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Abstract: Rapid and nondestructive determination of quality attributes in fresh and dry
Chrysanthemum morifolium is of great importance for quality sorting and monitoring during harvest
and trade. Near-infrared hyperspectral imaging covering the spectral range of 874–1734 nm was
used to detect chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid content in
Chrysanthemum morifolium. Fresh and dry Chrysanthemum morifolium flowers were studied for harvest
and trade. Pixelwise spectra were preprocessed by wavelet transform (WT) and area normalization,
and calculated as average spectrum. Successive projections algorithm (SPA) was used to select optimal
wavelengths. Partial least squares (PLS), extreme learning machine (ELM), and least-squares support
vector machine (LS-SVM) were used to build calibration models based on full spectra and optimal
wavelengths. Calibration models of fresh and dry flowers obtained good results. Calibration models
for chlorogenic acid in fresh flowers obtained best performances, with coefficient of determination (R2)
over 0.85 and residual predictive deviation (RPD) over 2.50. Visualization maps of chlorogenic acid,
luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid in single fresh and dry flowers were obtained.
The overall results showed that hyperspectral imaging was feasible to determine chlorogenic acid,
luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid. Much more work should be done in the
future to improve the prediction performance.

Keywords: near-infrared hyperspectral imaging; chlorogenic acid; luteolin-7-O-glucoside;
3,5-O-dicaffeoylquinic acid; Chrysanthemum morifolium; prediction maps

1. Introduction

Flowers used as tea sources have lasted for centuries due to their unique taste and aroma.
Chrysanthemum tea is one of the mostly consumed flower teas, with a large family of Chrysanthemum
species. Chrysanthemum morifolium (namely Hangbaiju in China) is one of the Chrysanthemum teas with
good fame. Chrysanthemum morifolium planted in Tongxiang (Zhejiang Province, China) is one of the
China Protected Geographical Indication Products with high commercial value. Despite its unique
taste and aroma, Chrysanthemum morifolium also has medical benefit such as antipyretic and sedative
effects, reducing blood pressure and reducing eye strain [1].
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Chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid are the main active
ingredients in Chrysanthemum morifolium. Medical benefits of these three ingredients have been
reported in literature [2–4]. Determination of chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid content is of great importance for quality monitoring of Chrysanthemum
morifolium. Traditional methods such as high-performance liquid chromatography (HPLC) listed
in the Chinese Pharmacopoeia [5] are used for chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid measurement. Laboratory-based chemical methods are time-consuming,
high cost, reagent-wasteful, and sample-destructive, and these techniques need complex operation
skills. Although these methods can obtain accurate measurement results, they cannot be used to
measure a large batch of samples in a short time. Thus, rapid, nondestructive, and accurate techniques
are needed.

Hyperspectral imaging is one of the rapid and nondestructive techniques. Hyperspectral imaging
integrates imaging technique and spectroscopy technique, and it can acquire spatial and spectral
information simultaneously. Due to this characteristic, hyperspectral imaging has been used in various
fields, such as food [6,7], agriculture [8,9], medicine [10,11], and so forth. Hyperspectral imaging can
acquire spectral information of each pixel within the research samples, and hyperspectral images can
be analyzed at pixelwise level [12,13].

Generally, dry Chrysanthemum morifolium are stored and consumed in the market. The fresh
Chrysanthemum morifolium are harvested, undergo enzyme deactivation, and are dried. Determination
of quality attributes of dry Chrysanthemum morifolium is important for Chrysanthemum morifolium trade
and consumption. Moreover, it is important to determine quality attributes of fresh Chrysanthemum
morifolium during harvest. Knowing quality attributes will help to optimize the harvest time and
procedure of Chrysanthemum morifolium, and the quality sorting can be conducted during harvest.
Our previous study has proven the feasibility of using hyperspectral imaging to determine total
polysaccharides and total flavonoids in dry Chrysanthemum morifolium [14]. The feasibility of using
hyperspectral imaging to determine more chemical compositions for quality sorting and monitoring of
Chrysanthemum morifolium should be further studied.

The objective of this study was to determine chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid content in fresh and dry Chrysanthemum morifolium using hyperspectral
imaging. The specific objectives were to: (1) develop calibration models of chlorogenic acid, luteolin-7-O-
glucoside, and 3,5-O-dicaffeoylquinic acid content determination in fresh and dry Chrysanthemum
morifolium flowers; (2) compare the performances of chemical composition determinations in fresh and
dry Chrysanthemum morifolium; (3) form distribution maps of chlorogenic acid, luteolin-7-O-glucoside,
and 3,5-O-dicaffeoylquinic acid.

2. Materials and Methods

2.1. Sample Preparation

Fresh Chrysanthemum morifolium flowers were harvested in October and November, 2018, from
a plantation in Tongxiang, Zhejiang Province, China. Chrysanthemum morifolium with different sizes
were harvested, and 5 g of flowers were harvested and packed in a plastic bag as one sample. In
total, 180 samples were harvested. The fresh Chrysanthemum morifolium flowers were taken to the
laboratory for hyperspectral image acquisition. After image acquisition, dry flowers were obtained
by deactivating enzymes in the flowers via steam treatment for 90 s, followed by a subsequent
drying procedure at 60 ◦C until constant weight was reached. The dry flowers were then used for
hyperspectral image acquisition. After image acquisition, dry flowers were ground into powders for
chemical composition measurement.
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2.2. Hyperspectral Image Acquisition

2.2.1. Hyperspectral Imaging System

Hyperspectral image acquisition of fresh and dry flowers was conducted using the hyperspectral
imaging system in our previous study [14]. Each single fresh or dry flower was placed separately in a
black plate for hyperspectral image acquisition. The camera exposure time, the distance between the
camera lens and the moving plate, and the plate-moving speed were adjusted to 3000 µs, 14 cm, and
11.5 mm/s, respectively, to acquire clear and nondeformable images.

2.2.2. Spectra Extraction and Preprocessing

After image acquisition and calibration [14], spectral information was extracted from the
hyperspectral images. Pixelwise spectra within each flower were extracted. The head and the
end of pixelwise spectra were removed due to the obvious random noises, and only the spectra at the
range of 975–1646 nm were analyzed. Pixelwise spectra were firstly smoothed by wavelet transform
(WT) (wavelet function Daubechies 8 and decomposition level 3 for both fresh and dry flowers) [12].
To reduce the influence of light variations caused by sample shape, an area normalization was then
applied to pixelwise spectra. Then, preprocessed pixelwise spectra of flowers in one sample were
averaged as the spectrum of the sample.

2.3. Chemical Compositions Measurement

The chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid contents in
Chrysanthemum morifolium were measured using the HPLC methods introduced in the Chinese
Pharmacopoeia [5]. Powders of dry Chrysanthemum morifolium were used for chemical measurement.

2.3.1. Sample Preparation

Firstly, about 0.25 g of product powder (having gone through a 10-mesh sieve) was precisely
weighed and placed in a conical flask. Secondly, 25 mL of 70% methanol was precisely added into
the flask; the flask was then sealed with a plug and weighed. Thirdly, the flask was treated by
ultrasonic (300 W, 45 kHz) for 40 min, and then cooled and weighed. Finally, the lost weight was
made up by adding 70% methanol. The solution in the flask was shaken well and filtered to obtain the
subsequent filtrate.

2.3.2. Preparation of the Standard Solution

The standard substances of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic
acid were prepared. The standard substances were dissolved and diluted by 70% methanol to obtain
the concentrations of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid as 35.04,
24.99, and 80.23 µg/mL, respectively.

2.3.3. HPLC Operating Conditions

A Thermo C18 column (250 mm × 4.6 mm, 5 µm, Thermo Scientific, USA) was used for the
separation of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid. The tested
samples were separated with a gradient elution program at the flow rate of 1.0 mL/min. The mobile
phase was acetonitrile (A) and 0.1% phosphoric acid solution (B). The gradient elution program was:
10–18% A (0–11 min), 18–20% A (11–30 min), and 20% A (30–40 min). The UV spectra were recorded at
348 nm.

2.3.4. Method Validation and Quantitative Analysis

The linearity was examined using the standard solutions of chlorogenic acid, luteolin-7-O-
glucoside, and 3,5-O-dicaffeoylquinic acid. The linearity of the calibration curves was determined by
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plotting the peak area (Y) which was measured according to the above chromatographic conditions
versus concentration (X). The following linear regression equations for the calibration curves were
obtained: Y = 1563.03X − 5238.72 (R2 = 0.9998, chlorogenic acid), Y = 2956.06X − 7074.40 (R2 = 0.9997,
luteolin-7-O-glucoside), Y = 2276.86X − 14,801.07 (R2 = 0.9999, 3,5-O-dicaffeoylquinic acid). The linear
ranges of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid were 35.04–525.60 ng,
24.99–374.85 ng, and 80.23–1203.45 ng, respectively. The accuracy was determined for the different
compounds, where chlorogenic acid had an accuracy of 98.2% ± 1.24% (n = 6), luteolin-7-O-glucoside
96.9% ± 2.23% (n = 6), and 3,5-O-dicaffeoylquinic acid 97.7% ± 1.47% (n = 6). The injection volume
was 5 µL of the standard solution and sample solution. The peak area was measured according to the
above chromatographic conditions and the content was calculated by the linear equations.

2.4. Multivariate Analysis

2.4.1. Calibration Models

To build calibration models for chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic
acid content determination, partial least squares (PLS), extreme learning machine (ELM), and
least-squares support vector machine (LS-SVM) were used.

PLS

PLS is the most widely used chemometric method in spectral data analysis. PLS has the advantage
of dealing with the large amount of data efficiently and computing quickly. PLS explores the linear
relationship between the spectral variables (X) and the response variable (Y) [15]. The procedure of
PLS can be summarized as follows:

(1) Decompose the X and Y simultaneously as:

X = SxLx + Ex (1)

Y = SyLy + Ey (2)

where Sx and Sy are the scores of X and Y, respectively; Lx and Ly are the loadings of X and Y,
respectively; Ex and Ey are the residual errors of X and Y, respectively. X and Y are decomposed into
different principal components (called latent variables, LVs).

(2) Calculate the correlation coefficient matrix between Sx and Sy of each LV:

Sy = CSx (3)

C = SxSy(SxSy)−1 (4)

where C is the correlation coefficient matrix. Sx and Sy should contain as much information of X and Y
as possible, and they should be maximally correlated. The optimal number of LVs is important for the
PLS model, and the PLS model with optimal number of LVs should have the best performance.

ELM

ELM is one kind of feedforward neural network. ELM has the advantage of good generalization
ability and fast computing. For ELM training, only the number of neurons in the hidden layer needs to
be defined. The input weights and bias are randomly initialized. The output of ELM is determined by
the activation function [16]. The procedure of ELM can be summarized as follows:

(1) Given spectral variables (X) and the response variable (Y), X is an N × P matrix, and Y is
an N × 1 matrix. The number of neurons in the hidden layer is set as m, the weights between the
input layer and the hidden layer are randomly generated as W, the bias matrix of the neurons in the
hidden layer b is randomly generated, β is the output weight matrix. The ELM model can be simply
described as:
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Yout j =
m∑

i=1

βi f
(
WiX j + bi

)
, j = 1, 2, 3, . . . , N (5)

where Youtj is the output, f (X) is the activation function.
(2) The training procedure is to minimize the error between the output and the Y to be 0, which is:

min‖Yout j −Y j‖, j = 1, 2, 3, . . . , N (6)

In ELM, the problem arises of finding the optimal output weight matrix β to achieve the goal of
Equation (6). The optimal β can be obtained by finding the least-squares solution of Equation (6). In
this study, Sigmoid function was used as the activation function.

LS-SVM

LS-SVM is an efficient machine learning method extended from the general SVM. Unlike SVM,
which solves a convex quadratic programming problem for optimization, LS-SVM tries to solve a set
of linear equations instead. LS-SVM has characteristics such as good generalization ability and fast
computing. Based on SVM, kernel function is also the key factor for LS-SVM [17]. The procedure of
LS-SVM can be summarized as follows:

(1) Given spectral variables (X) and the response variable (Y), X is an N × P matrix, and Y is an
N × 1 matrix. The LS-SVM function estimation is to minimize the following function:

C =
1
2

WTW + γ
N∑

i=1

e2
i (7)

where W is the weight, e is the error, γ is an adjustable parameter. The restriction function of
Equation (7) is:

Yi = WTφ(Xi) + b + ei, i = 1, 2, 3, . . . , N (8)

According to Equations (7) and (8), there is a typical problem of convex optimization, and it can
be solved by the Lagrange method:

L =
1
2
‖W‖2 + γ

N∑
i=1

e2
i −

N∑
i=1

αi
{
WTφ(Xi) + b + ei −Yi

}
(9)

where α is the Lagrange multiplier, ϕ(Xi) is the feature mapping function. To optimize Equation (9),
kernel functions as K(X, Xi) are defined. In the end, the LS-SVM model can be expressed as:

Youti =
N∑

i=1

αiK(X, Xi) + b (10)

where Yout is the output of the LS-SVM model. Kernel functions are key in LS-SVM. In this study,
radial basis function (RBF) was used as the kernel function.

2.4.2. Optimal Wavelength Selection

Colinearity and redundancy are general risks to spectral data analysis. Optimal wavelength
selection aims to select a subset of wavelengths which have the calibration ability with reduced
colinearity and redundancy. Optimal wavelength selection can reduce the computation cost and
simplify the models while keeping the prediction ability. In this study, successive projections algorithm
(SPA) was used to select optimal wavelengths.

SPA is a forward variable selection method, and it has been widely used in spectral data
analysis [18]. The details of SPA are summarized as follows:
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(1) Manually define range of the number of variables to be selected.
(2) Randomly select a variable and calculate the projection of this variable on the other variables.
(3) Select the variable with the largest projections into the candidate subset, then the corresponding

variable for projection is used for projecting on the residual variables.
(4) Repeat steps (2) and (3) until the number of variables in the candidate subset is equal to the

maximum number.
(5) Build multiple linear regression (MLR) models using different numbers of variables in the

subset, and the variables corresponding to the model with the minimum RMSE are selected as
optimal variables.

2.4.3. Model Evaluation and Software

Hyperspectral images were firstly resized to reduce the data dimension by ENVI 4.6 (ITT, Visual
Information Solutions, Boulder, CO, USA). The spectral data extraction and preprocessing, multivariate
data analysis (except PLSR), and image visualization were conducted on Matlab R 2014b (The Math
Works, Natick, MA, USA). PLSR was performed on Unscrambler®10.1 (CAMO AS, Oslo, Norway).

The performances of the calibration models were evaluated by the coefficient of determination of
calibration and prediction (R2

c and R2
p), root mean square error of calibration and prediction (RMSEC

and RMSEP), the residual predictive deviation (RPD), and bias of calibration and prediction (Biasc
and Biasp). A better calibration model should have larger R2 and RPD, and lower RMSE and bias.
Models can be divided into three categories based on R2: models could be used for prediction (R2:
0.61–0.80), models performed well (R2: 0.81–0.90), and models performed excellently (R2 over 0.9).
Models can also be divided into these three categories by dividing RPD into 2.00–2.50, 2.51–3.00, and
over 3.00 [19]. Moreover, F-test was used to evaluate the significance of the coefficient of determination
at the significance level of 0.01.

2.5. Visualization of Chemical Compositions

The characteristic of pixelwise analysis makes hyperspectral imaging an effective tool to obtain
prediction features of each pixel. Hyperspectral imaging can construct a map by knowing pixelwise
features, from which the distribution of features can be visualized. The visualization maps can be
simply obtained by applying the calibration models on each pixel. The image visualization procedure
follows the reference [14]. The image visualization performances depend on the performances of
calibration models and image quality. It is impossible to measure the chemical compositions of each
pixel, and the accuracy of the prediction value of each pixel cannot be evaluated without measured
reference value. Therefore, the prediction accuracy is determined by the calibration models. The
better the calibration model performs, the more accurate the predicted value is. The pixels to be
predicted also affect the prediction value, and pixels from high-quality hyperspectral images with
high signal-to-noise ratio would benefit the prediction. It is noted that the hyperspectral images to
be predicted must conduct the same image preprocessing as for calibration. In this study, calibration
models with better performances were used for visualization.

3. Results and Discussion

3.1. Spectral Profiles

Figure 1 shows the average spectra with standard deviation (SD) of fresh and dry Chrysanthemum
morifolium flowers. SD value of each wavelength was calculated and presented. Fresh and dry flowers
had similar spectral curve shape, while their reflectance values showed more obvious differences. The
reason might be that the chemical compositions changed during enzyme deactivation and drying. For
peaks and valleys in both spectral curves, the wavelengths around 1119 nm, 1311 nm, and 1210 nm
might be related to the second overtone of C–H stretch, and the wavelength around 1487 nm may be
attributed to the first overtone of O–H stretch [14].
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Figure 1. Average spectrum with standard deviation of fresh and dry Chrysanthemum morifolium flowers.
Bold lines are average spectra and vertical lines are standard deviation of each wavelength.

3.2. Outlier Detection and Sample Set Split

During the process of image acquisition and chemical composition measurement, the obtained
spectral information and chemical composition content of samples might be interfered with by different
factors and might have negative influences on calibration models. Thus, outlier samples detection
and removal were conducted before splitting sample sets. The PLS model was firstly built for each
chemical composition using all samples, and eight samples with the largest absolute prediction errors
(the difference between reference value and predicted value) were identified as outlier samples [20].
It should be noted that different samples might be treated as outlier samples for difference chemical
compositions. After the removal of 8 outlier samples, the remaining 172 samples were split into the
calibration set and the prediction set at the ratio of 3:1 (129 for calibration and 43 for prediction). Firstly,
the samples were ranked by chemical composition content from low to high. Then, one sample of the
two samples in the middle of every four samples was selected for the prediction set, and the remaining
three samples were selected for the calibration set. Table 1 shows the statistical summary of chlorogenic
acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid content. The sample distributions of the
calibration set and the prediction set were similar, with samples distributed uniformly between the
calibration set and the prediction set.

Table 1. Statistical summary of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic
acid content in the calibration set and the prediction set (unit: %DW, DW means dry weight).

Sample
Status

Compositions
Calibration Prediction

Range Mean SD Range Mean SD a

Fresh
chlorogenic acid 0.33–0.59 0.48 0.067 0.34–0.58 0.48 0.067

luteolin-7-O-glucoside 0.21–0.42 0.32 0.046 0.22–0.40 0.32 0.046
3,5-O-dicaffeoylquinic acid 0.79–1.29 1.07 0.13 0.81–1.29 1.07 0.13

Dry
chlorogenic acid 0.33–0.61 0.48 0.067 0.34–0.60 0.48 0.067

luteolin-7-O-glucoside 0.22–0.42 0.33 0.046 0.23–0.41 0.33 0.046
3,5-O-dicaffeoylquinic acid 0.79–1.29 1.07 0.13 0.79–1.27 1.07 0.13

a: SD represents standard deviation.

3.3. Calibration Models Using Full Spectra

Partial least squares (PLS), extreme learning machine (ELM), and least-squares support vector
machine (LS-SVM) models were built using full spectra to evaluate the performance of determination
of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid. Leave-one-out cross
validation was used to optimize the three models. The results of fresh and dry flowers are shown in
Tables 2 and 3, respectively.
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Table 2. Results of calibration models for chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid in fresh flowers using full spectra (unit: % DW, DW means dry weight).

Compositions Models Parameters a Calibration Prediction

R2
c RMSEC Biasc R2

p RMSEP RPD Biasp

chlorogenic acid
PLS 8 0.90 ** 0.021 1.04 × 10−7 0.87 ** 0.024 2.79 0.0024
ELM 19 0.91 ** 0.020 3.03 × 10−10 0.88 ** 0.023 2.91 1.54 × 10−4

LS-SVM 38.7638, 184.1695 0.91 ** 0.020 −8.10 × 10−16 0.87 ** 0.024 2.79 2.58 × 10−4

luteolin-7-O-glucoside
PLS 7 0.82 ** 0.020 2.63 × 10−7 0.82 ** 0.019 2.42 4.69 × 10−4

ELM 22 0.86 ** 0.018 6.71 × 10−12 0.82 ** 0.019 2.42 0.0017
LS-SVM 13.19329, 165.0049 0.84 ** 0.019 2.88 × 10−16 0.79 ** 0.021 2.19 −0.0039

3,5-O-dicaffeoylquinic
acid

PLS 8 0.85 ** 0.049 −2.41 × 10−7 0.81 ** 0.058 2.24 0.00057
ELM 22 0.87 ** 0.047 −1.89 × 10−10 0.82 ** 0.057 2.28 0.0084

LS-SVM 1,063,548.01366,
29,309.77831 0.86 ** 0.048 1.23 × 10−11 0.82 ** 0.056 2.32 0.0016

a: Parameters are the optimal parameters of PLS, ELM, and LS-SVM models. Parameter of PLS is the number of
latent variables (LVs); parameter of ELM is the number of neuron nodes in the hidden layer; parameters of LS-SVM
are the penalty coefficient C and kernel function parameter γ; the ** symbols indicate that the R2 is significant at the
significance level of 0.01.

Table 3. Results of calibration models for chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid in dry flowers using full spectra (unit: % DW, DW means dry weight).

Compositions Models Parameters
Calibration Prediction

R2
c RMSEC Biasc R2

p RMSEP RPD Biasp

chlorogenic acid
PLS 9 0.89 ** 0.022 −2.25 × 10−7 0.85 ** 0.026 2.58 0.0027
ELM 17 0.90 ** 0.022 1.79 × 10−9 0.86 ** 0.025 2.68 8.47 × 10−4

LS-SVM 144.6281, 201.9949 0.93 ** 0.018 6.80 × 10−15 0.83 ** 0.029 2.31 0.0049

luteolin-7-O-glucoside
PLS 7 0.82 ** 0.019 1.35 × 10−7 0.77 ** 0.022 2.09 0.0046
ELM 31 0.86 ** 0.017 5.32 × 10−10 0.81 ** 0.020 2.30 0.0037

LS-SVM 2783.4589,
2382.1537 0.85 ** 0.018 −3.21 × 10−13 0.77 ** 0.023 2.00 0.0056

3,5-O-dicaffeoylquinic
acid

PLS 9 0.84 ** 0.050 1.66 × 10−7 0.83 ** 0.054 2.41 −0.0017
ELM 23 0.85 ** 0.050 −1.62 × 10−9 0.83 ** 0.053 2.45 −2.07 × 10−4

LS-SVM 49,789.1255,
9996.34004 0.86 ** 0.049 2.02 × 10−11 0.83 ** 0.055 2.36 7.07 × 10−4

The ** symbols indicate that the R2 is significant at the significance level of 0.01.

As shown in Table 2, calibration models for determination of the three compositions in fresh
flowers all obtained good results. The F-test showed that determination of coefficient (R2) of all
models was significant at the significance level of 0.01. The biases of different models were all small.
Different models for each composition obtained quite close results. For chlorogenic acid, the ELM
model performed best with highest R2 and RPD, and the bias was also quite small. The PLS model
obtained relatively worse results. For luteolin-7-O-glucoside, ELM obtained the best performance,
and the bias of prediction was higher than the other two models. LS-SVM performed worst with R2

p

lower than 0.80. For 3,5-O-dicaffeoylquinic acid, results of the three models were quite close, and the
LS-SVM model was the best model considering all evaluation parameters.

As shown in Table 3, calibration models for determination of the three compositions in dry flowers
all obtained good results. The F-test showed that determination of coefficient (R2) of all models was
also significant at the significance level of 0.01. Moreover, the biases of different models were all small.
For chlorogenic acid, LS-SVM obtained the highest R2

c, and lowest R2
p and RPD. As a whole, the

ELM model performed best while the PLS model performed worst. For luteolin-7-O-glucoside, the
ELM model performed best with the highest R2 and RPD, and the bias was quite small. The PLS and
LS-SVM models obtained quite close but worse results. For 3,5-O-dicaffeoylquinic acid, the three
models obtained good and quite close results, indicating the effectiveness of these three models.

A comparison could be made between models for fresh and dry flowers. Models for chlorogenic
acid in fresh flowers performed better than the corresponding models for chlorogenic acid in dry
flowers. Models for luteolin-7-O-glucoside in fresh and dry flowers showed similar phenomena as
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models for chlorogenic acid. However, models for 3,5-O-dicaffeoylquinic acid in fresh flowers obtained
worse results than models for 3,5-O-dicaffeoylquinic acid in dry flowers.

Most of the models in Tables 1 and 2 had R2 over 0.8 and RPD over 2.00. The overall results showed
the feasibility of using hyperspectral imaging to determine chlorogenic acid, luteolin-7-O-glucoside,
and 3,5-O-dicaffeoylquinic acid content in fresh and dry Chrysanthemum morifolium flowers. In general,
among all models, ELM models obtained the best performances, followed by LS-SVM and PLS models.
Selection of optimal models would help to improve the detection performances.

3.4. Optimal Wavelength Selection

To reduce the amount, collinearity, and redundancy of data, successive projections algorithm
(SPA) was used to select the optimal wavelengths for chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid prediction. The number of wavelengths to be selected was limited to 5–30.
Table 4 shows the selected optimal wavelengths. The selected optimal wavelengths varied among
different compositions, and varied between fresh and dry flowers. Selected optimal wavelengths were
different for the same chemical composition, but it should also be noted that the selected optimal
wavelengths were close with slight shift.

As shown in Table 4, the wavelengths in the range of 975–989 nm and the wavelength at 995 nm
might be related to the second overtone of N–H stretching; the wavelengths at 1025 might be related
to water; the wavelengths at 1029 nm might be related to O–H bending and C=O stretching; the
wavelength at 1315 nm might be due to the first overtone of the O–H stretch and OCO bending; the
wavelengths in the range of 1463–1484 nm might be attributed to the first overtone of N–H stretching;
and the wavelengths in the range of 1645–1675 might be attributed to the first overtone of the C–H
stretch [21]. The wavelengths in the range of 1090–1260 nm might be related to the second overtone
of C–H stretching, and the wavelengths in the rage of 1350–1450 nm might be attributed to the C–H
combination [22].

Table 4. Optimal wavelengths selected by SPA for chlorogenic acid, luteolin-7-O-glucoside, and.
3,5-O-dicaffeoylquinic acid prediction.

Sample Status Compositions Number Wavelength (nm)

Fresh
chlorogenic acid 8 1463, 1082, 1419, 1615, 1399, 1005, 1164, 1325

luteolin-7-O-glucoside 7 1025, 1082, 992, 1429, 1646, 1281, 1406
3,5-O-dicaffeoylquinic acid 8 1046, 1126, 1005, 1436, 1615, 975, 1164, 1288

Dry
chlorogenic acid 8 1470, 1076, 1419, 1315, 988, 1396, 1227, 1646

luteolin-7-O-glucoside 5 1072, 1612, 1419, 1318, 1646
3,5-O-dicaffeoylquinic acid 10 1126, 1180, 1029, 1210, 1227, 1463, 975, 995, 1646, 1389

3.5. Calibration Models Using Optimal Wavelengths

PLS, ELM, and LS-SVM models were built using selected optimal wavelengths to evaluate the
prediction performances for chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid
content determination in fresh and dry flowers. The results are shown in Tables 5 and 6.

Table 5 shows the detection results of chemical compositions in fresh flowers using optimal
wavelengths. All models had R2 over 0.8 and RPD over 2.00, and the bias values were all small. The
F-test showed that determination of coefficient (R2) of all models was significant at the significance
level of 0.01. For chlorogenic acid, the three models all performed well and obtained quite close results.
Their R2 and RPD were high while RMSE and bias were small. For luteolin-7-O-glucoside, similar
phenomena could be found that the differences among different models were quite small, and all the
three models performed well. For 3,5-O-dicaffeoylquinic acid, the ELM model performed best, with
highest R2 and RPD.

Table 6 shows the determination results of chemical compositions in dry flowers using optimal
wavelengths. The F-test showed that determination of coefficient (R2) of all models was significant
at the significance level of 0.01. For chlorogenic acid, the ELM model performed best, and its bias
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of prediction was higher than that of the PLS model. The LS-SVM model obtained better results
than the PLS model in the calibration set, and obtained worse results in the prediction set. For
luteolin-7-O-glucoside, the ELM model performed best, followed by PLS and LS-SVM. The results
of the three models were not good enough, and the R2

p of all models was lower than 0.80. For
3,5-O-dicaffeoylquinic acid, good performances were obtained; all models had R2 over 0.8 and RPD
over 2.00. Quite close results were obtained by the three models.

Table 5. Results of calibration models for chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid in fresh flowers using optimal wavelengths (unit: % DW, DW means
dry weight).

Compositions Models Parameters
Calibration Prediction

R2
c RMSEC Biasc R2

p RMSEP RPD Biasp

chlorogenic acid
PLS 7 0.90 ** 0.021 1.87 × 10−6 0.88 ** 0.023 2.91 0.0018
ELM 10 0.91 ** 0.020 −6.50 × 10−10 0.87 ** 0.024 2.79 0.0023

LS-SVM 8.6896, 6.2569 0.91 ** 0.020 2.80 × 10−16 0.87 ** 0.024 2.79 −8.77 × 10−5

luteolin-7-O-glucoside
PLS 7 0.83 ** 0.019 2.61 × 10−6 0.80 ** 0.020 2.3 0.0012
ELM 18 0.85 ** 0.018 −9.42 × 10−7 0.82 ** 0.019 2.42 −0.0014

LS-SVM 4.9733, 0.50549 0.87 ** 0.017 −1.18 × 10−16 0.81 ** 0.020 2.3 −0.0019

3,5-O-dicaffeoylquinic
acid

PLS 7 0.84 ** 0.051 −4.57 × 10−7 0.80 ** 0.062 2.10 0.0039
ELM 19 0.87 ** 0.047 −2.11 × 10−6 0.83 ** 0.055 2.36 0.0016

LS-SVM 3,119,660.6357,
1108.4923983 0.86 ** 0.048 6.35 × 10−10 0.81 ** 0.059 2.20 0.0035

The ** symbols indicate that the R2 is significant at the significance level of 0.01.

Table 6. Results of calibration models for chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid in dry flowers using optimal wavelengths (unit: % DW, DW means
dry weight).

Compositions Models Parameters
Calibration Prediction

R2
c RMSEC Biasc R2

p RMSEP RPD Biasp

chlorogenic acid
PLS 8 0.89 ** 0.022 −7.10 × 10−7 0.84 ** 0.027 2.48 0.0032
ELM 39 0.93 ** 0.018 −4.77 × 10−6 0.87 ** 0.025 2.68 0.0042

LS-SVM 146.7564, 9.64007 0.92 ** 0.018 1.27 × 10−14 0.81 ** 0.030 2.23 0.0050

luteolin-7-O-glucoside
PLS 5 0.78 ** 0.021 2.30 × 10−7 0.68 ** 0.026 1.77 0.0030
ELM 18 0.83 ** 0.019 1.65 × 10−6 0.78 ** 0.022 2.09 0.0041

LS-SVM 16.9896, 0.39888 0.90 ** 0.014 −1.28 × 10−16 0.68 ** 0.026 1.77 0.0020

3,5-O-dicaffeoylquinic
acid

PLS 8 0.84 ** 0.051 −3.02 × 10−6 0.83 ** 0.054 2.41 −0.0050
ELM 20 0.85 ** 0.049 −1.45 × 10−6 0.83 ** 0.054 2.41 −0.0013

LS-SVM 2,163,016.0391,
32,811.479235 0.84 ** 0.050 −7.30 × 10−10 0.84 ** 0.054 2.41 −0.0025

The ** symbols indicate that the R2 is significant at the significance level of 0.01.

For fresh and dry flowers, models for chlorogenic acid and luteolin-7-O-glucoside in fresh flowers
performed better than the corresponding models for chlorogenic acid and luteolin-7-O-glucoside
in dry flowers. Models for 3,5-O-dicaffeoylquinic acid in dry flowers performed better than the
corresponding models for 3,5-O-dicaffeoylquinic acid in fresh flowers. The overall results indicated
that it was feasible to use optimal wavelengths to determine chlorogenic acid, luteolin-7-O-glucoside,
and 3,5-O-dicaffeoylquinic acid content in fresh and dry flowers.

As shown in Table 2, Table 3, Table 5, and Table 6, most calibration models using full spectra
outperformed those using optimal wavelengths, but their differences were small. Some models using
full spectra and optimal wavelengths obtained close results. Another fact to be addressed was that the
number of input wavelengths reduced at least 95% compared with full spectra. However, although
calibration models using optimal wavelengths obtained good results, much more work should be done
to develop models with better robustness and accuracy. For both full spectra situation and optimal
wavelength situation, ELM models could be considered as the best models, followed by LS-SVM and
PLS models. The results showed that ELM, LS-SVM, and PLS models could be used to detect chemical
compositions in fresh and dry Chrysanthemum morifolium, and ELM had the greatest potential.
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3.6. Visualization of Chlorogenic Acid, Luteolin-7-O-glucoside, and 3,5-O-Dicaffeoylquinic Acid in
Chrysanthemum morifolium

As shown in Tables 2 and 4, calibration models for chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid content determination obtained good results. These results illustrated
the feasibility of using hyperspectral imaging to determine these chemical compositions. Based
on the results, prediction maps for visualization of chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid content in fresh and dry Chrysanthemum morifolium flowers were formed.
In general, ELM models using full spectra obtained better results for fresh and dry flowers. Thus,
ELM models using full spectra were applied to construct the visualization maps for chlorogenic acid,
luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid in Chrysanthemum morifolium flowers. Based on
the established models, these three chemical compositions content of each pixel within one flower
could be obtained. Prediction maps by knowing pixelwise chemical composition content could be
formed. However, for harvest, trade, and consumption, entire flowers were used rather than parts
of each flower; knowing the average chemical composition content of all pixels within one flower
would be more intuitive than knowing the distribution of pixelwise chemical composition content
within one flower. Thus, average chemical composition content of each fresh and dry flower was
visualized and the differences among flowers could be visualized. Figures 2 and 3 show the prediction
maps of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid in fresh and dry
Chrysanthemum morifolium flowers, respectively. As shown in Figures 2 and 3, the size of flowers
reduced after drying. With chemical compositions content presented by color, it would be possible
to develop online detection systems or portable devices for rapid and accurate determination of
chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid as well as other chemical
compositions in fresh and dry Chrysanthemum morifolium flowers. The results would benefit the harvest,
processing, and consumption of Chrysanthemum morifolium.
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Figure 3. Pseudo image of (a) dry Chrysanthemum morifolium flowers and prediction maps of chlorogenic
acid (b), luteolin-7-O-glucoside (c), and 3,5-O-dicaffeoylquinic acid (d). (Unit: % DW, DW means
dry weight.)

4. Conclusions

Near-infrared hyperspectral imaging coupled with multivariate analysis was used to determine
chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid content in fresh and dry
Chrysanthemum morifolium. Pixelwise spectra at the spectral range of 975–1646 nm were extracted and
preprocessed by wavelet transform (WT) and area normalization. Successive projections algorithm
(SPA) was used to select optimal wavelengths and the number of wavelengths reduced at least 95%. PLS,
ELM, and LS-SVM models using full spectra and optimal wavelengths obtained good performances
for both fresh and dry flowers, and most of the models had R2

c, R2
p over 0.80 and RPD over 2.00. Bias

values of all models were small. These results indicated that hyperspectral imaging combined with
multivariate analysis methods could be used to determine chlorogenic acid, luteolin-7-O-glucoside, and
3,5-O-dicaffeoylquinic acid content in fresh and dry Chrysanthemum morifolium flowers. In general, ELM
performed relatively better than the other two calibration methods. For different chemical compositions,
the models with the best performances were different, and the differences among different calibration
methods were small. Statistically, these three calibration methods could all be used for chlorogenic
acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid content determination in fresh and dry
Chrysanthemum morifolium. Indeed, the performances were not satisfactory for real-world applications
and the performances of the calibration models should be improved in future studies. Prediction maps
of chlorogenic acid, luteolin-7-O-glucoside, and 3,5-O-dicaffeoylquinic acid content were obtained, and
variations of these chemical compositions content among flowers could be found. The results would be
helpful to develop rapid and nondestructive online quality detection and sorting systems or portable
devices during the process of harvest, processing, and consumption of Chrysanthemum morifolium. In
future studies, strategies to improve the model robustness and accuracy should be conducted. More
calibration methods should be explored, and the optimal calibration method would be selected for
real-world application.
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