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Abstract: Diagnostics of Multiple Sclerosis (MS) are essentially based on the gold standard magnetic
resonance imaging. Few alternative simple assays are available to follow up disease activity.
Considering that the disease can remain elusive for years, identification of antibodies fluctuating
in biological fluids as relevant biomarkers of immune response is a challenge. In previous studies,
we reported that anti-N-glucosylated (N-Glc) peptide antibodies that can be easily detected in
Solid-Phase Enzyme-Linked ImmunoSorbent Assays (SP-ELISA) on MS patients’ sera preferentially
recognize hyperglucosylated adhesin of non-typeable Haemophilus Influenzae. Since multivalency
can be useful for diagnostic purposes to allow an efficient coating in ELISA, we report herein the
development of a collection of Multiple N-glucosylated Peptide Epitopes (N-Glc MEPs) to detect
anti-N-Glc antibodies in MS. To this aim, a series of N-Glc peptide antigens to be represented in the
N-GlcMEPs were tested in competitive ELISA. We confirmed that the epitope recognized by antibodies
shall contain at least 5-mer sequences including the fundamental N-Glc moiety. Using a 4-branched
dendrimeric lysine scaffold, we selected the N-Glc MEP 24, carrying the minimal epitope Asn(Glc)
anchored to a polyethylene glycol-based spacer (PEG) containing a 19-atoms chain, as an efficient
multivalent probe to reveal specific and high affinity anti-N-Glc antibodies in MS.
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1. Introduction

Multiple Sclerosis (MS) is the most frequent, chronic, inflammatory, demyelinating, disabling
disease of the central nervous system, mainly caused by an autoimmune response to self-antigens in
genetically susceptible individuals. MS diagnosis and prognosis are mainly supported by magnetic
resonance imaging (MRI) that up to now is considered the gold standard diagnostic technique [1].
To the best of our knowledge, there is still no biological marker relevant not only for MS diagnosis
but also for its prognosis [2–4]. In the last few years, the role of autoantibodies in MS and their
identification have been re-evaluated [5–8]. In particular, a cell-based assay to detect antibodies to
myelin oligodendrocyte glycoprotein (MOG), one of the candidate protein autoantigens in MS, has been
proposed. However, the real antigen(s) responsible of anti-MOG antibody recognition in the assay
remain elusive.

Covid-19, triggering the coronavirus pandemic era we have been living in 2020, marks the return
of the old and familiar, but unfortunately misunderstood, enemy killing more human beings than
natural disasters: viruses, bacteria, and parasites killers that our modern world tried to fight mainly by
social distancing.

Historically, protein antigens isolated from biological material or reproduced by recombinant
technologies were used to detect antibodies, but this approach has sometimes turned out as unrealistic.
The main limiting factor depends on epitope recognition because of sequence mutations, incorrect folding,
lack of post-translational modifications (aberrant versus native), and nonspecific binding.

Peptides mimicking the appropriate epitopes can be valuable tools. In fact, peptides that can
be synthetically produced as unique molecules, can increase specificity of antibody recognition,
eliminating or minimizing potential cross-reactivity with structurally similar fragments in non-relevant
proteins [9–11].

Several Enzyme-Linked ImmunoSorbent Assays (ELISA) based on synthetic peptides have
been proposed to detect antibodies in different diseases like Acquired ImmunoDeficiency Syndrome
(AIDS), Infectious Bronchitis (IB), Severe Acute Respiratory Syndrome (SARS), and Bluetongue
(BT) [12,13]. However, peptide-based ELISA can have some practical limitations, such as the antigen
immobilization that can ultimately affects the sensitivity of the assay, particularly when short sequences
(7–8 amino acids) are used [14,15]. Surface functionalization and biomolecular interactions can
overcome these disadvantages, such as in the streptavidin-biotin system [16].

An interesting strategy to increase surface binding on the ELISA plate, improving sensitivity,
is based on multimeric peptide dendrimers. In particular, Multiple Antigen Peptides (MAPs) are an
optimal compromise between short peptide epitopes and recombinant or native antigens. It is widely
recognized, that surface antibody binding is increased by multivalent presentation of the antigen.
In fact, multivalent interactions can be collectively much stronger than the sum of the corresponding
monovalent interactions [17,18]. Therefore, MAPs represent a useful chemically unambiguous system to
explore antigen-antibody interaction, thanks to their shape and globular physical characteristics [19,20].

Moreover, aberrant Post-Translational Modifications (PTMs) of antigens, can play a fundamental
role in triggering antibodies. Particularly, the N-glycosylation has been described as possible PTM
involved in an antibody-mediated form of MS [21,22].

In previous studies, by a structure-based design, we developed a collection of synthetic
glycopeptides, characterized by β-turn structures optimally exposing the sugars as minimal epitopes.
We demonstrated that the β-d-glucopyranosyl moiety (Glc) linked to an Asn residue (N-Glc) on
the tip of the turn is fundamental for antibody recognition in an MS patients’ population. N-Glc is
a prokaryote-specific modification that is found in selected Gram-negative bacteria, where it is most
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commonly found on cell-surface proteins such as (autotransporter) adhesins, biosynthesized as part
of the three-protein HMW cluster including the N-glucosyl transferase HMW1C. We demonstrated
that anti-N-Glc peptide antibodies, easily detected by a Solid-Phase (SP)-ELISA [22,23], preferentially
recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae (NTHi) particularly the
C-terminal portion HMW1(1205-1526) termed HMW1ct. This was the first example of an N-glucosylated
native antigen that can be considered a relevant candidate for triggering pathogenic antibodies in
MS [24]. The protein HMW1ct is expressed as a mixture of three N-Glc variants containing 7, 8, and
9 Glc moieties on Asn residues inside the consensus sequence NX(S/T) in a 1:1:1 ratio. Since the
NTHi cell-surface adhesins are widely glucosylated, the N-Glc residues are likely to be exposed
conceptually in vivo in a multivalent shape, thus potentially favoring the emergence of a rough
immunological response.

In the present study, we aimed to reproduce multivalent exposure of N-Glc epitopes to increase
coating efficiency on the ELISA microplate for the detection of anti-N-Glc antibodies in MS, reminiscent
of an early infection. First of all, by ELISA experiments, both competitive and in solid-phase, we defined
the N-Glc epitopes (assuring the specificity and selectivity of autoantibody recognition), decreasing the
length of the originally developed N-glucosylated β-turn synthetic antigenic probes. Then, the best
efficiency of coating to the polystyrene ELISA plate was guaranteed, considering the concept of the
multivalency to increase the antibody binding affinity. In particular, the selected short epitopes were
conjugated to 4-branched dendrimeric lysine scaffolds creating Multiple N-Glucosylated Peptide
Epitopes (N-Glc MEPs). Therefore, the novel N-Glc MEPs were developed with the aim not only to
enhance the diagnostic performance of the assay but also the coating efficiency of the minimal epitopes
to the polystyrene ELISA plate.

2. Materials and Methods

2.1. Synthesis of the N-Glc Peptides

N-Glc peptide epitopes 2–22 (Tables 1 and 2) were synthesized following the Fmoc/tBu manual
strategy. Experimental details and analytical data of the synthetic molecules are reported in the
Supplementary Materials (Tables S1 and S2).

Table 1. Shortened N-glucosylated (N-Glc) sequences of CSF114(Glc).

Peptide Name Number N-Glucosylated Peptide Sequence

CSF114(Glc) (1) TPRVERN(Glc)GHSVFLAPYGWMVK
[Asn7(Glc)] CSF114(1–18) (2) Ac-TPRVERN(Glc)GHSVFLAPYGW-NH2
[Asn7(Glc)] CSF114(1–16) (3) Ac-TPRVERN(Glc)GHSVFLAPY-NH2
[Asn7(Glc)] CSF114(1–14) (4) Ac-TPRVERN(Glc)GHSVFLA-NH2
[Asn7(Glc)] CSF114(2–13) (5) Ac-PRVERN(Glc)GHSVFL-NH2
[Asn7(Glc)] CSF114(4–11) (6) Ac-VERN(Glc)GHSV-NH2
[Asn7(Glc)] CSF114(5–10) (7) Ac-ERN(Glc)GHS-NH2
[Asn7(Glc)] CSF114(6–9) (8) Ac-RN(Glc)GH-NH2

Table 2. N-Glc tri- and pentapeptides as synthetic antigens.

Glucosylated Core Peptide Glucosylated Tripeptides Glucosylated Pentapeptides

Selected NXT/S sequences

Ac-N(Glc)GS-NH2 (9);
Ac-N(Glc)GT-NH2 (10);
Ac-N(Glc)KS-NH2 (11);
Ac-N(Glc)KT-NH2 (12).

Ac-ERN(Glc)GS-NH2 (16);
Ac-ERN(Glc)GT-NH2 (17);
Ac-ERN(Glc)KS-NH2 (18);
Ac-ERN(Glc)KT-NH2 (19)

CSF114(Glc) Ac-N(Glc)GH-NH2 (13);
Ac-N(Glc)KH-NH2 (14)

Ac-ERN(Glc)GH-NH2 (20);
Ac-ERN(Glc)KH-NH2 (21)

[Asn31(Glc)]hMOG(30–50) Ac-N(Glc)AT-NH2 (15) Ac-KGN(Glc)AT-NH2 (22)
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2.2. Synthesis of N-Glc Multiple Epitope Peptides (N-Glc MEPs)

N-Glc MEPs 23–26 (see Section 3.4) were synthesized following the protocol described in the
Supplementary Materials. Analytical data are reported in Table S3.

2.3. Immunological Assays

Multiple Sclerosis (MS) patients’ sera samples were collected in the Multiple Sclerosis Clinical Care
and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology,
Federico II University (Naples, Italy). Sera samples were obtained for diagnostic purposes, from patients
and healthy blood donors who had given their informed consent, and stored at −20 ◦C until use.
The present study was conducted in accordance with the Declaration of Helsinki. All experimental
protocols performed were approved by the Ethics Committee 2006 and 2017 (protocol n. 120/06 and
160/17, respectively). The MS group consisted of relapsing-remitting MS (RR-MS) patients after a
diagnostic lumbar puncture, cerebrospinal fluid analysis, and MRI examination and fulfilled established
international diagnostic criteria [25,26]. Blood samplings in the patients’ group were performed during
the routine follow-up study, while the healthy control samples were carried out during routine health
checks or blood donations.

2.3.1. Inhibition ELISA

Ninety-six-well activated polystyrene ELISA plates (NUNC Maxisorb, Sigma Aldrich, Milano,
Italy) were coated with 1 µg per 100 µL of the type I’ beta turn glucosylated peptide CSF114(Glc) or
MEPs per well, in pure carbonate buffer 0.05 M (pH 9.6) and incubated at 4 ◦C overnight. Washing
steps were executed with an automatic Hydroflex microplate washer (Tecan Italia, Milano, Italy).
After five washes with washing buffer containing 0.9% NaCl and 0.05% Tween 20, nonspecific binding
sites were blocked with 100 µL per well fetal calf serum (FCS) buffer solution (10% in washing buffer)
at room temperature for 60 min.

Antibody affinity was measured following the inhibition methods reported elsewhere [27,28].
Semi-saturating sera dilution was calculated in preliminary titration curves (absorbance 0.7). Six different
concentrations of each synthetic antigenic peptide probe were used as inhibitors. Then, sera samples
at the selected dilution were incubated in parallel with increasing concentrations of the synthetic
shortened peptide sequences (range 1 × 10−10 to 1 × 10−4) for 60 min at room temperature. All inhibition
experiments were performed in duplicate or triplicate for each single MS patient’s serum positive to
CSF114(Glc) separately. All experiments were repeated at least twice on two different working days.

After three washes, uninhibited antibodies were identified by adding 100 µL/well of alkaline
phosphatase-conjugated anti-human immunoglobulin G (IgG, Sigma-Aldrich, Milano, Italy) diluted
1:8000 in washing buffer containing 10% FCS. The microplates were then incubated 3 h at room
temperature and, after three washes, 100 µL of substrate solution consisting of 1 mg/mL p-nitrophenyl
phosphate (Sigma-Aldrich, Milano, Italy) in 10% diethanolamine buffer (pH 9.8) were added.
After approximately 30 min, the reaction was stopped with 1M NaOH solution (50 µL/well), and the
absorbance was read in a multichannel ELISA reader (Tecan Sunrise, Männedorf, Switzerland) at 405 nm.
The selected ELISA microplates, coating conditions, reagent dilutions, buffers, and incubation times
were previously tested [24,29]. The relationship between peptide concentrations and the absorbance
values was represented graphically in absorbance inhibition percentage, and half-maximal response
concentration values (IC50) were calculated.

2.3.2. Solid-Phase ELISA (SP-ELISA)

Immunoassays, to detect IgM or IgG antibodies in sera, were performed by SP-ELISA coating the
synthetic peptides on 96-well plates (Nunc Maxisorp, Sigma−Aldrich, Milano, Italy).

Polystyrene 96-well ELISA plates were coated with a 10 µg/mL solution of diluted synthetic
peptides, independently, in pure carbonate buffer 0.05 M (pH 9.6). After overnight incubation at
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4 ◦C, plates were washed three times using washing buffer. Nonspecific binding sites were blocked
with 100 µL/well of fetal calf serum buffer (10% FCS in washing buffer) at room temperature for 1 h.
FCS buffer was removed and plates were incubated overnight with sera (diluted 1:100 in FCS buffer,
100 µL/well) at 4 ◦C. After three washes, plates were treated with 100 µL/well of anti-human IgG
or IgM alkaline phosphatase-conjugated specific antibodies diluted in FBS buffer (1:8000 and 1:200,
respectively). After 3 h of incubation at room temperature and three washes, 100 µL of substrate buffer
was added to each well. After 15–30 min incubation at room temperature, the absorbance of each plate
was read in a multichannel ELISA reader at 405 nm. The antibody levels are expressed as absorbance
in arbitrary units at 405 nm.

2.4. Statistical Analysis

Data are expressed as measured absorbance values at 405 nm calculated as the mean ± SD.
Statistical analysis was performed using the software GraphPad Prism version 6.01 (Graphpad
Software Inc., La Jolla, CA, USA). Descriptive statistics was used to calculate mean and standard
deviation for continuous variables and percentage for categorical variables. Mann–Whitney U tests
were used to compare antibody response distributions. Differences were deemed statistically significant
when p value < 0.05 (two-tailed test). Non-parametric Spearman’s rho and related 95% confidence
intervals were used to assess correlation between pair of tests. A p value < 0.05 (two-tailed test) was
considered as significant. Receiver Operating Characteristic (ROC) curve analysis was employed to
calculate cut-off values, establishing sensitivities and sensibilities.

3. Results

In previous studies, we reported the cross-reactivity between the N-glucosylated adhesin antigen
HMW1ct-Glc and anti-CSF114(N-Glc) IgG antibodies in MS patients’ sera by competitive ELISA [25].
The HMW1C from NTHi is one of the first examples of soluble bacterial protein glycosyltransferases
capable of performing N-glycosylation with simple hexoses (i.e., glucose) on asparagine residues in
conserved Asn-Xaa-Ser/Thr motifs [29,30]. On the other hand, CSF114(Glc) is a structure-based designed
21-mer peptide (TPRVERN(Glc)GHSVFLAPYGWMVK) that was optimized as a type I’ beta-turn
structure because of its ability to expose at the best, at position 7, the minimal, but fundamental
moiety Asn(N-Glc), in the epitope for autoantibody recognition in the solid-phase conditions of the
immunoenzymatic assay [31].

Starting from this assumption, preliminary experiments were performed to select the shortest
peptide sequences corresponding to the epitope(s) to be presented in multiple copies in fully
characterized multivalent Multiple Epitope Peptides (MEPs) to detect antibodies in MS patients’ sera
by SP-ELISA. The use of MEPs for specific antibody detection can pave the way for the development
of a simple tool to identify immune responses to aberrant glycosylations, such as N-glucosylation in
MS possibly linked to an early non-typeable Haemophilus influenzae bacterial infection.

3.1. Antibody Detection in Solid-Phase ELISA (SP-ELISA) Is Affected by the Length of the Peptide Antigen

First of all, we investigated the influence of the length of shortened peptide sequences of the
synthetic antigenic probe CSF114(Glc) on the efficiency both in antibody recognition and on the coating
in the SP-ELISA. At this purpose, the glucopeptide sequence was tightened down step-by-step and
the shortened peptides 2–5 (Table 1) derived from CSF114(Glc) were synthesized (as described in the
Supplementary Materials) and characterized using analytical Reverse-Phase High Performance Liquid
Chromatography (RP-HPLC) and ElectroSpray Ionisation Mass Spectrometry (ESI-MS) (Table S1).
The shortened peptide sequences were acetylated at the N-terminus and amides at the C-terminus,
in order to dislodge free terminal charges, which are not present in the native protein sequence and
might hamper the antibody recognition [32].

SP-ELISA, against pools of positive MS sera and healthy controls (Figure 1), clearly showed a
progressive decrease in antibody titre in parallel with the decrease in peptide length. In fact, the 12-mer
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glucopeptide 5 completely lost its ability to identify antibodies in SP-ELISA, possibly because of an
inefficient coating. Therefore 14 residues appeared to be the minimum length necessary for antibody
identification in SP-ELISA, probably because shorter immobilized glucopeptide sequences (<14) are
only partially prone to expose the epitope for antibody binding.
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Figure 1. Antibody titres (expressed as Absorbance values) in Multiple Sclerosis (MS) patients’ and
healthy blood donors’ sera against the glucopeptide antigens CSF114(Glc) (1), [Asn7(Glc)]CSF114(1–18)
(2), [Asn7(Glc)]CSF114(1–16) (3), [Asn7(Glc)]CSF114(1–14) (4), and [Asn6(Glc)]CSF114(2–13) (5).

3.2. Antibody Affinity of Shortened CSF114(Glc) Glucopeptide Sequences in Competitive ELISA: Shortening
CSF114(Glc) Does not Affect Antibody Epitope Recognition

Considering that SP-ELISA allows to evaluate fundamentally the relative antibody affinity that
depends on the exposure of the peptide in the solid-phase conditions of the assay, we also investigated
the absolute antibody affinity against the CSF114(Glc) shortened sequences by a competitive ELISA.
For this purpose, the N-glucosylated β-turn peptide structure CSF114(Glc) was tightened down again
step-by-step with the aim to identify the critical epitope displaying optimal antibody binding reactivity
in the competitive in vitro assay.

Further, we investigated the role of the amino acids surrounding the previously identified minimal
epitope Asn(N-Glc) [24]. In particular, we developed the synthetic shorter sequences 6–8 that were
tested in competitive ELISA in parallel to 2–5 (Table 1).

All the synthetic glucopeptides were used as inhibitors in competitive ELISA using anti-CSF114(Glc)
antibodies in one representative positive MS patient’s serum. The IC50 s were calculated applying the
non-linear regression least squares (ordinary) fit to the experimental data for each peptide, and values are
summarized in the Supplementary Materials (Table S4). As shown in Figure 2, the full length CSF114(Glc)
showed the highest degree of binding affinity (IC50 = 0.009µM, Table S4 in the Supplementary Materials).
Despite 14 residues are the minimum for antibody recognition in SP-ELISA, the inhibitory activity
is still optimal when the epitope region is included in ca. 11 amino acid residues as 5 and 4 display
(IC50 = 0.035µM and 0.014µM, respectively). On the other hand, the 4-mer glucopeptide 8 and the 6-mer
glucopeptide 7 displayed the lowest inhibitory potency (IC50 = 2.2 µM and 3.5 µM, respectively), but,
in any case, all are able to inhibit antibodies.
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with the glucopeptide CSF114(Glc) in a competitive ELISA. The results are expressed as percentage of
inhibition activity of representative MS serum (ordinate axis) versus the peptide concentrations (M) in
logarithmical scale.

3.3. Study of the Possible Role of a Consensus Sequence Surrounding N(Glc) in Antibody Recognition

Taking into consideration that shorter glucopeptides 6 and 8 displayed antibody affinity in
competitive ELISA, we decided to investigate a series of N-Glc tri- and pentapeptides as synthetic
antigens, undertaking a deductive approach to rule out N-glycosylation consensus sequences (sequons).

As a proof of concept, among the possible combinations of tripeptide sequons NX(T/S), we selected
the ones containing X = Gly or Lys. In particular, we synthesized N(Glc)GS (9), N(Glc)GT (10), N(Glc)KS
(11), and N(Glc)KT (12). Moreover, we synthesized N(Glc)GH (13) and N(Glc)KH (14), derived from
the original glucosylated core of CSF114(Glc), that did not correspond to a consensus sequence. Then,
we included the sequon N(Glc)AT (15), present both in the human myelin oligodendrocyte glycoprotein
(MOG) sequence [Asn31(Glc)]hMOG(30–50) (an antigenic immunodominant epitope recognizing also
antibodies in MS) [33], but also highly represented (3 out of 12 positions) in the C-terminal portion
HMW1(1205–1526), i.e., HMW1ct hyperglucosylated adhesin of non-typeable Haemophilus influenzae
(NTHi) (N at positions 3, 7, and 9) [25] together with N(Glc)GS (9). Moreover, considering that a
tripeptide sequence is probably not long enough for a good antigen-antibody interaction, the following
step in the identification of the epitope was to test the pentapeptides 16–22, including the sequons.
At this purpose the two amino acids placed in positions –B2 and –B1 in the CSF114(Glc) sequence were
added to allow the spatial hint in the shape of a β-turn, with Asn(Glc) on the tip. The same idea was
applied to the sequon N(Glc)AT (15), inserting amino acids in positions 29 and 30 of hMOG(30–50)
sequence, originally containing Asn(Glc) at position 31 [33].

Therefore, glucosylated tri- and pentapeptides 9–22 (Table 2) were synthesized, purified,
and characterized as described in detail in the Supplementary Materials.

The antibody affinity of tripeptides 9–15 and pentapeptides 16–22 was evaluated by competitive
ELISA compared to the original N-glucosylated β-turn peptide sequence (Figure 3). CSF114(Glc) was
coated onto the ELISA microplate and patients’ sera were incubated with different shortened peptide
concentrations. IC50 values were reported in the Supplementary Materials (Table S5).
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Inhibition curves of the tripeptides 9–15 and pentapeptides 16–22 are shown in Figure 3.
The original sequence of CSF114(Glc) presented the best inhibitory activity (IC50 = 0.34 µM, Table S5).
The shortest tripeptide probes 9–15 recognized anti-CSF114(Glc) antibodies even if with an affinity
lower than the synthetic glucosylated 21mer-peptide (Figure 1). Among all the tripeptides tested,
the glucopeptides Ac-N(Glc)KS-NH2 (11) and Ac-N(Glc)KT-NH2 (12) showed the best inhibitory
activity (IC50 = 1.1 and 0.97 µM, respectively, Table S5).

The longer linear sequences 16–22 exhibited high inhibition efficacy in competitive ELISA, better
than their corresponding tripeptide analogs 9–15. In particular, the pentapeptide Ac-ERN(Glc)KT-NH2

(19) presented the best inhibitory activity (IC50 = 0.54 µM, Table 3) followed by the pentapeptides
Ac-ERN(Glc)GT-NH2 (17) (IC50 = 0.58 µM) and Ac-KGN(Glc)AT-NH2 (22) (IC50 = 0.60 µM). This result
indicates that the IC50 values for N-Glc pentapeptides are closely similar, and no substantial differences
were observed among the pentapeptides tested, independently of the sequence.

Table 3. Receiver Operating Characteristic (ROC) analysis. Values obtained from ROC-analysis of N-Glc
MEPs 23–26 and the glycopeptide CSF114(Glc) (1) for the area under the curve, p value, established
cut-off and the corresponding sensitivity, specificity, and likelihood ratio.

Compound
Area Under Curve (AUC) Criterion Value and Coordinates

AUC Standard
Error (SE)

95% Confidence
Interval p-Value Cut-Off Sensitivity (%) Specificity (%) Likelihood

Ratio

N-Glc MEP (23) 0.5747 0.1073 0.3643 to 0.7850 0.4899 >1.057 17.65
(3.799 to 43.43)

92.31
(63.97 to 99.81) 2.294

N-Glc MEP (24) 0.5249 0.1100 0.3092 to 0.7406 0.8180 >0.6104 35.29
(14.21 to 61.67)

92.31
(63.97 to 99.81) 4.588

N-Glc MEP (25) 0.7511 0.09376 0.5673 to 0.9350 0.02023 >1.053 38.46
(13.86 to 68.42)

82.35
(56.57 to 96.20) 2.179

N-Glc MEP (26) 0.6380 0.1041 0.4339 to 0.8421 0.2018 >1.029 30.77
(9.092 to 61.43)

82.35
(56.57 to 96.20) 1.744

CSF114(Glc) (1) 0.6516 0.1049 0.4458 to 0.8573 0.1610 >0.7575 47.06
(22.98 to 72.19)

92.31
(63.97 to 99.81) 6.118
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3.4. N-Glc Multiple Epitope Peptides (N-Glc MEPs) to Mimic Multivalency in SP-ELISA

In order to mimic a multivalent presentation of the minimal but fundamental epitope Asn(N-Glc),
and increasing at the same time the efficiency in coating to the ELISA polystyrene plate of short linear
peptides, we synthesized different N-Glc MEPs based on a dendrimeric lysine scaffold, having in
common Asn(Glc) [34].

Starting from a lysine tetrameric core, we synthesized five N-Glc MEPs 23–26 bearing spacers of
different length: β-Alanine and two different polyethylene glycol-based spacers (PEG), containing 9-
and 19-atoms chain, respectively. The following antigens were selected: (i) the β-turn N-glucosylated
pentapeptide ERN(Glc)GH (12) and (ii) the simple minimal N-glucosylated asparagine epitope Asn(Glc).
The spacers were introduced to avoid steric hindrance possibly hampering antibody binding. The N-Glc
MEP structures are reported in Figure 4.

Brain Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 

Asn(Glc). The spacers were introduced to avoid steric hindrance possibly hampering antibody 
binding. The N-Glc MEP structures are reported in Figure 4. 

 
Figure 4. Collection of the synthetic N-Glc Multiple Epitope Peptides (MEPs). 

The N-Glc MEPs were synthesized starting from Fmoc4-Lys2-Lys-β-Ala-Wang resin, according 
to the general procedure described in details in the Supplementary Materials. The Fmoc-
Asn(βGlcAc4)-OH building block was synthesized according to the method developed by Paolini et 
al. [35]. N-Glc MEPs were acetylated on the N-terminal function. All the N-Glc MEPs were purified 
by semi-preparative RP-HPLC, and characterized by RP-HPLC and ESI-MS (Table S3). 

We assessed IgG isotype antibodies against N-Glc MEPs 23–26 in a cohort of 16 MS patients, 
previously selected on their reactivity to the original N-glucosylated type I’ β-turn peptide structure 
CSF114(Glc), and compared to 14 healthy blood donors as controls (Figure 5). 

 
Figure 5. Antibody responses (expressed as Absorbance values) against the synthetic N-Glc MEPs. 
Data distribution of IgG antibodies against the glucopeptide CSF114(Glc) and the synthetic N-Glc 

Figure 4. Collection of the synthetic N-Glc Multiple Epitope Peptides (MEPs).

The N-Glc MEPs were synthesized starting from Fmoc4-Lys2-Lys-β-Ala-Wang resin, according to
the general procedure described in details in the Supplementary Materials. The Fmoc-Asn(βGlcAc4)-OH
building block was synthesized according to the method developed by Paolini et al. [35]. N-Glc MEPs
were acetylated on the N-terminal function. All the N-Glc MEPs were purified by semi-preparative
RP-HPLC, and characterized by RP-HPLC and ESI-MS (Table S3).

We assessed IgG isotype antibodies against N-Glc MEPs 23–26 in a cohort of 16 MS patients,
previously selected on their reactivity to the original N-glucosylated type I’ β-turn peptide structure
CSF114(Glc), and compared to 14 healthy blood donors as controls (Figure 5).

The Receiver Operating Characteristic (ROC) analysis was employed to perform an accurate
comparative investigation of the performances of the different N-Glc MEPs, evaluating their
discrimination power at the different cut-off values. Sensitivity, specificity, and likelihood ratios
were also calculated [36]. Selected cut-off values, sensitivities, and the rest of the statistical parameters
are shown in Table 3 (ROC curves are reported in Figure S1 in the Supplementary Materials).
The characteristics of the curves, their shape and steepness, and their underlying area provide evidence
that the synthetic N-Glc MEPs are able to identify antibodies in MS patients’ sera.
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Despite N-Glc MEP 25 and 26 presented the best Area Under the Curve (AUC) values (0.7511 and
0.6380, respectively), observing the data distribution we assume that their ability to identify specific MS
antibodies is lower compared with N-Glc MEPs 23 and 24. This is justified with the increased means of
the antibody titers in controls compared to MS patients in both N-Glc MEP 25 and 26, which apparently
improved AUC and p values, but are due to non-specific interactions. In fact, the specificities calculated
for N-Glc MEPs 25 and 26 are sensibly decreased compared with CSF114(Glc) (82.35% and 92.31%,
respectively). Considering the sensitivity values, once the specificity is fixed in 92.31%, the N-Glc MEP
24 presented the best performance identifying as positive the 35.29% of the MS patients.

Consequently, we decided to deepen on N-Glc MEP 24 ability (containing only N-Glc moieties)
to recognize specific MS antibodies in patients’ sera. At this purpose, N-Glc MEP 24 was tested
against an increased number of MS patients’ sera (81) and healthy controls’ (30) sera, in parallel, to the
glucopeptide CSF114(Glc) as reference. Data distribution of IgG and IgM antibody titers identified by
SP-ELISA are reported in Figure 6A,B.

The non-parametric Mann–Whitney test was applied to evaluate significant differences between
MS patients’ and controls’ groups. The results showed significant differences (p value < 0.001, two-tailed
test) for CSF114(Glc), both for IgM and IgG-type antibodies. Slightly different results were observed in
the case of N-Glc MEP 24. In fact, the differences among groups were statistically significant when
IgM-isotype antibodies were detected (p value = 0.0001, two-tailed test). On the other hand, the IgGs
against the multivalent N-Glc MEP 24 showed no level of significance (p value = 0.3611, Two-tailed
test). In our opinion, the IgG antibody response as detected by N-Glc MEP 24 appears to be less specific
because it detects a “noise” level in the control group, forcing a decreased specificity to maintain
sensibility when selecting the corresponding cut-off.

Among the absorbance values of MS patients, the frequencies of the anti-CSF114(Glc) antibodies
significantly correlated with the ones against the N-Glc MEP 24 (p value < 0.0001, two-tailored);
the Spearman’s correlation coefficients (rho values) were r = 0.7507 and 0.7424 for IgG and IgM,
respectively (Figure 6C,D).

Then, we investigated the absolute antibody affinity of N-Glc MEP 24 in a competitive ELISA.
In a set of three MS positive sera tested in parallel, the multivalent N-Glc MEP 24 inhibited the binding
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of antibodies to the glycopeptide CSF114(Glc), giving rise to contrasting inhibition curves among the
different representative sera employed (Figure S2 in the Supplementary Materials). Data of serum
MS1 (Figure S2A in the Supplementary Materials) showed that the affinity of N-Glc MEP 24 was
lower than CSF114(Glc) (IC50 = 2.145 × 10−8 M and 5.200 × 10−7 M, respectively), whereas serum MS2
exhibited superimposable affinity (IC50 = 6.373 × 10−8 M and 6.088 × 10−8 M respectively). Moreover,
in MS3 serum IC50 was lower for N-Glc MEP 24 compared to CSF114(Glc) (IC50 = 2.145 × 10−8 M and
5.116 × 10−9 M, respectively). This finding indicates that the N-Glc MEP 24 shares similar epitopes,
all including the Asn(N-Glc) residue. In particular, its antibody affinity can be slightly different among
the MS patients, probably because of the differential innate and adaptive immune responses typical of
each subject.
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Data distribution of IgG (A) and IgM (B) antibody titers in 81 MS patients’ sera and 30 controls’ sera
identified by SP-ELISA against the peptide sequences CSF114(Glc) and the synthetic multivalent N-Glc
MEP 24. Data are expressed as mean values ± standard deviation with a significance level ** p < 0.001
(two-tailed Mann–Whitney non-parametric test). Selected cut-off values for each compound are plotted
in red. Correlation between CSF114(Glc) and N-Glc MEP 24 both for IgG (C) and for IgM (D) are shown.
The Spearman’s correlation coefficients (rho values) and the corresponding p values are reported in
each plot. Regressions lines are plotted in black (dashed lines show the 95% confidence interval of the
best-fit line).

4. Discussion

Multiple sclerosis diagnosis is still very challenging, relying on clinical and radiological criteria
and in the absence of “better explanations” [37], the development of simple diagnostics detecting
specific biomarkers is highly warranted. Moreover, native structures triggering specific antibodies in
Multiple Sclerosis (MS) are still uncharacterized. Consequently, surrogate antigens used to identify
antibodies in MS by ELISA are elusive. In spite of the fact that MS is considered mainly a T-cell
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mediated disease, the role of B-cells is increasingly appreciated. In this scenario, we demonstrated
for the first time that an aberrant N-glucosylation is part of a relevant epitope that was identified
by the structure-based designed β-turn 21-mer glucopeptide CSF114(Glc). This synthetic tool was
instrumental for the discovery of antibodies in an MS patients’ population preferentially recognizing
the hyperglucosylated bacterial adhesin of non-typeable Haemophilus influenzae. With the idea in mind
that multivalent presentation of glucosylated asparagine residues may occur in a variety of native
antigens, as in the case of citrullination in rheumatoid arthritis [38], we focused on the development of
a synthetic tool enhancing the role of multiple aberrant modifications versus amino acid sequences.
We simplified the antigen to be synthetically produced in a multiple format, taking into consideration
that peptide dendrimers are considered protein-like multivalent materials, whose architecture is a
key parameter for activity [39,40]. Therefore, we selected the multivalent epitope peptide N-Glc MEP
24, based on a lysine-dendritic scaffold (relatively simple to be produced), carrying four copies of
the minimal glucosylated epitope Asn(Glc) anchored to a PEG-based spacer containing a 19-atoms
chain [41]. In previous studies, we demonstrated that CSF114(Glc) shortened epitopes lost specificity
and sensitivity for IgM antibodies in MS patients’ sera by SP-ELISA [29], sensibly decreasing the
diagnostic potential of the synthetic antigen. On the contrary, N-Glc MEP 24 displays an interesting
ability to identify in SP-ELISA both IgG and IgM antibodies in a large number of MS patients’ sera (81)
compared to controls (30), with a sensitivity of 35% (95% CI: 14.21–61.67) and a specificity of 92.31
(95% CI: 63.97–99.81). This result is particularly relevant, since it offers the possibility to detect with
the same tool both IgMs and IgGs in MS, thus increasing the diagnostic and prognostic value of the
antigen thanks to multivalent presentation of the minimal epitope [24].

5. Conclusions

The present study reported the development of new N-glucosylated Multivalent Epitope Peptides for
the detection of anti-N(Glc) antibodies in Multiple Sclerosis. After a preliminary screening of several short
linear peptide epitopes and multiple epitope peptides, the promising results suggest that multivalent
interaction can be useful in designing SP-ELISA to detect antibodies to aberrant N-glucosylation in
Multiple Sclerosis for both diagnostic and prognostic purposes. Indeed, the multivalent N-Glc MEP 24
ligand, carrying the minimal glucosylated epitope Asn (Glc) anchored to the 19-atoms PEG-based spacer,
can be an efficient probe to reveal both IgM and IgG autoantibodies as disease biomarkers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/7/453/s1.
Details of the synthetic procedures, analytical and immunochemical characterization of the synthetic antigenic
probes are reported online. Table S1: Shortened CSF114(Glc)-sequences of peptides 2–8., Table S2: Sequences
and chemical data for the N-glucosylated (N-Glc) peptides 9–22, Table S3: Analytical data of the Multiple
N-glucosylated Peptide Epitopes (N-Glc MEPs) 23–26, Table S4: Calculated half maximal inhibitory concentration
(IC50). Calculated Log 1/IC50 with the Std errors and the IC50 with the Corresponding Confidence Interval
(CI) for the shortened peptides versus CSF114(Glc), Table S5: Calculated Log 1/IC50 with the Std errors and
the IC50 with the Corresponding Confidence Interval (CI) for the Peptides 9–22 and CSF114(Glc) (1), Figure S1:
Received Operating Characteristic (ROC) analysis. ROC curve analysis of anti-CSF114(Glc) antibodies and
anti-N-Glc MEPs 23–26 in Multiple Sclerosis versus controls determined by SP-ELISA, Figure S2: Competitive
ELISA experiments with CSF114(Glc) and N-Glc MEP 24. Inhibition curves of anti-CSF114(Glc) antibodies with
N-Glc MEP 24 compared with CSF114(Glc) in a competitive ELISA. The results are expressed as percentage of
inhibition (ordinate axis) of three representative MS sera: MS1 (A), MS2 (B) and MS3 (C) versus the peptide
concentrations (M) in logarithmical scale.
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