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Abstract: Coal-fired power stations are one of the primary sources of power generation in the world.
This will produce considerable amounts of fly ash from these power stations each year. To highlight
the potential environmental hazards of these materials, this study is carried out to evaluate the
characterization of fly ashes produced in thermal power plants in northern Vietnam. Fly ash was firstly
fractionated according to size, and the fractions were characterized. Then, each of these fractions was
analyzed with regard to their mineralogical features, morphological and physicochemical properties.
The analytical results indicate a striking difference in terms of the characteristics of particles. It was
found that magnetic fractions are composed of magnetite hematite and, to a lower rate, mullite,
and quartz. Chemical analyses indicate that the non-magnetic components mainly consist of quartz
and mullite as their primary mineral phases. As the main conclusion of this research, it is found that
the magnetic and non-magnetic components differ in terms of shape, carbon content and mineralogical
composition. In addition, it was found that magnetic components can be characterized as more
spheroidal components compared to non-magnetic ones. This comprehensive characterization not
only offers a certain guideline regarding the uses of different ash fractions but it will also provide
valuable information on this common combustion process.

Keywords: magnetic fraction; chemical properties; fly ash coal wastes; XRD analysis; thermal
power plants
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1. Introduction

Vietnam is the Southeast Asian country with the highest reliance on coal for electricity generation.
Furthermore, with the rapidly increasing demand for electricity in Vietnam, recently the number
of coal power plants have been expanded or been constructed. Presently, these coal-fired thermal
power plants generate approximately 20% of the total electricity demand in Vietnam. As Vietnamese
thermal power plants use domestically mined coal, this increase in coal-fired generation will lead to an
increase in coal production within the country by companies such as Vinacomin (Vietnam National
Coal and Mineral Industries Group). The stations sampled at for this study, Uong Bi and Pha Lai
thermal power stations, procure coal from Vinacomin and have a capacity of approximately 1800 MW
of electricity. To satisfy the increasing demands for electric power, the coal power plants are vital,
but they also emit a large amount of fly ash and are among the causes of environmental problems,
especially, the pollution related to coal fly ash. Currently, coal fly ash is used for various purposes:
brick-making, landfilling, construction, soil amendment, and others [1–4]. However, effective end
uses are possible only if a comprehensive characterization of fly ash produced at the plant can be
carried out [5,6]. Also, a comprehensive characterization is expected to give useful information on the
combustion processes.

Fly ash is a complex heterogeneous form of coal combustion residue. Fly ash is generally
regarded as the finest particles that are formed (0.2–90 µm) because of the transformation of mineral
matter (i.e., existing in coal particles) during combustion processes [7,8]. However, fly ash contains
noticeable amounts of large (e.g., 90–300 µm) char, semi-cooked or coked carbon matters because of
low combustion efficiency in combustors. The main weakness is because of low-quality control in
maintaining the particle size of the pulverized coal feed, perhaps more than other factors. Besides,
fly ash is characterized by irregular shape and contains vesicular, lacy, solid/hollow Alumino-siliceous
spheres as well as an alumino-siliceous matter of complex elements [9].

Based on combustion conditions, the type of coal used, and removal proficiency of devices that
control air pollution, the chemical composition of fly ash is variant [10]. As an example, in South
African coal fly ash, the combined content of Fe2O3, Al2O3, and SiO2 in fly ash must be over 70%
whereas the CaO content should not exceed 5%. Therefore, the 2-step treated fly ash was added
together that contains less than 50% of Fe2O3, Al2O3, and SiO2 [11]. In this fly ash category, the CaO
content changes in the range of 20 to 30%. However, the formulation of fly ash may differ to some
extent by whether the same is true of fly ashes with low/high calcium or low/high iron [12]. As a
result, they require different utilization schemes. Fly ash’s mineralogical composition mainly depends
on the geological features that inform coal formation and deposition, as well as the combustion
condition [13–15]. Here, quartz [14,16–19], mullite [14,20–22], hematite [19,23–25], magnetite, and lime
are the most common and predominant phases apart from other minor constituents [22,25–28]. Also,
fly ash’s mineralogical composition is determined by the type of coal used. So, anorthite, quartz,
hematite, gehlenite, and mullite predominantly constitute the main crystalline phases in lignite fly
ash [22,26,29–31]. In fact, quartz and mullite are the primary crystalline phases in low calcium fly
ashes while high calcium fly ashes contain quartzite, C4AS, and C3A. The predominant minerals in fly
ashes are mullite, quartz, hematite, magnetite, calcite, and dolomite.

As an important aspect of fly ash, morphology requires a thorough evaluation. It is well
established that the particles of fly ash can be categorized in to eleven morphological groups based on
the examination by light microscopy [10,14,20,32]. ‘Char’ is the most critical carbonaceous particle in
fly ash that is formed when the coal particles are devolatilized. Resultant burning of char as well as
transformation of intrinsic mineral matter conducts to generating ash particles (e.g., in the form of
solid, irregular and hollow spherical particles) among which the most significant and value-added are
cenospheres, planispheres and ferrospheres [33–37]. As the main objective of this study, we aimed to
evaluate the fly ash produced in Uong Bi and Pha Lai thermal power stations. This study particularly
revolves around the physical, morphological and chemical characterizations of the particles of the fly
ash focusing on the size extent of the particles.
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2. Materials and Methods

2.1. Sampling and Size Analysis

The fly ash samples were taken from two thermal power plants Uong Bi and Pha Lai power plants
(sample UB and sample PL, respectively) in northern Vietnam. The Uong Bi and the Pha Lai power
plants use pulverized coal combustion (PCC) technology and circulating fluidized bed combustions
(CFBC) technology, respectively, for power generation. The samples were completely mixed after
applying the coning and quartering method then wet sieved down to prepare a granular material
smaller than <25 µm in size. A hand-held permanent bar magnet was used to separate the magnetic
particles from each size fraction.

2.2. Characterization

Particle characterization was performed for all the fractions by considering a variety of
specifications and methods: density and size of particle, the weight percentage distribution,
LOI (according to ASTM C311-04), mineralogical analysis (XRD), chemical composition (XRF),
morphological analysis using FTIR spectroscopic and SEM-EDX analysis. Laser particle analyzer
(i.e., the same equipment used in other studies such as Malvern Mastersizer 2000 and Malvern
Instruments, Malvern, UK) was used in conjunction with a dispersal device for analyzing particle size
distributions of the magnetic particle samples. To measure the magnetic and nonmagnetic fractions,
samples underwent X-ray diffraction (XRD) with a D8-Advance Bruker with radiation of Cu-Kα

(λ = 1.5406 nm) generated at 40 kV and 40 mA. The data were recorded in the Bragg angle (2θ) with a
range of 3–70◦ and a scanning speed of 2◦ min−1. To define minerals, Evaluation software 10.0 was
employed with a database (PDF-2 2004) provided by International Centre for Diffraction Data.

Davies tube apparatus was used for magnetic separation. To obtain carbon-depleted and
carbon-rich fractions from the samples of fly ash fraction, column floatation was used. In this
regard and to perform the tests two chemicals of methyl isobutyl carbinol (MIBC) and distilled water
were consumed. The carbonaceous matter was floated over the MIBC layer and was subsequently
separated after the carbon-depleted fraction subsided at the bottom. To analyze the morphology of the
magnetic particles and elements present in samples, scanning electron microscope (SEM) was used in
conjunction with energy dispersive X-ray spectroscopy (EDS) (Quanta 450). In this study, coal chemical
composition was specified indirectly. The low-temperature ash (LTA) was determined for coal samples
which were subsequently analyzed for their mineral matter elements through the use of XRF. Also,
feed coal underwent a sieve analysis.

The chemical composition analysis of the feed coal shows in Table 1. Such results are the sum
content of SiO2, Al2O3, and Fe2O3 is significant (~90%). It also shows that the ash includes fewer amounts
of CaO, K2O, MgO and other elements. The loss on ignition (LOI) for the samples is approximately 3
and 5.6%, respectively. However, SEM analysis indicates the presence of a considerable amount of
extrinsic mineral matter.

Table 1. The elements concentrations (%) of magnetic fractions of UB and PL fly ashes as determined
by XRF analysis.

Element (%)
The Concentration of Major Elements (%) of Magnetic Fly Ash

UB PL

SiO2 43.64 42.85
TiO2 0.83 0.76

Al2O3 21.97 21.05
T-Fe2O3 23.54 22.79

MnO 0.26 0.22
MgO 1.89 1.96
CaO 1.85 1.53
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Table 1. Cont.

Element (%)
The Concentration of Major Elements (%) of Magnetic Fly Ash

UB PL

Na2O 0.03 0.05
K2O 2.47 2.71
P2O5 0.22 0.2
SO3 0.34 0.47

LOI * 3.0 5.6

Note *: Loss on ignition

According to XRF analysis of the size-fractionated fly ash samples, the total content of Fe2O3,
Al2O3, and SiO2 increases as the particle size decreases. Both samples display an appreciable amount
of the oxides. In general, LOI decreases as the size of the particles decreases.

3. Results and Discussion

In this section, the three main outputs of this study including (i) particles size distribution,
(ii) mineralogical analysis and (iii) morphological analysis are provided.

3.1. The particle Size Distribution

As stated earlier, we used a Laser diffraction analyzer for measuring the particle size distributions of
the size-fractionated fly ashes. A summary of the results obtained from the magnetic and nonmagnetic
fractions is available in Figure 1 and Table 2. It can be seen from Table 2 that, more than 85% of the fly
ash particles of UB and PL samples are smaller than 90 µm. Considering the results of sieve grading
tests of the feed coal, an appreciable change was shown in the particle size. For a desirable burning
efficiency in Pulverised Fuel Combustors, 75 µm is determined as the maximum size of the particle for
the feed coal [38]. In the present case, however, larger coal particles percentage is significant, leading to
inefficient combustion. Large coal particles in feed coal indicate another implication. Once the larger
coal particles underwent devolatilization and during the burning of the char, will leave a noticeable
mineral matter. Such outputs were quite large, meaning that these particles have been left out of
further melting and fragmentation/transformation. It can be concluded that such a sieve analysis of
the feed coal gives new insight into ash formation.

Table 2. Magnetic and nonmagnetic contents in different size fractions of UB and PL fly ashes.

Size (µm)

Content (%)

Uong Bi (UB) Fly Ash Pha Lai (PL) Fly Ash

Fly ash Magnetic Nonmagnetic Fly ash Magnetic Nonmagnetic

>250 0.41 0.14 0.27 0.33 0.12 0.21
90–250 16.48 2.03 14.45 14.48 2.59 11.89
45–90 25.58 3.52 22.06 31.19 4.62 26.57
32–45 31.18 2.43 28.75 36.66 3.23 33.43
<32 26.24 2.11 24.13 16.93 2.51 14.42

Total 99.89 10.23 89.66 99.59 13.07 86.52
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Figure 1. Particle size distribution for the magnetic fraction of UB and PL fly ashes.

According to weight percentage distribution, no certain correlation exists between the weight
percentage and the size of the particles. An earlier communication has reported an exact analysis for
the size of the particle of diverse size fractions such as the magnetic and non-magnetic ones and their
correlations with the utility and combustion [26]. Overall, the reports indicate the larger particles are
less useful for partial replacement of cement in concrete. Other researchers have also investigated the
effect of particle size on the chemical composition of fly ash [17,32,33]. Those elements that display the
highest concentration relevancy on particle size are mainly connected with an elemental form that
sublime or boils at coal combustion temperature [11,15,37,39]. It is important to note that the Si content
increases as the size of the particles decreases. This trend is apparently due to the fact that the carbon
content decreases as the size of the particles decreases. Hence, it is expected that these fractions will
be quite rich with Si. The rise in the Fe content in tandem with a reduction in the particle size is also
fairly inconspicuous. These observations help us conclude that reduced carbon content in tandem
with decreased particle size is mainly compensated by silica.

The magnetization curve of samples particles illustrated in Figure 2. The superparamagnetic
properties for samples obviously can be observed. The saturation magnetization obtains for PL sample is
12.1 emu/g, and for UB sample is 4.2 emu/g. Therefore, it can be concluded the magnetite concentration
in the PL sample is more than UB sample.
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3.2. Mineralogical Analysis

XRD analysis is a well-defined technique, and used in most studies (e.g., Rivera, Kaur, Hesterberg,
Ward, Austin and Duckworth [25], Kaur and Goyal [18], Kunecki, Panek, Koteja and Franus [32] and
Mashau, Gitari and Akinyemi [14]) to assess the fly ash’s mineralogical composition. In this study,
we also conducted an XRD analysis of samples. The XRD analysis was provided to acquire details on the
fly ash’s mineralogical composition (Figure 3). According to this analysis, the UB sample is really rich in
quartz although other mineral phases like magnetite as well as mullite exist. In contrast, the PL sample
is quite rich in Magnetite. Often, the non-magnetic components contain quartz and mullite as the
substantial mineralogical phases. The peaks related to quartz are very intense in whole non-magnetic
fractions. There is no likelihood for quantitative correlation between the particle size and the quartz
content as XRD analysis is only related to qualitative approximation. However, it generally appears
that the more quartz content, the lower the particle size. it is owing to refractory mullite (θ =16.4).
As the magnetic components indicate in this figure, magnetite and hematite produce high-intensity
peaks. The point that each component contains magnetite is confirmed by good results obtained
from the X-ray diffractogram tests showing an authentic sample of magnetite. These observations can
be used to initiate a promising technique for the assessment of the finer magnetic fractions, that is
normally essential in the preparation of coal.

Trace element analysis using ICP-MS analysis is given in Table 3. The results reveal the presence of
Cr, Mn, Mg, Co, Zn, Ni, Cu, Cd, Mo, and Pb in the fly ash samples even having different concentrations
(e.g., elements mentioned) in samples. Considering all the present trace elements, it is demonstrated
that Pb, Mn, Cr, Cu, Zn, and Co are present with considerably higher proportions. As particle size
decreases, the concentration reduction in case of Co, Mn, and Mg all of which was displaying limited
to moderate concentration impact with a decrease in particle size. Cu, Cr, and Pb are adversely
proportional to the size of the particle. Other elements show no significant variation in concentration
with a particle size decreases.
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Table 3. Trace elements concentrations (ppm) in magnetic fractions of UB and PL fly ashes as determined
ICP-MS analysis.

Element (%)
The Concentration of Trace Elements (ppm) of Magnetic Fly Ash

UB PL

Co 26.13 34.27
Ni - -
Cu 42.92 39.38
Zn 15.51 -
Mo 1.24 1.15
Cd - 0.23
Pb 27.22 21.73
Mn 739.38 1237.46
Mg 700.94 754.2
Cr 148.75 132.18

3.3. Morphological Analysis

Some interesting insights regarding the morphology of nonmagnetic and magnetic particles
of Uong Bi (UB) and Pha Lai (PL) fly ash sample are revealed by Scanning electron microscopic
study (SEM) (Figure 4a,b). According to Figure 4a,b, the non-magnetic and magnetic elements were
found to be distinctly different. Although according to the literature, the non-magnetic components
are commonly irregular in both size and shape while magnetic components generally tend to be
spheroidal. However, observations of fly ash from thermal power plant showed that both magnetic
and non-magnetic grains have almost spherical forms of various sizes, From the SEM results if can
conclude that particles have either a smooth or corrugated surface.
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The SEM-EDS results, shown in Figure 5a,b, indicate that the UB and PL samples contain variable
amounts of Fe. The EDX analyses of magnetic fly ash indicate that the grains are mostly iron oxides
although these oxides of metals were regularly present in incrustations, and some empty form.
Moreover, EDX analyses reveal that the main elements are Fe and Si with Mg, Al, and K as minor
elements. Although aluminum is primarily associated with silicon. Moreover, based on SEM and
EDX analyses, the magnetic grains from the UB and PL samples were derived from different sources
regarding the fossil fuel combustions or furnaces conditions. In fact, formation of such particles may be
described in a plausible mechanism: (a) prior to fusion and melting, the mineral matters observed in
coal (both extrinsic and intrinsic) undergo some transformations, (b) next, the melted matters condense
and form smaller spheroidal particles, and (c) iron oxide (Fe+2, Fe+3)/elemental Fe (obtained from iron
carbonate in fly ash) deposit on the surfaces of these spheroidal particles.

Sokol studied the condensation phenomena of iron oxides/elemental iron on the surface of the
alumino-siliceous particles [40]. Other studies have also highlighted such interesting conclusions
regarding the crystallite deposition on the surface of the magnetic components (e.g., Shoumkova [36],
and Bourliva, et al. [41]). Accordingly, crystal deposition can take place in diverse forms and
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shapes. Some magnetic particles, particularly those are related to finer fractions, are cauterized
by perfect spheroidal shapes with well-classified crystallites on the surfaces. Such particles are
morphologically classified in other studies as Ferrospheres (e.g., Zhang, et al. [42], Anshits, et
al. [43], Anshits, et al. [44], Anshits, Fedorchak, Zhizhaev, Sharonova and Anshits [43]). The
morphologies of the non-magnetic components and magnetic components of fly ash are completely
different. The non-magnetic components usually have a high carbon content.
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4. Conclusions

Fly ashes are sources of many characteristic mineralogical and morphological forms of technogenic
magnetic particles. The difference in the magnetic behavior of these particle refers to their mineralogical
composition and crystalline structure morphology. In this research, we investigated fly ash from thermal
power plants in the northern part, Vietnam. Both samples were analyzed for mineralogy by XRD
analysis and SEM-EDS. The SEM imaging of PL fly ash sample shows a majority of spherical particles,
which is also seen in the magnetic extracts. Investigating the morphological characteristics and the
composition of fly ash give useful information on the combustion processes residual especially in the
field of materials. As the main output of this study, we conclude that magnetic fractions are mainly
composed of magnetite hematite and, to a lower rate, quartz, and mullite. However, after performing
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the chemical analyses, it is found that the non-magnetic components consist of quartz and mullite as
their primary mineral phases.
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