how the displacements are predicted
accurately and early. In contrast, our work is focused on how landslides can be actually predicted
accurately and early. Not only is the goal different, the methods or techniques used or proposed are
also quite different. We employ a very popular mathematical estimation model for landslide prediction,
as defined above (namely, the SHALSTAB model and the factor of safety). We use ANN models for the
model switching, as well as for the predictions. We adapt ADASYN for resolving the data imbalance
problem. We also propose novel methods for model retraining and prediction horizon tuning. Details
are given in the next section.

3. Model Switched Landslide Prediction System

A total solution for landslide prediction with early warnings is proposed in this work. The design
of the proposed Model Switched Landslide Prediction System (MoSLaPS) is shown in Figure 1.
It consists of two parts; namely, Physical Entities and Computation Elements. In the Physical
Entities, environmental data, such as rainfall, soil moisture, and slope, are collected by sensor nodes.
Coordinator nodes integrate the sensed data and transmit them to the Computation Elements through
Zigbee transmitters. The Computation Elements consists of a SHALSTAB Model, a Switch-based
Prediction Model, and an Accurate Early Warning System, as described in the following.
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Figure 1. Model switched landslide prediction system architecture.

• SHALSTAB Model
The SHALSTAB model takes the sensed environmental data, including rainfall, soil moisture, and
slope, from the Physical Entities and evaluates the Factor of Safety, using Equation (1). Over time,
the FS values are recorded as FSactual = {FS0, FS1, ..., FSt}, which is the input to the Accurate
Early Warning System to predict the occurrence of landslides.

• Switch-based Prediction Model
From historical environmental data, the proposed system consists of two prediction models to
learn two different data patterns; namely, the stable pattern and the unstable pattern. To switch
between the different prediction models, a neural network classifier is designed to predict the
future class. The Switch-based Prediction Model can improve the prediction accuracy when the
neural network classifier switches the prediction models accurately. The detailed technique is
described in Section 3.3.

• Accurate Early Warning System
The accurate early warning system consists of a data analysis server and alert services.
The data analysis server uses the above-described switch-based prediction model to predict
landslides. The input data, FSactual , is used to predict future FS values, denoted as FSpredict =

{FSt+1, FSt+2, ..., FSt+n}. For each predicted FS value, there is a difference between the predicted
FS and the actual FS calculated using Equation (1). This difference is called prediction error. The
data analysis server will assess the applicability of the prediction model, according to the trend of
prediction errors. If the error exceeds a pre-defined threshold, it means the prediction model is
not suitable for the environment at that time and the predicted results have large prediction errors.
Thus, based on the error measurement and a given error tolerance threshold, the prediction model
is re-trained. The entire process will be described in Section 4. If a predicted FS value, FSt+k, is
smaller than 1, then it is estimated that a landslide will occur after k time slots [9]. Thus, alert
services can send an alert in advance.

The details of the prediction models, model switching, and early warning system will be
introduced in the rest of this section.
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3.1. Prediction Model Design

To predict the future FS, a feed-forward Back-Propagation Neural Network (BPNN) is employed
as the prediction model. A BPNN is a powerful computation system, created by generalizing the
Widrow-Hoff learning rules [10] into a multi-layer with a non-linear differential transfer function
network. The complex network connections imply that the high learning and reasoning ability of
BPNN can be applied to deal with problems with high complexity. Figure 2 shows the framework of a
BPNN-based prediction model.

Start

Reading Input Set

Setting hidden layer number of cells:

Random Initialization: weights

Compute the output network error:

Calculate adjustment weights 

Adjust updated weights

Training error
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Training output
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Figure 2. Back-Propagation Neural Network (BPNN) prediction model framework design.

Training Method for Time-Series Based BPNN

The basic computational procedure of a BPNN is explained to provide a basic description of the
type of ANN that is implemented here. Figure 3 shows the basic structure of a time-series based BPNN.
There are three types of layers: input, hidden, and output layers. In the input layer, time-series input
for time slots t− n to t, corresponding to a specific feature, such as factor of safety, rainfall, and soil
moisture, is taken as input data. Each pair of nodes in the adjacent layers are linked by a weight. The
values in all nodes in a previous layer and the weights are multiplied and accumulated as the input for
a node of the next layer. The inputs are, then, given to an activation function to calculate the output
value of the node. Repeating the above operations, layer by layer, from input layer to output layer, the
final output can be derived.
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Figure 3. A fully connected feed-forward Back-Propagation Neural Network with time-series.

Algorithm 1 has a complete description as a prediction model; the following equations explain
the functions that are used in this algorithm. At first, the previous FS is used to predict the future FS
by a BPNN model. To dynamically determine suitable weights for different FS, a back-propagation
method is applied to train and update the weights before prediction, in order to completely illustrate
the details of back propagation method. Given the training sample, Tdata = (xi, pi), i = 1, ..., N, where
xi = [xi1, xi2, ...xin] ∈ Rn is the impact factor and pi = [pi1, pi2, ...pik] ∈ Rk is the training target, the
general mathematical model of a standard single hidden layer feed-forward network with Ñ hidden
neurons is shown in Equation (2).

oj =
Ñ

∑
i=1

g(wi · xi), j = 1, ..., N, (2)

where oj = [oj1, oj2, ...ojk] is the jth output of the BPNN, wi is the weight of the connection from the
input neurons to the ith hidden neuron, and g(x) is an activation function that represents how much
adjustment the output should be from the neuron, based on the sum of the input. The activation
function used in our BPNN model is depicted in Equation (3); namely, the sigmoid function. The
sigmoid function, also called the logistic function, is a commonly-used activation function which has
an output range from 0 to 1.

g(x) =
1

1 + e−x . (3)

The difference between the prediction result and the actual result is called the prediction error. In
order to reduce prediction error, the weights need to be updated. The Levenberg-Marquardt (LMA) [11]
method has the fastest convergence and the lowest mean square error. Therefore, LMA is selected as a
training function to calculate the output network error δ and adjustment weight W. It is depicted in
Equation (4):

Wk+1 = Wk − [JT J + uI]−1 JTδ, (4)

where Wk represents the weight matrix in the kth iteration, J is the Jacobian matrix [12] that contains
the network error for weight and the first-order differential of weight, I is the unit matrix, δ is the
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network output error, and u is a constant. LMA can dynamically adjust the constant u to reduce the
network output error δ.

Algorithm 1: Prediction Model Algorithm.
Input:
Tdata: Data of FS values used for training BPNN;
Pinput: Inputs of FS values for prediction;
Ethreshold: Training error threshold;
Output:
Poutput: Prediction output of FS values;
Variable:
W: Weights of BPNN;
E: Training error between training outputs and target;
δ: Error value for adjusting weights;
csat: 1: Training cycle is complete, 0: Training cycle is incomplete;

1 Set hidden layer number of cells N̂ ; // Equation (6)
2 Set the maximum iteration number for training Epochs;
3 Randomly initialize weight W;
// Training model

4 i = 0;
5 while (E > Ethreshold)&&(i <= Epochs) do
6 csat = 0;
7 while csat = 0 do
8 CalculateBPNN(Tdata, W) ; // Equations (2) and (3)
9 Calculate output network error δ ; // Equation (4)

10 Calculate adjustment weight W ; // Equation (4)
11 if all samples are trained then
12 csat = 1;

13 Calculate training error E ; // Equation (5)
14 i ++;

// Do prediction
15 Poutput = CalculateBPNN(Pinput, W);
16 return Poutput;

After the training phase, the training error E is calculated by Equation (5), to determine whether
the training step has reached convergence. If it is not less than the training error threshold, Ethreshold,
the training phase is restarted.

E =
1
N

N

∑
i=1

(Ti −Oi)
2, (5)

where:

• Ti: Target FS value of training sample i;
• Oi: BPNN output FS value of training sample i; and
• N: Number of training samples.

Considering the training time in our proposed re-training process, the number of outputs,
Numoutput, is set to 1 to avoid a long training time. This means that only one prediction result
per iteration will be obtained, by taking the past FS value as input.

The number of neurons in the hidden layer, denoted as Numneuron, is determined based on the
following experience rule [13]:
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• The number of neurons in the first hidden layer is calculated using (6):

Numneuron =
√

Numinput ∗ Numoutput. (6)

3.2. Imbalanced-Class Prediction Design

Class balance enhancements are needed to handle training samples with an unbalanced class
distribution [14]. The Adaptive Synthetic Sampling (ADASYN) method [1] is used here for balancing
the imbalanced data (i.e., data is pre-processed using ADASYN), and then the processed dataset are
used to train the event-class predictor, which is also a BPNN model. In the following, the ADASYN
algorithm is described as follows.

Data Pre-Processing Using ADASYN Algorithm

The ADASYN algorithm can improve the data imbalance problem by synthetically creating new
samples from the unstable class by linear interpolation between existing unstable class samples. This
approach, by itself, is known as the Synthetic Minority Over-sampling Technique (SMOTE) method [15].
ADASYN is an extension of SMOTE, creating more samples in the vicinity of the boundary between
the two classes than in the interior of the unstable class.

To create more synthetic data for the unstable class, FS, rainfall, and soil moisture are used as the
training data and the corresponding class label, yi, is constructed according the classification region.
Given the training samples (Xi, yi), i = 1, ..., N, where Xi =< xi, f s, xi,r, xi,sm, xi,slope >∈ Rn, xi, f s is the
FS value, xi,r is the rainfall, xi,sm is the soil moisture, xi,slope is the slope gradient, and yi is the class
label. The training samples, Xi, are classified by Equation (7). For xi, f s ≥ 1.3, xi classifies as stable class.
On the other hand, if xi, f s < 1.3, then xi classifies as unstable class. After Xi is classified, the class label,
yi, is set by Equation (8). If Xi ∈ StableClass, yi is set as 0. If Xi ∈ UnstableClass, yi is set as 1.{

if xi, f s ≥ 1.3, Xi ∈ Stable Class

if xi, f s < 1.3, Xi ∈ Unstable Class
, (7)

yi =

{
0 if Xi ∈ Stable Class

1 if Xi ∈ Unstable Class
. (8)

To adjust class balance, the degree of class imbalance is needed to be calculated by Equation (9):

d = Nm/Ns, (9)

where

• Nm: The size of unstable class examples; and
• Ns: The size of stable class examples.

Furthermore, the default level, dde f ault, which is the threshold for the level of maximum class
imbalance tolerated, also needs to be determined beforehand. If the current d is smaller than the
threshold degree, dde f ault, then the number of synthetic data samples that need to be generated for the
unstable class is calculated using Equation (10):

R = (Ns − Nm)× β, (10)

where β ∈ [0, 1] is a parameter used to specify the desired balance level after generation of the synthetic
data: β = 1 means a fully balanced data set is created after the generalization process.

For each Xi ∈ Unstable Class, K nearest neighbours can be found by using the Euclidean distance.
The ratio ri, defined in Equation (11), which represents the number of stable-classified in the K nearest
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neighbours, and its normal form, r̂i, defined in Equation (12), are calculated, where r̂i is called a density
distribution of ri, (∑

i
r̂i = 1).

ri = hi/K, i = 1, ..., Nm, (11)

r̂i = ri/
Nm

∑
i=1

ri, (12)

where hi is the number of samples in the K nearest neighbours of xi that belong to the stable class;
therefore, ri ∈ [0, 1].

Thus, the number of synthetic data samples that need to be generated for each unstable class
sample, Xunstable, can be calculated by Equation (13).

gi = r̂i × R, (13)

where R is the total number of synthetic data samples that need to be generated for the unstable class,
as defined in Equation (10).

By random, the program chooses one unstable data sample, Xzi, from the K nearest neighbours
for Xunstable to generate new synthetic samples, sdnew, by Equation (14). This procedure is repeated gi
times to produce new synthetic samples.

sdnew = Xunstable + (Xzi − Xunstable)× λ, (14)

where

• (Xzi − Xunstable): The difference vector; and
• λ: A random number λ ∈ [0, 1].

3.3. Switch-Based Prediction Model Design

To address the issue of imbalanced data between the unstable and stable classes, a switch-based
neural network prediction algorithm is proposed, as detailed in Algorithm 2.

The environmental factors, including rainfall, soil moisture, and slope gradient, are used to
calculate the FS values, xi, f s, using the SHALSTAB model. Given the environmental samples
Dlandslide = {xi}, where xi =< xi,r, xi,sm, xi,slope >, xi,r is the rainfall, xi,sm is the soil moisture, and
xi,slope is the slope gradient, the FS values, xi, f s, are calculated given the set of all training samples,
Tsample, where Tsample = {Xi|Xi =< xi, f s, xi,r, xi,sm, xi,slope >}. Then, the corresponding class labels yi,
Tclass = {Xi, yi}, can be constructed and classified by Equations (7) and (8). To construct the BPNN
models for different data patterns, the calculated FS need to be classified in two subsets, as follows:

Tclass1 = {xi, f s|xi, f s ∈ Xi, xi, f s ∈ Stable Class}, (15)

Tclass2 = {xi, f s|xi, f s ∈ Xi, xi, f s ∈ Unstable Class}, (16)

where Tclass1 is the set of FS values for xi, f s, in Xi ∈ StableClass, and Tclass2 is the set of FS values for
xi, f s, in Xi ∈ UnstableClass; so that Tclass1

⋂
Tclass2 = φ and Tclass1

⋃
Tclass2 = xi, f s.
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Algorithm 2: Switch-based Neural Networks Prediction Algorithm.
Input:
Dlandslide: {xi|xi =< xi,r, xi,sm, xi,slope >};
Ptest: {xt|xt =< xt, f s, xt,r, xt,sm, xt,slope, yt >} for prediction;
Output:
Poutput: {FSpredict};
Variable:
Tsample: {Xi|Xi =< xi, f s, xi,r, xi,sm, xi,slope >};
Tclass: {< yi, xi, f s, xi,r, xi,sm, xi,slope >};
Tclass1: {xi, f s|yi = 0};
Tclass2: {xi, f s|yi = 1};
TADASYN : {< xnew, f s, xnew,r, xnew,sm, xnew,slope, yi = 1 >};
Pclass: {ypredict};

// SHALSTAB model
1 Tsample = calculateSHALSTAB(Dlandslide); // Equation (1)
// Classification

2 [Tclass, Tclass1, Tclass2] = calculateClass(Tsample) ; // Equations (7) and (8)
// Data pre-processing

3 TADASYN = calculateADASYN(Tclass) ; // Equation (14)
// Construct each prediction model

4 Feed− Forward BPNNStable ← PredictionModel(Tclass1);
5 Feed− Forward BPNNUnstable ← PredictionModel(Tclass2);
6 Event− class predictor ← PredictionModel(Tclass + TADASYN);
// Model switch

7 Pclass = Event− class predictor(Ptest);
8 if Pclass == Stable then

// Prediction class is stable
9 Poutput = Feed− Forward BPNNStable(Ptest)

10 else
// Prediction class is unstable

11 Poutput = Feed− Forward BPNNUnstable(Ptest)

12 return Poutput;

Here, the ADASYN algorithm is used to produce new synthetic samples for the unstable class,
in order to balance the sizes of the two classes. The processed dataset, TADASYN , is used to predict
the future class using a BPNN model. The event-class predictor can switch between the different
models, according to the predicted class. As shown in Figure 4, the steps of the event-class predictor
are as follows.

First, Tclass is selected to construct the synthetic dataset TADASYN = {< sdnew, ynew >} for
balancing class distribution by the ADASYN algorithm, where sdnew are the new synthetic samples,
sdnew =< xnew, f s, xnew,r, xnew,sm, xnew,slope >, and ynew = 1 represents that the synthetic class label is
unstable class. The synthetic sdnew include xnew, f s, the new synthetic FS value; xnew,r, the new synthetic
rainfall; xnew,sm, the new synthetic soil moisture; and xnew,slope, the new synthetic slope gradient.
Both of the classes Tclass and TADASYN are integrated into the training set of the event-class predictor.
Second, the event-class predictor is constructed using the BPNN model. Finally, the event-class
predictor is used to predict the future class label, Pclass ∈ {0, 1}, for the testing phase, where Pclass = 0
represents that the prediction class label is stable and Pclass = 1 represents that the prediction class
label is unstable.
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Figure 4. Flow of constructing the event-class predictor.

The aim of our proposed method is to construct different pattern predictors, as shown in Figure 5.
The steps of different pattern predictors are as follows. First, Tclass1 is used as training data to
train a BPNN model. After training, the BPNN model is the stable pattern of xi, f s (i.e., Feed −
Forward BPNNStable). On the other side, Tclass2 is applied as training data to train another BPNN model.
After training, the BPNN model is the unstable pattern of xi, f s (i.e., Feed− Forward BPNNUnstable).
Thus, two BPNNs are built to deal with different patterns. As shown in Figure 6, this procedure
can switch different pattern predictors, according to the predicted class, Pclass, that is obtained by
the event-class predictor. When Pclass = 0, the testing data, Ptest = {xt}, is applied to predict the
future FS using Feed − Forward BPNNStable, where xt =< xt, f s, xt,r, xt,sm, xt,slope, yt >, xt, f s is the
testing data of the FS value, xt,r is the testing data of the rainfall, xt,sm is the testing data of the soil
moisture, xt,slope is the testing data of the slope gradient, and yt is the testing data of the corresponding
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class label. On the other side, when Pclass = 1, Ptest is employed to predict the future FS using
Feed − Forward BPNNUnstable. Finally, the predicted FS, Poutput = {FSpredict}, can be obtained by
using the proposed Switch-based Prediction Model.

Classify the training data 

as and 

Calculate the FS values,

Construct the 

corresponding class 

label, 

Start

If training 

data = 

Training the BPNN model, Training the BPNN model,

End

Yes No

Environment 

data, 

Training samples, 

Figure 5. Flow of constructing different pattern predictors.

The main contribution of this work is that the proposed method can make highly accurate
predictions, even in the case of highly imbalanced data. Two techniques were employed, ADASYN
and an event-class predictor.



Appl. Sci. 2019, 9, 1839 13 of 24

Start

Event-class predictor

If 
Yes No

Prediction input 

data, 

Prediction input 

data, 

Calculate prediction 

FS

Prediction FS, 

End

Figure 6. Flow of the switching strategy.

4. Accurate Early Warning System Design

To ensure the switch-based neural networks prediction model can be precise in a changing
environment, an accurate early warning system is designed, as shown in Figure 7. It is divided into
two parts: A learning-based re-training flow, as described in Section 4.1, and a Prediction Horizon
tuning flow, as shown in Section 4.2.

4.1. Learning-Based Re-Training Flow

Figure 8 shows the flow of learning-based re-training. The determination of ret-raining is based on
the error estimation. The error estimation process calculates the average error of all (FSactual , FSpredict)
pairs in an error-estimation window (EEW). For each period of the EEW, this procedure compares the
average error, AVGE, of two error estimation windows, EEWnow and EEWprev, and the accumulated
error, ACCE, to check the two conditions for re-training. Equations (17) and (18) give the two conditions
under which the prediction model needs to be re-trained, where CIE is the coefficient of interval error
used to specify the short-term tolerable error range, which is equal to the size of the prediction horizon
in our work. If the difference of AVGE between two continuous EEW is too large, the prediction model
will be re-trained, due to the high variability of the input pattern that the original prediction model
could not predict. Here, CAE is the coefficient of accumulated error used to specify the long-term



Appl. Sci. 2019, 9, 1839 14 of 24

tolerable error range (here, long-term means since epoch). If the ACCE, compared to average error
of the prediction model, AVGEModel , is too large, the prediction model will also be re-trained, as the
prediction results are becoming inaccurate. This further implies that the environment is changing
with time, and that adaptation is needed. AVGEnow and ACCEnow are calculated using Equations (19)
and (20), respectively.

AVGEnow > CIE × AVGEprev, (17)

ACCEnow > CAE × AVGEModel , (18)

AVGEnow =
∑ |FSactual − FSpredict|

SIZEEEW
, (19)

ACCEnow = ACCEprev + ∆AVGE

= ACCEprev +
(

AVGEnow − AVGEprev
). (20)

Data
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Estimation

Prediction Horizon (PH) Tuning

Learning –based retraining flow
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Figure 7. Overall Flowchart of Prediction Model Analysis.
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Figure 8. Learning-based re-training flow.

4.2. Prediction Horizon Tuning

In the re-training flow, the error estimation results are utilized further to tune the prediction
horizon. The advantages of a variable-length prediction horizon (PH) are as follows:

• The occurrence of landslides can be predicted earlier; and
• The number of false predictions can be reduced.

The prediction horizon tuning flow is shown in Figure 9. Prediction errors are non-linear, and
the prediction model is applied (as described in Section 3.1) in order to learn the inherent pattern for
predicting future errors, ERRpredcit. In this way, the size of the PH is set to predict the occurrence of
landslides earlier. Then, the future target ranges, Pf uture, can be determined by Equation (21). If the
range of Pf uture < 1, this system can send alerts in advance.

FSpredict − |ERRpredict| ≤ Pf uture ≤ FSpredict + |ERRpredict|. (21)

To decide whether the size of the PH is tuned, error boundary estimation is needed. As the
program already has the predicted error, ERRpredict, and the predicted FS, FSpredict, then the predicted
lower bound, Boundlow, can be estimated by Equation (22). According to the estimated results, the
tuning is performed based on the following rules:

• If there is no Boundlow lower than the lower bound of Stable Class (i.e., 1.3), for every time point
in the prediction horizon, the size of the prediction horizon is increased by 1; and

• If there exists one Boundlow lower than the lower bound of Stable Class (i.e., 1.3), for every time
point in the prediction horizon, the size of prediction horizon is reset to the default value.

Boundlow = FSpredcit − |ERRpredict|. (22)

Based on the above rules, we make our method a little more flexible for the landslide prediction
scenario with variable-length prediction horizon.
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SHALSTAB Model

Error based BPNN Prediction

FS Prediction Boundary Estimation

Prediction Horizon (PH) Tuning

Switched based Prediction Model

Figure 9. Prediction horizon tuning.

5. Experiments

In this section, evaluations of the proposed method for landslide prediction are presented. First,
the experimental datasets used for the experiments are introduced. Then, the experimental results
are illustrated. All experiments were carried out using the MATLAB R© programming language on

a PC with an Intel R© Core
TM

i7-3770 CPU @ 3.40GHz and 16 GB RAM, running the Windows R© 10
(64-bit) OS.

5.1. Experimental Datasets

Historical environmental monitoring datasets from the Shen-Mu station [16] were selected as a
case study. Landslides are mainly influenced by rainfall and soil moisture. Using the FS, the occurrence
of a landslide is estimated. The monitoring dataset of the Shen-Mu station is shown in Figures 10
and 11. Figures 10 and 11 show the relationships between rainfall and FS, and between soil moisture
and FS, respectively. When rainfall and/or soil moisture increase, the FS decreases and the slope
becomes unstable.
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Figure 11. Monitoring curves of Factor of Safety and soil moisture at Shen-Mu station.

In the Shen-Mu datasets [16], data was recorded once per 10 min, and was collected in 2016. The
program randomly selected 10 sets of samples, where each set had 1300 samples. Each dataset was
further divided into two parts, the training set (75%) and the test set (25%). Note that the original data
were used as input; that is, they were not normalized, because we needed to calculate the FS according
to the SHALTAB model, as given in Equation (1).

Firstly, an evaluation of imbalanced-class prediction is described. Then, it is shown how the
prediction accuracy is increased due to the proposed MoSLaPS.

5.2. Evaluation of Event-Class Prediction

ADASYN [1] was applied for data pre-processing in this program. It synthetically created new
samples from the unstable class to balance the distribution of the data, if required. In the ADASYN
algorithm, the desired level of balance, β, could be adjusted to control the number of new synthetic
samples, which were needed when 0 ≤ β ≤ 1.

Our event-class predictor used ADASYN [1] for imbalanced data processing. After data
pre-processing, the processed dataset was used to train the event-class predictor (i.e., a BPNN model).
To evaluate the event-class predictor, several performance indicators were applied and defined,
as follows:

• True Positive Rate (TPR) is defined as in Equation (23);
• False Positive Rate (FPR) is defined as in Equation (24); and
• Accuracy (ACC) is defined as in Equation (25).

If the prediction class was unstable and the actual class was also unstable, then the result was
said to be a True Positive (TP). If the prediction class was stable and the actual class Was also stable,
then the result was said to be a True Negative (TN). If the prediction class was unstable and the actual
class was stable, then the result was said to be a False Positive (FP). If the prediction class was stable
and the actual class was unstable, then the result was said to be a False Negative (FN). Table 3 shows
the classification of the above four different categories.

TPR =
TP

TP + FN
× 100%, (23)

FPR =
FP

FP + TN
× 100%, (24)

ACC =
TP + TN

TP + FN + FP + TN
× 100%. (25)
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Table 3. Confusion matrix.

Actual Class

Unstable Stable

Prediction Class Unstable True Positive False Positive
Stable False Negative True Negative

In our experiment, Figure 12 shows the evaluation results of the ADASYN algorithm for different
β levels. When β was greater than 0.45, the TPR was more than 0.98. Therefore, the balance coefficient
β = 0.45 was selected. Table 4 shows the number of new synthetic samples. Majority represents the
size of the stable class and Minority represents the size of the unstable class.
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Figure 12. The evaluation result of the ADASYN algorithm for different values of the coefficient β.

Table 4. Number of synthetic new samples generated by the ADASYN algorithm (β = 0.45).

All Dataset Majority Minority ADASYN

1300 1280 20 449
1300 1199 101 389
1300 1222 78 424
1300 1181 119 374
1300 1199 101 420
1300 1291 9 464
1300 1227 73 414
1300 1224 76 408
1300 1056 244 299
1300 1140 160 341

The evaluation results of the event-class predictor are shown in Table 5. There were 10 sets of
testing samples. The average ACC was 97.94%, the average TPR was 98.40%, and the average FPR was
2.01%. Due to the high accuracy of event-class predictor, it can be used to choose a decision to switch
between the models of different data patterns.
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Table 5. The evaluation results of the event-class predictor.

No. ACC TPR FPR TP FP TN FN

1 96.43% 100.00% 3.60% 2 9 241 0
2 97.62% 94.44% 2.14% 17 5 229 1
3 98.41% 95.45% 1.30% 21 3 227 1
4 98.41% 100.00% 1.64% 8 4 240 0
5 96.03% 100.00% 3.98% 1 10 241 0
6 100.00% 100.00% 0.00% 16 0 236 0
7 96.03% 100.00% 4.03% 4 10 238 0
8 99.21% 100.00% 0.83% 12 2 238 0
9 98.41% 100.00% 1.68% 14 4 234 0
10 98.81% 94.12% 0.85% 16 2 233 1

Average 97.94% 98.40% 2.01%

Table 6 shows comparisons of the event-class predictor with other common classifiers, such as
BPNN, Support Vector Machine (SVM), and Adaboost. The ACC of all classifiers were greater than 90%.
A good classifier needs to have high TPR and low FPR. Although the FPR of our classifier, compared
with BPNN and Adaboost, was a little higher, the TPR of our proposed classifier was much higher
than that of the others. This means that our classifier exhibited a higher ratio of correct classification.

Table 6. Comparison of event-class predictor with other common classifiers.

Method ACC TPR FPR

Event-Class 97.94% 98.40% 2.01%
BPNN 97.16% 57% 0.42%
SVM 90.42% 78.06% 9.02%

Adaboost 98.27% 75.1% 0.96%

5.3. Evaluation of Model Switched Landslide Prediction System

In the following experiments, the same datasets as used in Section 5.1 were employed to evaluate
our landslide prediction model. To evaluate the proposed MoSLaPS model, several performance
indicators were used and defined as follows:

• Mean Absolute Percent Error (MAPE) is defined as in Equation (26), where n is the number of
predicted data, At is the actual value, and Pt is the predicted value.

MAPE =
1
n

n

∑
t=1

|At − Pt|
Pt

. (26)

• Root Mean Squared Error (RMSE) is defined as in Equation (27), where n is the number of
predicted data samples, yi is the actual FS value, and ŷi is the predicted FS value.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (27)

• Normalized Root Mean Squared Error (NRMSE) is defined as in Equation (28), where ȳ is the
mean of the actual values.

NRMSE =
RMSE

ȳ
. (28)

Figure 13 shows the actual FS and predicted FS for every 10 min. A BPNN prediction model is
not able to learn the pattern of unstable class, as the size of the unstable class is much smaller than
that of the stable class. If the original past data were used, the BPNN was not able to predict landslide
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occurrences. However, after processing the training data using the ADASYN algorithm to re-balance
the distribution of classes, a single BPNN prediction model was still not able to learn the pattern of
unstable class perfectly. This is because the data of the stable and unstable classes affected each other.
As a solution, two BPNN prediction models Were proposed, one to learn the pattern of the stable
class and another to learn the pattern of the unstable class. To switch between two BPNN models, an
event-class predictor was constructed that can deal with imbalanced data distribution to predict the
future class as a decision. Therefore, our proposed MoSLaPS method could learn the patterns of both
the stable and unstable classes.
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Figure 13. Comparison of the proposed method with other BPNN methods.

We compared our proposed MoSLaPS method with the above-mentioned methods, including
a single BPNN and ADASYN+BPNN. A single BPNN was described, in detail, in Section 3.1; and
ADASYN+BPNN use the ADASYN algorithm to re-balance the training data. After re-balancing, the
processed training data were applied to train the BPNN.
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The error metrics were evaluated for MoSLaPS, ADASYN+BPNN, and BPNN. Compared with
BPNN and ADASYN + BPNN, our method resulted in much smaller MAPE and RMSE. This means
that the prediction accuracy of our method was higher. The NRMSE of our method was also larger
than that of the others, which means that our prediction results were closer to the real situation.

Although MoSLaPS was more accurate than the other methods, it requires a little more
computation time and resources. As shown in Table 7, the simulation results of the different methods
shows that the speed of MoSLaPS was a little slower than that of BPNN and ADASYN+BPNN,
and its CPU and memory usages were higher than the others. This is because MoSLaPS took extra
computational time and resources to deal with the imbalanced data classification and switching
between the different predictors. In our experiment, the time interval was 10 mins; so there was ample
time to deal with the process.

Table 7. Comparisons of time consumption and resource usage.

Method Time (s) CPU Usage Memory

MoSLaPS 1.205 23.90% 972 kb
ADASYN+BPNN 0.739 20.30% 192 kb

BPNN 0.639 19.90% 148 kb

5.4. Evaluation of Landslide Pre-Alarm

The same datasets as in Section 5.1 were applied to evaluate our landslide pre-alarm method.
Table 8 shows the prediction time (PT) for ten different experiments. For each experiment, the minimum
PT, maximum PT, and average PT were recorded. From Table 8, the program was able to observe that
the prediction time for dataset ]5 was the longest (52.2 min); while that for dataset ]10 was the shortest
(38.4 min). As a shorter prediction time indicates that the change of FS is intense and quick, dataset ]10
represented a higher probability of landslide occurrence. Taking the average of all timings, it can be
seen that the proposed MoSLaPS method could warn of the occurrence of a landslide an average of
44.2 min in advance.

Table 8. Prediction time in advance for different datasets.

No. Min. PT (min) Max. PT (min) Avg. PT (min)

1 10 80 40
2 10 70 33.3
3 10 50 35.7
4 20 80 47.6
5 10 80 52.2
6 10 80 51.8
7 10 80 42.6
8 10 70 45.7
9 10 80 43.3

10 10 80 38.4

Avg. 10.7 76.4 44.2

Further, we take a best-case example, to demonstrate how the proposed method can warn of
landslide occurrence far in advance. At time point 255, the 8th prediction result is FS < 1; that is, a
landslide will occur after eight time units, as shown in Figure 14. In our experiments, the interval
between two time points is 10 min. Hence, the landslide occurrence could be predicted and warned
about 80 min in advance.
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Figure 14. Landslide early warning time point.

6. Conclusions

To address the problems of imbalanced data, low true positive rate for learning, determining
the prediction horizon, and the time for model re-training, MoSLaPS has been proposed as a novel
method for landslide prediction. MoSLaPS employs the ADASYN method to balance the stable class
(no landslide) with the unstable class (landslide), where the classification is based on the factor of safety
calculated using the SHALSTAB model. To solve the problem of low true positive rate, a BPNN-based
event-class predictor was proposed and two BPNN predictors were designed to learn the stable class
pattern and the unstable class pattern. A novel prediction horizon tuning method was proposed, along
with a learning-based model re-training technique. All of these optimizations contribute towards the
goal of the proposed MoSLaPS; that is, accurate early warning of landslides.

Compared with BPNN and Adaboost, though our event-class predictor has a higher FPR, it also
has a much higher TPR of 98.40%. This means our classifier has a higher ratio of correct classification.
According to the predicted class, our system can switch between different predictors to adapt to the
environmental state. In addition, BPNN is employed to construct the error model to predict the future
errors of our proposed MoSLaPS and compensate for these errors in the prediction phase. As a result,
MoSLaPS has much lower MAPE and RMSE than BPNN and ADASYN+BPNN, which means that
MoSLaPS is more accurate. In addition, the NRMSE of our method is larger than the NRMSE of
the other methods, which means that our method is closer to the actual conditions. Statistically, our
landslide prediction system could send warnings an average of 44.2 min prior to the actual occurrence
of a landslide.

In the future, we will further consider other advanced imbalanced learning algorithms to improve
the performance of BPNN-based event-class predictors. For different applications, a larger number
of categories (cases) can be considered for model switching. The maximum range of errors allowed
in the re-training phase can also be limited, so that prediction models are more stable. As a result,
the model switching strategy will be more accurate. Moreover, well-known time-series deep learning
technologies, such as Recurrent Neural Networks (RNNs) or Long-Short Term Memory (LSTM) blocks,
will be used to combine all three BPNN models into one.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
WSN Wireless Sensor Network
FS Factor of Safety
MoSLaPS Model Switched Landslide Prediction System
LMA Levenberg–Marquardt algorithm
ADASYN Adaptive Synthetic Sampling
SMOTE Synthetic Minority Oversampling Technique
EEW Error Estimation Window
PH Prediction Horizon
TPR True Positive Rate
FPR False Positive Rate
ACC Accuracy
TP True Positive
TN True Negative
FP False Positive
FN False Negative
MAPE Mean Absolute Percentage Error
RMSE Root Mean Squared Error
NRMSE Normalized Root Mean Squared Error
PT Prediction Time
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