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Abstract: In the fields of neuroscience and biomedical signal processing, spike sorting is a crucial step
to extract the information of single neurons from extracellular recordings. In this paper, we propose a
novel deep learning approach based on one-dimensional convolutional neural networks (1D-CNNs)
to implement accurate and robust spike sorting. The results of the simulated data demonstrated that
the clustering accuracy in most datasets was greater than 99%, despite the multiple levels of noise
and various degrees of overlapped spikes. Moreover, the proposed method performed significantly
better than the state-of-the-art method named “WMsorting” and a deep-learning-based multilayer
perceptron (MLP) model. In addition, the experimental data recorded from the primary visual cortex
of a macaque monkey were used to evaluate the proposed method in a practical application. It was
shown that the method could successfully isolate most spikes of different neurons (ranging from two
to five) by training the 1D-CNN model with a small number of manually labeled spikes. Considering
the above, the deep learning method proposed in this paper is of great advantage for spike sorting with
high accuracy and strong robustness. It lays the foundation for application in more challenging works,
such as distinguishing overlapped spikes and the simultaneous sorting of multichannel recordings.
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1. Introduction

Analyzing the electrophysiological activities of neurons is a basis for exploring brain functions.
Neurons in the brain communicate with each other by propagating action potentials, also referred
to as “spikes” [1–3]. Hence, unraveling the interactions between different neurons is a key step to
advancing our understanding of brain science and neural engineering [4]. Prior to interpreting the
information carried by the interactions, an essential operation is to separate the spikes of individual
neurons picked up by an extracellular electrode [5]. That is, it is necessary to determine which spike
corresponds to which neuron, because each electrode records the extracellular field in its vicinity and
can detect the spikes emitted by several neurons adjacent to the electrode site [6–9]. This identification
is universally termed spike sorting [10–12], which is conducted on the basis of the similarity of spike
waveforms. The reason lies in the fact that each neuron fires spikes of a particular shape, depending
on the morphology of its dendritic tree, its distance and orientation relative to the recording site,
etc. [11,13].

In fact, there are usually four main steps in conventional approaches for spike sorting:
(1) Bandpass-filtering (e.g., 300–3000 Hz) the recorded raw data to eliminate the interferences of
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high-frequency noise and low-frequency field potential; (2) detecting the spikes by determining an
amplitude threshold [14] or utilizing other improved methods [15], such as wavelet transforms [16]
and fuzzy decision [2]; (3) extracting discriminative features from the detected spikes, frequently
using approaches such as principal component analysis (PCA) [17–19] and wavelet transform
coefficients [14,20,21]; (4) grouping the points in feature space to obtain clusters associated with
individual neurons. Many classical and advanced methods have been adopted for this purpose, such as
superparamagnetic clustering (SPC) [14], k-means clustering [22], and a mixture of Gaussians [23,24].

In this paper, we focus on a clustering algorithm, i.e., how to correctly isolate spikes originating from
different neurons. Compared with semi-automatic methods [25,26], a fully automated process [27,28]
requires no human input, consequently reducing time consumption and subjective bias. However,
it sacrifices accuracy because it may ignore the distribution of clusters when a subset of a cluster exceeds
the implicit boundary [29]. Thus, it is indispensable to manually resort falsely classified spikes, which
is time-consuming and labor-intensive. Moreover, with the development of modern microelectronics
and electrophysiology, high-density microelectrode arrays containing hundreds of channels have been
widely applied in neuronal population recordings [3,30–32]. As a result, it is possible to simultaneously
record the firing activities of hundreds or even thousands of neurons [33], involving tremendous
amounts of data. Thus, current methods require substantial manual intervention, especially in long-term
experiments, which makes them slow and unreliable. Inevitably, false classifications affect the results
in subsequent analysis. Therefore, it is urgent to develop an effective method to reduce the workload
of manual classification while ensuring accuracy and robustness [34]. Here, in light of recent advances
in deep learning techniques [1,35], we took the manually classified spikes in an initial interval of
the experimental data as the “ground-truth” labels, which were used to train a convolutional neural
network (CNN) [36]. Then, this CNN could be used to automatically cluster the remaining data,
thereby drastically reducing the time needed for spike sorting with high accuracy.

As an important type of deep learning technique, the CNN has been successfully used in computer
vision since the early 21st century [36]. It performs well not only in object detection and brain image
analysis [37,38], but also in the medical research field [39–41]. In recent years, deep learning techniques
have also been used in spike detection and spike sorting. Yang et al. introduced a deep learning
algorithm, named the principal component analysis network (PCANet), to reduce the computational
complexity of conventional spike sorting algorithms [42]. However, the method did not show better
sorting performance on overlapped spikes. The SpikeDeeptector method employed a CNN to select
meaningful channels for brain–computer interfaces [15]. It considered a batch of waveforms to construct
a single feature vector, which were fed to a deep learning method. Unlike SpikeDeeptector, we used
a CNN to distinguish the categories of spikes in this paper. Both simulated data and experimental
data were employed to evaluate the performance of our proposed model. By using the “Wave_Clus”
database [43], we compared our proposed one-dimensional (1D)-CNN model with a recently developed
method named “WMsorting” [44] and a deep-learning-based multilayer perceptron (MLP) model [45].
“WMsorting” proposed a spike feature extraction method using wavelet packet decomposition and
mutual information. It is a semi-supervised solution for the automation of a spike sorting framework.
The MLP approach constituted a deep-learning-based spike sorting method on extracellular recordings
from a single electrode, improving on PCA + K-means clustering. We also compared our 1D-CNN
model to some traditional methods, such as a PCA-based feature extraction with fuzzy C-means
(FCM) clustering, a correlation coefficient-based (CORR) method with fuzzy clustering, first and
second derivative extrema (FSDE) of spike data combined with k-means clustering, and a fusion
feature strategy along with a support vector machine (SVM). Furthermore, we used the experimental
data recorded from the primary visual cortex of a macaque monkey to test our 1D-CNN model and
“WMsorting.”
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2. Materials and Methods

2.1. Architecture of the 1D-CNN Model

The standard architecture involved in a CNN includes the convolutional layer, rectified linear
activation function, pooling layer, and fully connected layer [36]. Figure 1 illustrates the proposed CNN
architecture working on a simulated database. The model contained four convolutional layers and two
pooling layers, followed by a fully connected neural network and a softmax classifier. The CNN model
used for the experimental data had a similar architecture. The only difference was the length of the
input layer, whereby the former had a value of 64 and the latter had a value of 12. The details of the
model are described as below.
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Figure 1. Architecture of the proposed convolutional neural network (CNN) model used in the
simulated database. The blue region corresponds to convolutional processes, and the red region
represents the pooling. The stride of all convolutional layers was 1.

Convolutional layer: The main building block of a CNN is the convolutional layer,
which completes most of the computationally intensive lifting and extracts features from the input
signals. In this paper, four convolutional layers were arranged into nine feature maps [36]. The original
intention for this choice was because, when the number of convolutional layers was greater than
four, the accuracy nearly stopped growing. For all convolutional layers, the stride was 1, the kernel
size was 3, and the padding was the same. If the stride is too small, the extracted features are more
comprehensive and do not miss too much information. Due to that, the stride was set to 1. Compared
with using a larger convolution kernel, using smaller convolution kernels can obtain more feature
information with a smaller amount of calculation. Thus, the kernel size of the convolutional layer was
set to 3. We filled the edges of the input matrix with zero padding, allowing us to filter the edges of the
input matrix. One of the advantages of zero padding was that it allowed us to control the size of the
feature map.
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Rectified linear activation function and regularization techniques: The rectified linear unit
(Relu) layer is used for addressing the problem of optimization by mapping nonlinearity into the
data [36]. The reason we chose Relu was that it could be used to alleviate the problem of gradient
disappearance. It was designed as an activation function for layers 1, 2, 4, 6, 7, and 8. The softmax
function was employed in layer 9 (last layer of the network). Using the softmax classifier, the prediction
of a cluster to which the input data belong can be realized. The batch normalization, which kept
the inputs closer to a normal distribution, was applied to the output of the convolutional layer.
The dropout [46], another regularization technique, was applied to reduce overfitting by randomly
setting the values of some input neurons to zero before the fully connected layers.

Pooling layer: The max pooling layer is implemented to reduce the computational complexity of
conventional sorting algorithms. Max pooling compares every pair of numbers and outputs the bigger
value. In this paper, two max pooling layers were used with a kernel size of 3. The stride was set to 1,
and the filter convolved around different layers of the feature map by sliding one unit each time.

Fully connected layer: The output dimensions of the final connected layer depend on the number
of classes. For an n-class (n kinds of spikes) problem, the output dimensions were set to n. There were
three kinds of spikes in the simulated data, that is, the number of output dimensions was three. In the
experimental data, we separately set-up the output dimensions for each channel, depending on the
number of clusters determined by the spike sorting algorithm and human intervention.

As shown in Figure 1, the input layer (layer 0) with a resolution of 64 × 1 was convolved with
32 filters of kernel size 3 to form the first layer (layer 1). The second convolutional layer with a kernel
size of 3 (64 filters) was applied to produce the second layer. A max pooling layer was employed with
a kernel size of 2 (layer 3). A convolutional operation was administered on layer 3 (32 × 64) to form
layer 4. The feature maps from layer 4 were once again pooled with a kernel size of 2 to construct the
last max pooling operation (layer 5). Then, another round of convolution was employed with a kernel
size of 3. The next three layers were the fully connected layers. The neurons of feature maps in layer 6
were fully connected to 300 neurons in layer 7. Layer 7 and layer 8 were respectively fully connected to
100 and n outputs in layers 8 and 9.

2.2. Simulated Database and Experimental Datasets

The simulated database created in “Wave_Clus” [14] has been widely used in the evaluation of
several spike sorting algorithms [42,44,47]. In total, 594 different average spike waveforms compiled
from real recordings were adopted as templates to construct simulated signals. Randomly selected
spikes were superimposed at random times and amplitudes to mimic the background noise. Then,
it was feasible to realize different signal-to-noise ratios (SNRs) by altering the ratio between the
amplitudes of the noise and signals. More details related to the generation of the simulated database
can be found in [43].

There were four big datasets used in our experiments, i.e., C_Easy1, C_Easy2, C_Difficult1,
and C_Difficult2. C_Easy1 contained eight noise levels ranging from 0.05 to 0.4 with a step of 0.05.
The other three datasets contained four levels ranging from 0.05 to 0.2. “Easy” and “difficult” were set
to characterize the overlapping degrees between spikes. Spikes of 64 sampling points were extracted
from the continuous data by using the ground-truth spike times denoted in each dataset. Obviously,
these spikes could be treated as labeled samples, making them suitable for testing our supervised deep
learning method. The sampling rate of the simulated database was 24 kHz. Detailed information of
the database is provided in Figure 2.

The experimental datasets were obtained from public databases (Collaborative Research in
Computational Neuroscience, CRCNS) [48,49]. The data were recorded from the primary visual
cortex (V1) of a macaque monkey with 64-site multi-electrode arrays (eight penetrations, eight sites
per penetration). The number of electrode contacts ranged from 65 to 128. After the spikes were
isolated via superparamagnetic clustering, manual resorting was conducted to avoid possible errors.
The sampling rate of the experimental datasets was 24.4 kHz. The dataset provided spikes of single
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neurons, including their waveforms and firing times. Here, we removed the channels with very few
spikes in at least one cluster (the number of spikes was less than 0.5% of the total), because there were
not enough labeled samples to train the 1D-CNN. Figure 3 lists the remaining channels with detailed
cluster information, which were used to test the performance of our deep learning method.Brain Sci. 2020, 10, x FOR PEER REVIEW 5 of 17 
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2.3. Training and Testing

Six experiments were performed for each dataset. The proportion of data used for the training
and testing procedures is illustrated in Figure 4. For each dataset, the training set separately held 5%,
10%, 20%, 30%, 40%, and 50% of the total data, and the corresponding testing set held the remaining
95%, 90%, 80%, 70%, 60%, and 50%, respectively. We separately used 50% of the total data in C_E1_015
and C_D1_015 as the training set and the remaining data as the validation set to adjust and evaluate
our model. When our model was determined, other datasets were used to evaluate the performance,
and they were divided into a training set and testing set.

To evaluate the performance of the model, accuracy, which was calculated as the percentage of
correctly classified samples over all data, was utilized to compute the score of the entire classification,
and it was used in the analysis of experimental data. In addition, considering the prevalent imbalance of
data distribution in the experimental data, the macro-average F-measure (Macro_F) was also employed
to describe the classification effects. Macro_F is more sensitive to the classification quality, and it is
defined as follows [50]:

Macro_F =
1
N

N∑
i=1

2× Pi ×Ri
Pi + Ri

(1)

where Pi = TPi/TPi + FPi is the recall, Ri = TPi/TPi + FNi is the precision, and N is the number of
clusters. TP denotes true positives, FP denotes false positives, and FN denotes false negatives.Brain Sci. 2020, 10, x FOR PEER REVIEW 7 of 17 
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3. Results

3.1. Simulated Database

In this section, the classification accuracy of the proposed 1D-CNN model is compared with
“WMsorting”, the deep-learning-based MLP model, and four traditional methods using the “Wave_Clus”
database. The four traditional methods utilized PCA-based and correlation-based (CORR) feature
extraction with FCM as the clustering method and two other public methods (fusion + SVM and FSDE
+ K-means). Details of these traditional methods can be found in [44]. The results for the data with
different noise levels are shown in Tables 1 and 2.
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Table 1. Comparison of classification accuracy on simulated database (using “WMsorting”).
1D, one-dimensional.

Dataset NL 1
WMsorting 1D-CNN

Improvement
F 2 = 3 F = 10 E1 3 E2 E3 E4 E5 E6

C_Easy1

005 99.60 99.52 99.64 99.53 99.40 99.63 99.67 99.77 0.17
010 99.66 99.57 99.52 99.72 99.82 99.88 99.86 99.94 0.28
015 99.71 99.63 99.61 99.49 99.82 99.84 99.81 99.77 0.13
020 99.57 99.48 99.33 99.33 99.64 99.84 99.76 99.88 0.31
025 99.45 99.42 99.55 99.56 99.81 99.74 99.85 99.70 0.40
030 99.57 99.48 99.49 99.65 99.71 99.18 99.62 99.71 0.14
035 99.43 99.38 99.49 99.43 99.65 99.56 99.20 99.60 0.22
040 99.76 99.70 99.35 99.51 99.56 99.79 99.75 99.82 0.06

C_Easy2

005 99.50 99.41 99.72 99.64 99.71 99.66 99.66 99.88 0.38
010 99.52 99.40 99.58 99.62 99.75 99.76 99.91 99.83 0.39
015 99.44 99.38 99.32 98.89 99.23 99.33 99.61 99.77 0.33
020 99.29 99.35 99.19 99.69 99.33 99.55 99.62 99.66 0.31

C_Difficult1

005 94.47 95.00 98.07 99.21 99.11 99.11 98.97 99.05 4.21
010 92.89 93.76 98.99 99.00 99.09 99.46 99.66 99.83 6.07
015 90.18 91.18 97.76 98.43 98.63 99.18 98.75 99.42 8.24
020 85.38 86.45 95.16 98.54 99.01 98.83 98.73 98.83 12.38

C_Difficult2

005 99.23 99.44 99.22 98.88 99.48 99.66 99.85 99.82 0.41
010 98.93 99.51 99.48 99.78 99.78 99.84 99.99 99.94 0.48
015 98.05 99.51 99.57 99.58 99.53 99.67 99.71 99.71 0.20
020 95.99 99.66 99.58 99.75 99.61 99.75 99.67 99.83 0.17

1 Noise level; 2 feature dimensions; 3 experiment.

Table 2. Comparison of classification accuracy on simulated database (using traditional methods and
deep-learning-based multilayer perceptron (MLP) model). PCA, principal component analysis; FCM,
fuzzy C-means; FSDE, first and second derivative extrema; CORR, correlation-based; SVM, support
vector machine.

Dataset NL 1
PCA + FCM FSDE +

K-means CORR + FCM Fusion
+ SVM MLP

1D-CNN

F 2 = 3 F = 10 F = 3 F = 3 F = 10 F = 10 E2 3

C_Easy1

005 99.37 99.35 94.62 97.50 97.38 98.66 99.26 99.53
010 99.72 99.72 95.54 94.04 96.45 98.98 99.43 99.72
015 99.25 99.28 94.45 90.54 94.94 98.22 99.25 99.49
020 99.40 99.40 95.08 88.77 92.43 97.35 99.19 99.33
025 99.24 99.24 84.41 86.84 95.45 99.56
030 98.73 98.59 81.50 80.83 88.66 99.65
035 97.76 95.16 77.02 73.80 83.22 99.43
040 96.49 68.54 75.58 64.62 78.12 99.51

C_Easy2

005 98.48 98.68 94.81 93.20 96.04 92.23 98.68 99.64
010 97.16 98.24 94.83 86.02 82.19 92.93 98.49 99.62
015 92.52 94.49 94.96 83.05 82.82 89.80 97.19 98.89
020 85.20 88.60 92.71 79.81 78.22 86.24 95.20 99.69

C_Difficult1

005 95.86 72.54 94.50 83.48 86.08 97.58 98.78 99.21
010 89.56 66.11 94.78 65.69 71.55 94.81 98.93 99.00
015 76.41 61.33 93.81 57.49 58.84 87.85 97.55 98.43
020 63.03 54.05 90.60 53.72 53.81 78.59 96.62 98.54

C_Difficult2

005 98.69 98.81 94.38 91.50 94.50 87.40 98.49 98.88
010 98.64 98.76 94.48 90.96 96.33 88.07 94.66 99.78
015 94.39 97.33 87.18 88.17 96.02 74.65 82.20 99.58
020 84.63 83.37 81.71 84.77 95.48 67.25 51.55 99.75

1 Noise level; 2 feature dimensions; 3 experiment.
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Although “WMsorting” showed relatively high accuracy on the C_Easy1, C_Easy2, and
C_Difficult2 datasets, it was not robust. The accuracy of “WMsorting” on C_Difficult1_020 was
85.38% and 86.45% when the feature dimensions were 3 and 10, respectively, which were much
lower than the results of other datasets. The feature dimension is an important parameter in sorting
evaluation, and it is determined with reference to the best Micro_F (micro-average F-measure) [51] score
of the PCA-based method. On the other hand, the accuracy of our proposed deep learning method
on C_Difficult1_020 was above 98% except for experiment 1, whose accuracy was 95.16%. That is,
even when we used only 5% of the spikes to train the 1D-CNN, we still obtained an accuracy
improvement of 8.71%. In fact, when the number of labeled spikes increased, i.e., in the other five
experiments, our results could enhance the clustering accuracy by more than 10% compared to
“WMsorting.” In the other datasets, although the enhancement was not so significant, our deep learning
method behaved better than “WMsorting.” Additionally, the improved accuracy is shown in the last
column of Table 1, indicating that the best accuracy of our proposed model was relatively higher than
the best accuracy of “WMsorting” on all datasets.

Compared to traditional methods, our proposed deep learning method had more obvious
advantages. Traditional methods worsened with increasing noise level for all datasets, with an error
rate as high as 46%, while our error rate was around 2%. For lower noise levels, our accuracy was still
better than that of traditional methods.

The deep-learning-based MLP model used 10% of the data nearest to the cluster centers as the
training data; thus, we used experiment 2 (10% of the total data as training set) in the last column of
Table 2. As can be seen, the deep-learning-based MLP model did not perform well with a higher noise
level, especially on the C_Difficult2_020 or C_Difficult2_015 datasets. The deep-learning-based MLP
model’s accuracy on C_Difficult2_020 was 51.55%, which was 42.8% lower than ours.

As the number of spikes used in the training set gradually increased (from 5% to 50% of the total),
the accuracy exhibited a slight tendency to increase (0.607% on average). It was also shown that 5%
(170 spikes) of the data were enough to train the proposed 1D-CNN model in most cases. On the other
hand, with the increase in noise level (from 5% to 20%), the accuracy had no significant reduction.
Both factors confirmed that our proposed deep learning method is robust.

Furthermore, we took experiment 6 for two datasets (C_Easy1_noise015 and C_Difficult1_noise015)
as an example to illustrate the results in more detail. First, we observed the accuracy of individual
classes by constructing confusion matrices, as shown in Figure 5a,b. Each row in the confusion matrix
represents a true label, while each column represents a predicted label. The bold percentages denote
the proportion of correct true labels for each cluster. Clearly, there was only a small difference between
the accuracy of individual classes and the overall accuracy, which is consistent with the balanced
spike distribution of each cluster in the “Wave_Clus” database. That is, the proposed 1D-CNN model
performed excellently for different clusters, indicating that it is an accurate and robust method for
spike sorting.

Moreover, the accuracy for the C_Difficult1_noise015 dataset was clearly lower than that for
C_Easy1_noise015. In order to explain the reason behind this, we plotted the correctly clustered spikes
in Figure 6 and the falsely classified spikes in Figure 6. Obviously, the spike waveform shapes of the
three clusters in C_Easy1_noise015 were quite different and relatively easy to distinguish. On the other
hand, the spike waveform shapes in C_Difficult1_noise015 were similar to each other and difficult
to distinguish.
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compared to the accuracy of 91.18% obtained using the “WMsorting” method, our proposed deep 
learning approach shows a significant improvement with an accuracy of 99.42%. 
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Figure 6. Waveforms of spikes in each cluster: (a–c) C_Easy1_noise015; (d–f) C_Difficult1_noise015.

Figure 7 shows all the falsely classified spikes and a small subset of the correctly classified spikes
in the two datasets. As illustrated in Figure 7a,b, only one spike in “Cluster 2” and three spikes in
“Cluster 3” in C_Easy1_noise015 were falsely classified due to their very similar shapes. The spikes
in “Cluster 1” in C_Easy1_noise015 were all correctly classified. On the other hand, there were more
falsely classified spikes in C_Difficult1_015. Clearly, they were severely distorted by the noise and had
similar shapes, which hindered their sorting into the corresponding clusters. However, compared to
the accuracy of 91.18% obtained using the “WMsorting” method, our proposed deep learning approach
shows a significant improvement with an accuracy of 99.42%.
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Figure 7. Falsely classified spikes and randomly selected correctly classified spikes: (a,b) C_Easy1_noise015;
(c–e) C_Difficult1_noise015.

In addition to clustering accuracy, the loss function is an evaluation index for the performance
of deep learning methods. Cross-entropy is a frequently used function that measures the degree of
difference between the actual outputs and expected outputs of a CNN model. In other words, a smaller
cross-entropy loss function denotes the two outputs being closer. On the other hand, the loss function
helps determine whether a model is overfitting or underfitting the data by comparing the training
loss and testing loss. The training and testing cross-entropy losses on both datasets (experiment 6
for C_Easy1_noise015 and C_Difficult1_noise015) are plotted in Figure 8. In our proposed model,
the training epoch was set to 50. Obviously, although there were occasional rises, the training loss and
testing loss decreased along with the increase in the number of epochs. The testing loss of C_Easy1_015
decreased to 0.01708 at the 50th epoch, and the testing loss of C_Difficult1_015 was 0.05861 at the
50th epoch. These values were small enough to demonstrate the robustness of our proposed model.
Furthermore, the small difference between the training loss and testing loss showed that our model
neither overfitted nor underfitted the data.
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3.2. Experimental Datasets

Similarly, six experiments with different proportions of training data were performed on the
extracellular recording spikes to further demonstrate the effectiveness of our method. In Figure 9, the
classification accuracies are presented according to the number of spike clusters (ranging from two to
five). It can be seen that most of the results achieved accuracies higher than 96.5% regardless of the
number of labels used to train the 1D-CNN. In fact, the average accuracy of all experiments was 96.53%,
which is an acceptable level. However, it should also be noted that the accuracies of some channels
were significantly lower than those of others. For example, in the 94th channel, the classification
accuracy of experiment 1 (5% of the data used as the training set) was 89.40%. The reason for this is
that the number of spikes in the training set was 218, which was not enough to effectively train the
1D-CNN model. When the number of training spikes increased, the classification accuracy improved,
e.g., it was 91.80% in experiment 2 (10% of the data used as the training set) and 94.60% in experiment
3 (20% of the data used as the training set).Brain Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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The above accuracies of each dataset were calculated as a function of the total spikes. As is
known, there is always an imbalanced data distribution in experimental datasets; thus, Macro_F is
an appropriate criterion to evaluate the classification quality. The results of this evaluation are given
in Table 3. Taking the 98th channel as an example, the accuracy in experiment 1 was 95.44%, but
the corresponding Macro_F score was 74.66%. Clearly, there was a great difference. The reason is
that the minimum number of spikes in the three clusters was 103 and the corresponding number of
spikes involved in the training set in experiment 1 was only 21. Obviously, this was not enough to
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adequately train the 1D-CNN to achieve a desirable output. It should also be noted that the Macro_F
score increased to >90% when the number of spikes in the training set was >30% of the total number of
spikes (i.e., experiments 4, 5, and 6). In fact, most Macro_F scores were above 95% in experiment 6.
In the 84th and 116th channels, scores of 99% were achieved. Thus, as long as there are enough spikes
for training the proposed 1D-CNN, it is very likely to obtain a close approximation of the ideal spike
sorting results.

The experimental data were also analyzed using “WMsorting”, and the Macro_F scores are
shown in Table 3. We separately carried out two experiments using “WMsorting” with three and ten
feature dimensions. We used the best obtained accuracy in each channel from our 1D_CNN model
and “WMsorting” to calculate the improvement. As can be seen, our 1D_CNN model provided a
better result.

Table 3. Macro_F scores on experimental datasets. 1D, one-dimensional.

Channels Number of
Clusters

WMsorting 1D_CNN
Improvement

F 1 = 3 F = 10 E1 2 E2 E3 E4 E5 E6

125 2 88.94 86.21 87.33 90.96 94.49 97.00 94.49 97.50 8.56
66 3 94.56 95.36 95.16 96.33 96.84 97.34 97.67 98.17 2.81
69 3 96.43 96.49 97.33 97.34 97.66 96.34 97.15 98.17 1.68
77 3 84.05 87.84 89.45 91.78 91.67 96.33 95.97 97.33 9.49
79 3 91.59 92.28 91.49 95.49 94.99 96.35 96.33 96.16 3.88
84 3 92.26 94.02 96.51 98.17 98.00 98.00 97.67 99.00 4.98
91 3 94.37 95.29 94.33 96.00 95.32 95.32 95.32 96.30 1.01
92 3 92.31 94.38 93.33 95.51 94.63 95.65 95.51 95.65 1.27
94 3 87.29 88.61 88.50 88.11 93.01 92.14 93.50 94.36 5.75
98 3 66.18 72.73 74.66 80.06 79.33 90.25 90.00 90.14 17.41
99 3 83.29 87.16 81.69 90.58 91.74 92.09 90.35 93.29 6.13
100 3 89.92 90.64 88.31 93.38 96.00 94.98 96.17 97.66 7.02
101 3 84.28 85.62 87.34 90.78 94.01 94.00 93.80 95.85 10.23
108 3 90.29 90.61 93.30 94.34 94.65 95.67 94.87 95.50 4.89
109 3 90.29 92.52 94.18 94.00 95.83 94.01 95.00 97.49 4.97
114 3 92.49 91.06 91.82 92.73 93.43 95.66 96.99 96.32 3.83
115 3 89.90 88.61 91.33 92.78 94.44 94.62 95.63 96.14 6.24
122 3 86.11 90.60 90.35 93.30 94.44 96.84 95.97 96.01 5.41
124 3 79.23 85.07 86.72 88.24 88.48 93.77 92.68 96.83 11.76
67 4 85.34 87.06 93.54 94.47 93.48 95.99 95.84 96.36 9.30
68 4 78.06 80.35 81.99 84.10 88.03 92.00 90.17 90.80 10.45
70 4 85.96 88.72 89.01 92.02 92.99 94.99 93.72 95.24 6.52
83 4 84.19 86.10 92.43 94.25 94.52 93.52 94.35 96.76 10.66
95 4 88.06 89.79 92.86 90.61 93.17 92.94 93.54 96.07 6.28
107 4 85.10 86.71 91.21 93.83 95.76 96.49 95.65 95.01 8.30
116 4 84.12 86.19 95.44 94.97 95.68 98.62 98.75 99.00 12.81
82 5 46.22 53.58 67.72 72.47 78.41 80.27 78.43 83.63 30.05
126 5 86.17 89.65 97.19 97.49 97.38 98.39 98.59 98.40 8.75

1 Feature dimensions; 2 experiment.

4. Discussion

In this paper, we designed a 1D-CNN model to improve the accuracy and robustness of spike
sorting. The novel deep learning method exhibited a high sorting accuracy in the simulated database,
even when the data suffered from severe noise. In the experimental datasets, our proposed model still
performed well in classifying the spikes recorded by the extracellular electrodes in the primary visual
cortex of a macaque monkey. Thus, it is reasonable to conclude that our proposed model showed a
good performance in terms of accuracy and robustness.

There were two factors influencing the performance of the method, i.e., sampling points and
labels. First, the number of sampling points in each spike had a significant impact on the accuracy.
As shown in Table 1, the accuracies of C_Easy1_015 and C_Difficult1_015 in experiment 6 are 99.77%
and 99.42%, respectively. However, when we downsampled the spike waveforms from 64 points to
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16 points, the corresponding accuracies were reduced to 99.14% and 87.91%. Clearly, the reduction seen
for the C_Difficult1_015 dataset was much greater than that seen for C_Easy1_015. This is because the
spike waveforms of different clusters in C_Difficult1_015 were more similar to each other. The lower
accuracies of the experimental datasets with 12 sampling points also verified this effect. That is, with
fewer spike sampling points, it was more difficult for 1D-CNN to cluster the data correctly. A possible
reason is that the 1D-CNN could not “learn” enough features from the limited spike sampling points.
Secondly, as with other deep learning approaches [15,52,53], the number of labels in the training set
was of great importance to the clustering accuracy. From the previous analysis of simulated data,
it was found that the accuracy could reach over 99.5% when there were more than 60 training spikes of
each cluster available in the “easy” datasets. Moreover, the 1D-CNN needed at least 120 spikes of each
cluster, with over 98.4% accuracy guaranteed in the “difficult” datasets. As far as the real data were
concerned, considering fewer sampling points and severe noise, there should be more than 200 training
spikes of each cluster to obtain an accuracy of 95%. Thus, there is no doubt that the accuracy increases
with the number of training spikes. When considering both factors, a sufficient number of spikes with
enough sampling points in the training set can reliably guarantee a high accuracy and strong robustness.
On the other hand, it is time-consuming and laborious to obtain a large number of training spikes.
Therefore, it will be necessary to find a tradeoff between performance and cost in real applications.

Although “WMsorting” is a semi-supervised algorithm [54], whereas the method presented here is
fully supervised, the degree of manual interventions was almost the same. There were about 170 spikes
in the training set for experiment 1 using our proposed method and 180 spikes using “WMsorting.”
Hence, the workload when using our method with respect to labeling is equivalent to that when using
a semi-supervised algorithm. Meanwhile, the accuracy of our proposed deep learning method was
improved with respect to “WMsorting,” especially for the “difficult” datasets.

Compared to traditional methods and the deep-learning-based MLP model [45], our proposed
1D-CNN model had more obvious advantages on robustness. With the increase in noise level for all
datasets, traditional methods worsened with an error rate as high as 46.28%, and the deep-learning-based
MLP model worsened with an error rate as high as 48.45%. Our error rate was around 2% for all
datasets, which was more robust.

We used the Anaconda software (4.4.10, Anaconda Company, Austin, USA) and implemented the
proposed CNN architecture using Keras in Python 3. When performed on a dataset with 1738 training
spikes and 1739 testing spikes using an Intel(R) Core(TM) i7-7820X central processing unit (CPU)
equipped with a Nvidia GeForce RTX 2070 graphics processing unit (GPU) and 16 GB random-access
memory (RAM), the model took approximately 17 s for training and 2 s for testing. This means that
our proposed deep learning method could classify a spike in one millisecond. If the performance of
the hardware were further improved, the computation time would be shorter. Thus, it is feasible to
apply our 1D-CNN method in online spike sorting.

5. Conclusions

We proposed a novel deep learning method based on a 1D-CNN, which can be used in online
or offline automatic spike sorting. In future works, we will improve this CNN model to effectively
cluster overlapping spikes and expand it to simultaneously classify multichannel recordings. As is well
known, the shapes of overlapping spikes can appear with various and complicated changes, whereby
the superposition time and the unit waveform are always different. This complicates spike sorting.
In addition, high-density multielectrode arrays have been used to record the firing activities of large
ensembles of neurons. Thus, a spike waveform may be recorded by multiple electrodes at the same
time. How to distinguish spikes simultaneously recorded by different electrodes then becomes another
important problem to be solved in spike sorting.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; validation, Y.W. and N.Z.; formal analysis,
X.L.; data curation, N.Z.; writing—review and editing, Z.L.; writing—original draft preparation, Y.W.; supervision,
X.L; funding acquisition, Z.L. All authors have read and agreed to the published version of the manuscript.



Brain Sci. 2020, 10, 835 14 of 16

Funding: This research was funded in part by the National Natural Science Foundation of China (61971374,
61871465, 61603327) and the Natural Science Foundation of Hebei China (F2017203010).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arel, I.; Rose, D.C.; Karnowski, T.P. Deep machine learning-a new frontier in artificial intelligence research.
IEEE Comput. Intell. Mag. 2010, 5, 13–18. [CrossRef]

2. Azami, H.; Escudero, J.; Darzi, A.; Sanei, S. Extracellular spike detection from multiple electrode array
using novel intelligent filter and ensemble fuzzy decision making. J. Neurosci. Methods 2015, 239, 129–138.
[CrossRef] [PubMed]

3. Berenyi, A.; Somogyvari, Z.; Nagy, A.J.; Roux, L.; Long, J.D.; Fujisawa, S.; Stark, E.; Leonardo, A.; Harris, T.D.;
Buzsaki, G. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals.
J. Neurophysiol. 2014, 111, 1132–1149. [CrossRef] [PubMed]

4. Obeid, I.; Wolf, P.D. Evaluation of spike-detection algorithms for a brain-machine interface application.
IEEE Trans. Biomed. Eng. 2004, 51, 905–911. [CrossRef] [PubMed]

5. Schmitzer-Torbert, N.; Jackson, J.; Henze, D.; Harris, K.D.; Redish, A.D. Quantitative measures of cluster
quality for use in extracellular recordings. Neuroscience 2005, 131, 1–11. [CrossRef]

6. Rey, H.G.; Pedreira, C.; Quian Quiroga, R. Past, present and future of spike sorting techniques. Brain Res.
Bull. 2015, 119, 106–117. [CrossRef]

7. Lefebvre, B.; Yger, P.; Marre, O. Recent progress in multi-electrode spike sorting methods. J. Physiol. Paris
2016, 110, 327–335. [CrossRef]

8. Franke, F.; Jaeckel, D.; Dragas, J.; Müller, J.; Radivojevic, M.; Bakkum, D.; Hierlemann, A. High-density
microelectrode array recordings and real-time spike sorting for closed-loop experiments: An emerging
technology to study neural plasticity. Front. Neural Circuits 2012, 6, 105. [CrossRef]

9. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 2004, 7, 446–451. [CrossRef]
10. Takekawa, T.; Isomura, Y.; Fukai, T. Accurate spike sorting for multi-unit recordings. Eur. J. Neurosci. 2010,

31, 263–272. [CrossRef]
11. Quiroga, R.Q. Spike sorting. Curr. Biol. 2012, 22, 45–46. [CrossRef] [PubMed]
12. Sukiban, J.; Voges, N.; Dembek, T.A.; Pauli, R.; Visservandewalle, V.; Denker, M.; Weber, I.; Timmermann, L.;

Grun, S. Evaluation of Spike Sorting Algorithms: Application to Human Subthalamic Nucleus Recordings
and Simulations. Neuroscience 2019, 414, 168–185. [CrossRef] [PubMed]

13. Gold, C.; Henze, D.A.; Koch, C.; Buzsaki, G. On the origin of the extracellular action potential waveform:
A modeling study. J. Neurophysiol. 2006, 95, 3113–3128. [CrossRef] [PubMed]

14. Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and
superparamagnetic clustering. Neural Comput. 2004, 16, 1661–1687. [CrossRef] [PubMed]

15. Saif-Ur-Rehman, M.; Lienkamper, R.; Parpaley, Y.; Wellmer, J.; Liu, C.; Lee, B.; Kellis, S.; Andersen, R.;
Iossifidis, I.; Glasmachers, T.; et al. SpikeDeeptector: A deep-learning based method for detection of neural
spiking activity. JNEng 2019, 16, 056003. [CrossRef]

16. Nenadic, Z.; Burdick, J.W. Spike detection using the continuous wavelet transform. IEEE Trans. Biomed. Eng.
2005, 52, 74–87. [CrossRef]

17. Harris, K.D.; Henze, D.A.; Csicsvari, J.; Hirase, H.; Buzsaki, G. Accuracy of tetrode spike separation as
determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 2000, 84, 401–414.
[CrossRef]

18. Shoham, S.; Fellows, M.R.; Normann, R.A. Robust, automatic spike sorting using mixtures of multivariate
t-distributions. J. Neurosci. Methods 2003, 127, 111–122. [CrossRef]

19. Einevoll, G.T.; Franke, F.; Hagen, E.; Pouzat, C.; Harris, K.D. Towards reliable spike-train recordings from
thousands of neurons with multielectrodes. Curr. Opin. Neurobiol. 2012, 22, 11–17. [CrossRef]

20. Letelier, J.C.; Weber, P.P. Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Methods
2000, 101, 93–106. [CrossRef]

21. Hulata, E.; Segev, R.; Ben-Jacob, E. A method for spike sorting and detection based on wavelet packets and
Shannon’s mutual information. J. Neurosci. Methods 2002, 117, 1–12. [CrossRef]

http://dx.doi.org/10.1109/MCI.2010.938364
http://dx.doi.org/10.1016/j.jneumeth.2014.10.006
http://www.ncbi.nlm.nih.gov/pubmed/25455341
http://dx.doi.org/10.1152/jn.00785.2013
http://www.ncbi.nlm.nih.gov/pubmed/24353300
http://dx.doi.org/10.1109/TBME.2004.826683
http://www.ncbi.nlm.nih.gov/pubmed/15188857
http://dx.doi.org/10.1016/j.neuroscience.2004.09.066
http://dx.doi.org/10.1016/j.brainresbull.2015.04.007
http://dx.doi.org/10.1016/j.jphysparis.2017.02.005
http://dx.doi.org/10.3389/fncir.2012.00105
http://dx.doi.org/10.1038/nn1233
http://dx.doi.org/10.1111/j.1460-9568.2009.07068.x
http://dx.doi.org/10.1016/j.cub.2011.11.005
http://www.ncbi.nlm.nih.gov/pubmed/22280903
http://dx.doi.org/10.1016/j.neuroscience.2019.07.005
http://www.ncbi.nlm.nih.gov/pubmed/31299347
http://dx.doi.org/10.1152/jn.00979.2005
http://www.ncbi.nlm.nih.gov/pubmed/16467426
http://dx.doi.org/10.1162/089976604774201631
http://www.ncbi.nlm.nih.gov/pubmed/15228749
http://dx.doi.org/10.1088/1741-2552/ab1e63
http://dx.doi.org/10.1109/TBME.2004.839800
http://dx.doi.org/10.1152/jn.2000.84.1.401
http://dx.doi.org/10.1016/S0165-0270(03)00120-1
http://dx.doi.org/10.1016/j.conb.2011.10.001
http://dx.doi.org/10.1016/S0165-0270(00)00250-8
http://dx.doi.org/10.1016/S0165-0270(02)00032-8


Brain Sci. 2020, 10, 835 15 of 16

22. Chah, E.; Hok, V.; Della-Chiesa, A.; Miller, J.J.; O’Mara, S.M.; Reilly, R.B. Automated spike sorting algorithm
based on Laplacian eigenmaps and k-means clustering. JNEng 2011, 8, 016006.

23. Rossant, C.; Kadir, S.N.; Goodman, D.F.M.; Schulman, J.; Hunter, M.L.D.; Saleem, A.B.; Grosmark, A.;
Belluscio, M.; Denfield, G.H.; Ecker, A.S.; et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci.
2016, 19, 634–641. [CrossRef] [PubMed]

24. Kadir, S.N.; Goodman, D.F.; Harris, K.D. High-dimensional cluster analysis with the masked EM algorithm.
Neural Comput. 2014, 26, 2379–2394. [CrossRef]

25. Gibson, S.; Judy, J.W.; Markovic, D. Spike Sorting: The First Step in Decoding the Brain: The first step in
decoding the brain. ISPM 2012, 29, 124–143. [CrossRef]

26. Matthews, B.A.; Clements, M.A. Spike sorting by joint probabilistic modeling of neural spike trains and
waveforms. Comput. Intell. Neurosci. 2014, 2014, 643059. [CrossRef]

27. Tariq, T.; Satti, M.H.; Kamboh, H.M.; Saeed, M.; Kamboh, A.M. Computationally efficient fully-automatic
online neural spike detection and sorting in presence of multi-unit activity for implantable circuits. Comput.
Methods Programs Biomed. 2019, 179, 104986. [CrossRef]

28. Chung, J.E.; Magland, J.F.; Barnett, A.H.; Tolosa, V.M.; Greengard, L.F. A Fully Automated Approach to Spike
Sorting. Neuron 2017, 95, 1381–1394. [CrossRef]

29. Horton, P.M.; Nicol, A.U.; Kendrick, K.M.; Feng, J.F. Spike sorting based upon machine learning algorithms
(SOMA). J. Neurosci. Methods 2007, 160, 52–68. [CrossRef]

30. Frey, U.; Egert, U.; Heer, F.; Hafizovic, S.; Hierlemann, A. Microelectronic system for high-resolution mapping
of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 2009, 24, 2191–2198. [CrossRef]

31. Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.;
Andrei, A.; Aydin, C.; et al. Fully integrated silicon probes for high-density recording of neural activity.
Nature 2017, 551, 232–236. [CrossRef] [PubMed]

32. Spira, M.E.; Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnol.
2013, 8, 83–94. [CrossRef] [PubMed]

33. Harris, K.D.; Quiroga, R.Q.; Freeman, J.; Smith, S.L. Improving data quality in neuronal population recordings.
Nat. Neurosci. 2016, 19, 1165–1174. [CrossRef] [PubMed]

34. Huber, P.J. Robust Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; Volume 523.
35. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
36. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
37. Nadeem, M.W.; Ghamdi, M.A.A.; Hussain, M.; Khan, M.A.; Khan, K.M.; Almotiri, S.H.; Butt, S.A. Brain

Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sci.
2020, 10, 118. [CrossRef]

38. Ali, M.B.; Gu, I.Y.; Berger, M.S.; Pallud, J.; Southwell, D.; Widhalm, G.; Roux, A.; Vecchio, T.G.; Jakola, A.S.
Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular
Subtypes in Low Grade Gliomas. Brain Sci. 2020, 10, 463. [CrossRef]

39. Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.-Z. Deep learning for health
informatics. IEEE J. Biomed. Health Inform. 2017, 21, 4–21. [CrossRef]

40. Greenspan, H.; Van Ginneken, B.; Summers, R.M. Guest editorial deep learning in medical imaging: Overview
and future promise of an exciting new technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159. [CrossRef]

41. Fujita, H.; Cimr, D. Computer aided detection for fibrillations and flutters using deep convolutional neural
network. Inf. Sci. 2019, 486, 231–239. [CrossRef]

42. Yang, K.; Wu, H.; Zeng, Y. A Simple Deep Learning Method for Neuronal Spike Sorting. In Proceedings
of the 2017 International Conference on Cloud Technology and Communication Engineering (CTCE2017),
Guilin, China, 18–20 August 2017; p. 012062.

43. Quiroga, R.Q. Wave_Clus: Unsupervised Spike Detection and Sorting. 2017. Available online: https:
//vis.caltech.edu/~{}rodri/Wave_clus/Wave_clus_home.htm (accessed on 10 November 2020).

44. Huang, L.; Ling, B.W.; Cai, R.; Zeng, Y.; He, J.; Chen, Y. WMsorting: Wavelet Packets Decomposition and
Mutual Information Based Spike Sorting Method. IEEE Trans. NanoBiosci. 2019, 18, 283–295. [CrossRef]
[PubMed]

45. Park, I.Y.; Eom, J.; Jang, H.; Kim, S.; Hwang, D. Deep Learning-Based Template Matching Spike Classification
for Extracellular Recordings. Appl. Sci. 2019, 10, 301. [CrossRef]

http://dx.doi.org/10.1038/nn.4268
http://www.ncbi.nlm.nih.gov/pubmed/26974951
http://dx.doi.org/10.1162/NECO_a_00661
http://dx.doi.org/10.1109/MSP.2011.941880
http://dx.doi.org/10.1155/2014/643059
http://dx.doi.org/10.1016/j.cmpb.2019.104986
http://dx.doi.org/10.1016/j.neuron.2017.08.030
http://dx.doi.org/10.1016/j.jneumeth.2006.08.013
http://dx.doi.org/10.1016/j.bios.2008.11.028
http://dx.doi.org/10.1038/nature24636
http://www.ncbi.nlm.nih.gov/pubmed/29120427
http://dx.doi.org/10.1038/nnano.2012.265
http://www.ncbi.nlm.nih.gov/pubmed/23380931
http://dx.doi.org/10.1038/nn.4365
http://www.ncbi.nlm.nih.gov/pubmed/27571195
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3390/brainsci10020118
http://dx.doi.org/10.3390/brainsci10070463
http://dx.doi.org/10.1109/JBHI.2016.2636665
http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1016/j.ins.2019.02.065
https://vis.caltech.edu/~{}rodri/Wave_clus/Wave_clus_home.htm
https://vis.caltech.edu/~{}rodri/Wave_clus/Wave_clus_home.htm
http://dx.doi.org/10.1109/TNB.2019.2909010
http://www.ncbi.nlm.nih.gov/pubmed/30951475
http://dx.doi.org/10.3390/app10010301


Brain Sci. 2020, 10, 835 16 of 16

46. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

47. Wu, T.; Zhao, W.; Keefer, E.; Yang, Z. Deep compressive autoencoder for action potential compression in
large-scale neural recording. JNEng 2018, 15, 6. [CrossRef]

48. Chu, C.C.; Chien, P.F.; Hung, C.P. Multi-electrode recordings of ongoing activity and responses to parametric
stimuli in macaque V1. CRCNS 2014, 61, 41–54. [CrossRef]

49. Chu, C.C.; Chien, P.F.; Hung, C.P. Tuning dissimilarity explains short distance decline of spontaneous spike
correlation in macaque V1. Vision Res. 2014, 96, 113–132. [CrossRef]

50. Hou, Y.; Zhou, L.; Jia, S.; Lun, X. A novel approach of decoding EEG four-class motor imagery tasks via scout
ESI and CNN. JNEng 2020, 17, 016048. [CrossRef]

51. Özgür, A.; Özgür, L.; Güngör, T. Text categorization with class-based and corpus-based keyword selection.
In International Symposium on Computer and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 606–615.

52. Rácz, M.; Liber, C.; Németh, E.; Fiáth, R.; Rokai, J.; Harmati, I.; Ulbert, I.; Márton, G. Spike detection and
sorting with deep learning. J. Neural Eng. 2020, 17, 016038. [CrossRef]

53. Saif-Ur-Rehman, M.; Ali, O.; Lienkaemper, R.; Dyck, S.; Metzler, M.; Parpaley, Y.; Wellmer, J.; Liu, C.; Lee, B.;
Kellis, S. SpikeDeep-Classifier: A deep-learning based fully automatic offline spike sorting algorithm. arXiv
2019, arXiv:1912.10749. [CrossRef]

54. Huang, G.; Song, S.; Gupta, J.N.D.; Wu, C. Semi-Supervised and Unsupervised Extreme Learning Machines.
IEEE Trans. Cybern. 2017, 44, 2405–2417. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1741-2552/aae18d
http://dx.doi.org/10.6080/K0J1012K
http://dx.doi.org/10.1016/j.visres.2014.01.008
http://dx.doi.org/10.1088/1741-2552/ab4af6
http://dx.doi.org/10.1088/1741-2552/ab4896
http://dx.doi.org/10.1088/1741-2552/abc8d4
http://dx.doi.org/10.1109/TCYB.2014.2307349
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Architecture of the 1D-CNN Model 
	Simulated Database and Experimental Datasets 
	Training and Testing 

	Results 
	Simulated Database 
	Experimental Datasets 

	Discussion 
	Conclusions 
	References

