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Abstract: Clinical diagnosis of amyotrophic lateral sclerosis (ALS) is difficult in the early period.
But blood tests are less time consuming and low cost methods compared to other methods for the
diagnosis. The ALS researchers have been used machine learning methods to predict the genetic
architecture of disease. In this study we take advantages of Bayesian networks and machine learning
methods to predict the ALS patients with blood plasma protein level and independent personal
features. According to the comparison results, Bayesian Networks produced best results with
accuracy (0.887), area under the curve (AUC) (0.970) and other comparison metrics. We confirmed
that sex and age are effective variables on the ALS. In addition, we found that the probability of onset
involvement in the ALS patients is very high. Also, a person’s other chronic or neurological diseases
are associated with the ALS disease. Finally, we confirmed that the Parkin level may also have an
effect on the ALS disease. While this protein is at very low levels in Parkinson’s patients, it is higher
in the ALS patients than all control groups.

Keywords: motor neuron disease; amyotrophic lateral sclerosis; Parkinson’s disease; machine
learning; Bayesian networks; predictive model

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a rare neurological disorder mainly caused by
progressive degeneration of upper and lower motor neurons. Currently, it is not possible
to cure or stop the progression of this disease [1]. ALS may initially affect only one hand
or only one leg, making it difficult to walk in a straight line. As the disease progresses,
severe muscle weakness, decrease in muscle mass, impaired speech, swallow, fine and
gross motor function, and respiratory weakness occur in patients. These lead to paralysis
and death usually within 2–5 years following diagnosis [2].

ALS is a multifactorial disease. Approximately 10% of ALS cases are familial (fALS)
and 90% of cases are sporadic (sALS) [3]. Although its etiology largely unknown, mutations
in various genes have been associated to the ALS [4,5]. There are also some underlying
biochemical mechanisms have been proposed, such as protein aggregation, endoplasmic
reticulum stress, oxidative stress, mitochondrial impairment, neuro-inflammation, apop-
totic cell death, glutamate excitotoxicity, abnormalities in RNA mechanisms, and abnormal
function of ubiquitin–proteasome system (UPS) [6].

ALS is typically an adult-onset disease although juvenile forms are present. There are
sex-dependent differences in disease development with a slight male predominance [7,8].
ALS can occur in people from all over the world from all ranks of people. Geographical
variations have been reported by different population-based studies for the incidence of
ALS which ranges 0.6 to 11 cases per 100.000 per year. The prevalence of ALS is between
4.1 and 8.4 per 100.000 persons (reviewed in [9]).
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Clinical diagnosis of ALS is difficult in the early period because the patients may not
show any upper or lower motor neuron signs [10]. In addition ALS symptoms can be
quite heterogeneous and show resemblance to many neurological diseases. Currently the
diagnosis is made according to El Escorial Criteria of the World Federation of Neurology
and based on complete neurological examination, radiological and electrophysiological
investigations [11]. All of these tests may take 3–6 months and cause delay between
emergence of early symptoms and diagnosis. It will be possible to prolong the patient’s
survival and improve the quality of life with more effective and earlier diagnosis of ALS.

Blood tests are less time consuming and low cost methods compared to other methods
for the diagnosis. In addition, the relationship between the values obtained with these
analyzes and other variables are very important. This study aims to develop a statistical
machine learning model for the prediction of risk of ALS using Parkin protein concentra-
tion in blood plasma. For this purpose data was obtained from an experimental study
investigating the potential use of Parkin protein as biomarker for the diagnosis of ALS.
Patient’s records including age, gender, disease onset, chronic disease information were
also obtained from the same study. In this paper, (1) we developed a predictive model
using Bayesian networks, (2) examined model performance by comparison with other
machine learning methods and (3) created queries based on patient type for evaluation of
afore-mentioned variables. In the literature, machine learning methods have been used
to examine the genetic architecture of the ALS disease [12]. This study is the first in the
literature with its specified features.

2. Materials and Methods

In this section, we summarized the data used in the study and explained the basic
steps of the experimental design of machine learning methods used to classify and predict
the ALS with ALS-related feature interactions. We described the application process of the
study in Figure 1.
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Figure 1. Modeling process with machine learning methods. 

In Figure 1, first step was clinical trials to obtain experimental data. Second step, 
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step, the data were modeled with Bayesian networks and other machine learning algo-
rithms, and obtained results were compared. Considering the comparison results, last 
step was evaluation. 

2.1. Participants 

Figure 1. Modeling process with machine learning methods.

In Figure 1, first step was clinical trials to obtain experimental data. Second step,
after the properties related to ALS were determined, was data pre-processing. In the
next step, the data were modeled with Bayesian networks and other machine learning
algorithms, and obtained results were compared. Considering the comparison results, last
step was evaluation.
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2.1. Participants

This data set has been obtained from an experimental study investigating the differ-
ences on the level of Parkin protein between blood plasma from the ALS patients and other
neurological cases including multiple sclerosis, frontal dementia and Parkinson’s disease.
There is no missing data in the data set, as the patients amnesia was taken in detail.

The characteristics of the subjects used in the study are given in the Table 1. We
confirmed that, sex, age, upper motor neurons (UMN), lower motor neurons (LMN),
Bulbar onset types, total number of chronic patience and Parkin level (ng/mL) are related
to disease type. Accordingly, 50.5% of the data in the study are from the ALS and 9.3% are
from Parkinson’s patients. The Neurological Control (N-Control) group includes people
with different neurological diseases other than these diseases. Control group consists of
completely healthy individuals. Totally 204 individuals are included. All patients were
diagnosed and treated by neurologists at Istanbul Medical University according to El
Escorial criteria [11].

Table 1. Characteristics of patients.

Feature Name Feature Value Freq. %Value

SEX
Female 79 38.7
Male 125 61.3

AGE

Below 36 29 14.2
Between 36–52 70 34.3
Between 52–67 79 38.7

Upper 67 26 12.7

UMN
No 129 63.2
Yes 75 36.8

LMN
No 178 87.3
Yes 26 12.7

BULBAR
No 182 89.2
Yes 22 10.8

Total Number of Chronic Patience

Five 1 0.5
Four 1 0.5
Three 12 5.9
Two 20 9.8
One 112 54.9

None 58 28.4

PARKIN Level (ng/mL)

Upper than 3.74 31 15.2
Between 2.79–3.74 17 8.3
Between 2.06–2.79 36 17.6
Between 1.36–2.06 52 25.5
Lower than 1.36 68 33.3

Patient type

ALS 103 50.5
Control 42 20.6

N-Control 40 19.6
Parkinson 19 9.3

2.2. Bayesian Networks

Bayesian networks are a graphical modeling approach that models the conditional
probabilistic relationships of certain independent variables. In a Bayes network model,
nodes correspond to variables, while arrows between nodes show the direct dependency
structure between these variables [13]. The direction of the arrow also indicates the direction
of the impact.
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The probability table for any given X node in the network expresses the values given
as X = x for the states of the parents of the node.

P(X) = P(X1 . . . Xn) =
n

∏
i=1

P(Xi|Pa(Xi)) (1)

These networks are widely used in medicine and biology [14–17]. Bayesian networks
are very useful in terms of ease of use of posterior probabilities especially in risk assessment
studies [17,18]. The ability to refine the network for new information makes the network
more useful and adaptive [19]. In addition, it provides to combine the relationships and
expert knowledge stated in the literature with the probabilities obtained from the data as
a prior probability. In this respect, it is superior to other machine learning methods [20].
Bayesian networks, which are statistically very strong due to the fact that they are based
on probability theory. They are accepted as hybrid methods hence they use both classical
statistical techniques and heuristic algorithms [21].

2.3. Other Machine Learning Methods

Machine learning (ML) methods are a subfield of artificial intelligence (AI) and are
becoming increasingly common in clinical research [12,22]. The ML methods are mainly
examined in three main categories as semi-supervised, supervised and unsupervised
algorithms [23]. Supervised learning methods aim to make predictions about unknown sit-
uations (e.g., disease type) based on known situations like age, gender, type of onset [12,23].
Classification, similarity detection and regression are among the most common tasks of
supervised machine learning methods [24].

In our study, we examined the following seven popular supervised machine learning
techniques with Bayesian Network: Artificial Neural Networks, Logistic Regression, Naïve
Bayes Algorithm, J48 Algorithm, Support Vector Machines, KStar Algorithm, and K-Nearest
Neighbor Algorithm. We investigate as extensively as possible in terms of computing the
best results for each machine learning method.

Artificial Neural Network (ANN), based on its learning and generalization abilities, is
one of the learning methods that imitate the human brain. These models basically have a
hidden layer and input and output layer. One of the most important advantages is that
it works on nonlinear, complex models and missing data. Models are optimized with
back propagation algorithms of faults during training. On the other hand, lack of rigid
hypotheses found in statistical methods makes the ANN advantageous in modeling [25,26].

Logistic regression (LR) is one of the most widely used methods in biology and
health science applications [27]. The LR differs from standard regression models due to
the structure of the dependent variable. However, as in linear regression models, the
relationships of dependent and independent variables are investigated in the LR. The most
important difference here is that the dependent variable in LR is dichotomous. In terms of
application, the LR is similar to standard linear regression [28]. In cases where there are
more than two situations, the LR can be applied to estimate the dependent variable [29].

Naïve Bayes (NB) Algorithm is one of the most important machine learning methods
based on Bayes Rule. This method is a classical Bayesian network based on the indepen-
dence of variables. Classes to be estimated in the NB method must be independent from
each other [30]. This method is one of the supervised learning algorithms. Despite being
simple, it produces very successful results in medical applications [31,32].

J48 algorithm is one of the most important decision tree algorithms decision trees
include popular machine learning algorithms [33]. This algorithm is a modified version
of ID3 [34] and c4.5 algorithms [35,36]. While this algorithm uses c4.5, c5.0, and ID3
algorithms to create the decision tree, criteria such as gini index, information gain or
entropy reduction are used for estimation [33,36]. Another important feature of it is that
it can make predictions by creating a smaller tree compared to other decision trees. This
enables the J48 algorithm to produce more successful results than its counterparts [37].
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Support Vector Machines (SVMs) are statistical algorithms that use statistical learning
theory to produce a consistent estimator using available data [25]. It tries to divide the data
into two basic categories. The n-dimensional hyperplane is produced for this reason [38].
Basically, if linear separation of data is possible, system optimization is done the linear
SVM. If not possible, quadratic optimization is provided with the non-linear SVM [38–40].
Models use kernel functions for this. The selected kernel function affects the performance
of the system. Different results can be obtained with different kernel functions.

KStar algorithm is one of the Instance-based learning algorithms in the WEKA pro-
gram [41]. It is a method that automatically reveals the number of clusters when the number
of clusters is unknown [42]. This algorithm uses entropy as a measure of distance [43]. In
this respect, the algorithm is similar to the kNN algorithm that uses entropy as a measure
of the distance of the data [44].

The k-Nearest Neighbor Algorithm (k-NN) determines the classification of data ac-
cording to its closest neighbors. This algorithm is one of the most popular algorithms
in data mining work [41]. It is preferred because of simplicity and ease of understand-
ability [45]. The similarity function with the k parameter value in the algorithm affects
the performance [46]. It calculates the probability of a data considered to be included in
the class of its neighbors based on the status of its nearest neighbor. In this respect, it is
superior to NN, which is a completely black box. However, it is difficult to determine the
distance between neighbors [25].

2.4. Classification Criteria

There are a variety of criteria that can be used to compare the performance of the
ML models, the choice of which depends on the structure of the data and nature of the
task [12,38,41]. In our study, the numbers of samples in each class are different from each
other. In addition, while there are generally two classes in the ML studies, we had four
different classes in this study. Increasing the number of classes can affect the results [47].
Since some methods used to evaluate the results are susceptible to unbalanced data, criteria
such as Geometric Mean and Youden’s index were also used in the evaluation [48].

The criteria used to determine the algorithms that are effective in this section are
given in the Table 2. These criteria were given as Accuracy (ACC), Geometric Mean (GM),
Error Rate (ERR), Precision (PREC), Sensitivity (SENS), Specificity (SPEC), F-Measure
(FM), Matthew’s correlation coefficient (MCC), Youden’s index (YI), Kappa (κ), False
Positive Rate (FPR), and Receiver Operating Characteristic (ROC) Area. Calculation of
these formulas is possible by using True positive (TP), True negative (TN), False positive
(FP), and False negative (FN) values. Given TP; correct positive prediction, FP; incorrect
positive prediction, TN; correct negative prediction, and FN; incorrect negative prediction
values are obtained from confusion matrixes.

Accuracy reflects the ratio of true positive and true negative predictions within the
total model estimates. The geometric mean is a metric that determines the balance between
the results of both the majority and minority subgroups in classification [49]. Accuracy
is affected by the changes in the class distribution, but geometric mean is not. For this
reason geometric mean is more suitable for the imbalanced dataset [48]. The error rate is
complementary to the accuracy. Unlike the measure of accuracy, this metric shows the
number of misclassified samples for both positive and negative classes. Precision represents
how many positive predictions were genuinely positive for the model. Sensitivity and
specificity, representing true positive and true negative rates, are complementary to each
other. Sensitivity, also known as the true positive rate, is the ratio of the number of correct
positive samples to the number classified as positive, while specificity is the ratio calculated
in the same way for negative samples [50].
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Table 2. Evaluation criteria formulas.

Criteria Formula

Accuracy ACC = (TP + TN)/(P + N)

Geometric Mean GM = sqrt ((TP/(TP + FN)) × (TN/(TN + FP)))

Error Rate EER = (FP + FN)/(TP + TN + FP + FN)

Precision PREC = TP/(TP + FP)

Sensitivity SENS = TP/(TP + FN)

Specificity SPEC = TN/(FP + TN)

F-Measure F-Measure = 2 × TP/(2 × TP + FP + FN)

Matthews
Correlation Coefficient

MCC = TP × TN − FP×FN/sqrt((TP + FP) × (TP + FN) × (TN +
FP) × (TN + FN))

Youden’s index YI = TPR + TNR − 1

Kappa Kappa = 2 × (TP × TN – FN × FP) / (TP × FN + TP × FP + 2 ×
TP × TN + FN2 + FN × TN + FP2 + FP × TN)

Overall Kappa Kappa = (p0 − pe)/(1 − pe)

p0 = observed accuracy; pe = expected accuracy

False Positive Rate FPR = FP/(FP + TN)

The equilibrium between precision and sensitivity is represented by the F-Measure.
Higher F-Measure indicates good classifier performance. This value is also equal to the
harmonic mean of sensitivity and precision [51]. The Matthew’s correlation coefficient
is the comparison coefficient that is least affected by unbalanced data and calculates the
correlation between observed and predicted classifications. Youden’s index assesses the
misclassifications potential of a classifier. The accuracy that can be obtained entirely by
chance is calculated by Kappa [52].

The Receiver Operating Curve plots the sensitivity against 1-Specificity to determine
an appropriate balance between true and false positive rates. ROC curve is one of the
important comparison criteria in clinical studies. This method uses the area under the curve
drawn in comparing the subclasses. The larger sum of the AUC shows better classification
results [53].

Also, 5-fold cross validation has been preferred for generating estimation results in
analyzes. The available data was divided into five, the first four pieces were used for
educational purposes and the last piece was used for testing [51]. 5-fold cross-validation is
one of the commonly used validation methods to increase model robustness [22].

3. Results
3.1. Bayesian Network Model

The Bayesian network model obtained from the data used is given in Figure 2. Arrows
show the relationship between variables in the network. The direction of the arrow also
indicates the direction of the impact. The network was created using GeNIe 2.1 Academic
version. GeNIe is a machine learning program based on Bayesian networks [54].

According to the Bayesian network model, the types of involvement, age, gender,
Parkin protein density and the number of diseases directly affect the type of disease. In
addition, it is observed that the types of involvement affect the number of diseases. Since
there is at least one disease in people except the control group, it is expected that the
involvement will affect the number of diseases. It is known that one of the most important
symptoms in the ALS disease is UMN involvement. In the model we obtained as a result of
the analysis, it was observed that the Parkin protein density affects the UMN involvement.
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3.2. Comparison Results of Methods

Other machine learning programs that were utilized for comparison were obtained
with the WEKA program. This program is Java-based open source software, created by the
University of Waikato to facilitate the realization of the ML algorithms [41].

Classification performances of the algorithms according to the classification criteria
stated previously are given in Tables 3 and 4. The generalized results are shown in Table 3
and the results obtained for each class are shown in Table 4. The best classification results
according to the criteria are marked in bold.

When the results are examined in general, it has been seen that Bayesian network
produces more successful results than other methods. It has been revealed that the Bayes
network classifications with little differences. On the other hand, it has been observed that
the results of other machine learning methods were close to each other. Polykernel is used
for the SVM. For the k-NN, it was seen that the most successful result was obtained with
the closest 1 neighbor.

When Table 3 is examined, it is seen that the ACC of Bayesian network is 88.7%. It is
observed that the success rates of other methods are approximately 80%. Since Sensitivity
and Precision values are the same in the general comparison table, precision values are
not included in the table. Specificity value, which expresses confidence in results, shows
correctly positively classified variables [55] and this ratio gave high values in all methods.
However, the lowest false positive classification rate (0.024) was obtained with Bayesian
networks. The same results are also valid for the weighted ROC value.

Table 3. Overall comparisons for methods.

ACC GM ERR SENS SPEC F-M MCC YI Kappa FPR ROC

Bayesian Network 0.887 0.882 0.113 0.887 0.976 0.887 0.862 0.863 0.828 0.024 0.970
Neural Network 0.828 0.826 0.172 0.828 0.963 0.828 0.787 0.791 0.741 0.037 0.953
Logistic Regression 0.819 0.817 0.181 0.819 0.960 0.819 0.772 0.778 0.727 0.040 0.951
Naive Bayes 0.799 0.800 0.201 0.799 0.940 0.799 0.736 0.739 0.693 0.060 0.951
J48 0.804 0.804 0.196 0.804 0.958 0.804 0.752 0.762 0.705 0.042 0.930
Support Vector Machine (SVM) 0.828 0.826 0.172 0.828 0.962 0.828 0.784 0.790 0.741 0.038 0.916
KStar 0.838 0.835 0.162 0.838 0.963 0.838 0.794 0.801 0.756 0.037 0.952
k-Nearest Neighbor (k-NN) 0.809 0.808 0.191 0.809 0.958 0.809 0.756 0.766 0.715 0.042 0.943
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Table 4. Comparisons of Methods for ALS, Control, Neurological Control and Parkinson Disease.

ACC GM ERR PREC SENS SPEC F-M MCC YI Kappa

A
LS

Bayesian Network 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Neural Network 0.985 0.985 0.015 1.000 0.971 1.000 0.985 0.971 0.971 0.971
Logistic Regression 0.975 0.975 0.025 1.000 0.951 1.000 0.975 0.952 0.951 0.951
Naive Bayes 0.971 0.970 0.029 0.962 0.981 0.960 0.971 0.941 0.941 0.941
J48 0.980 0.980 0.020 1.000 0.961 1.000 0.980 0.962 0.961 0.961
SVM 0.980 0.980 0.020 1.000 0.961 1.000 0.980 0.962 0.961 0.961
Kstar 0.975 0.976 0.025 0.990 0.961 0.990 0.975 0.951 0.951 0.951
k-NN 0.956 0.956 0.044 0.990 0.922 0.990 0.955 0.914 0.912 0.912

C
on

tr
ol

Bayesian Network 0.917 0.874 0.083 0.791 0.810 0.944 0.800 0.747 0.754 0.747
Neural Network 0.882 0.813 0.118 0.714 0.714 0.926 0.714 0.640 0.640 0.640
Logistic Regression 0.868 0.845 0.132 0.642 0.810 0.883 0.716 0.638 0.692 0.631
Naive Bayes 0.882 0.854 0.118 0.680 0.810 0.901 0.739 0.668 0.711 0.664
J48 0.887 0.902 0.113 0.661 0.929 0.877 0.772 0.718 0.805 0.700
SVM 0.892 0.897 0.108 0.679 0.905 0.889 0.776 0.719 0.794 0.706
KStar 0.907 0.888 0.093 0.735 0.857 0.920 0.791 0.735 0.777 0.732
k-NN 0.912 0.891 0.088 0.750 0.857 0.926 0.800 0.746 0.783 0.744

N
eu

ro
lo

gi
ca

lC
on

tr
ol Bayesian Network 0.902 0.816 0.098 0.778 0.700 0.951 0.737 0.678 0.651 0.677

Neural Network 0.848 0.738 0.152 0.615 0.600 0.909 0.608 0.513 0.509 0.513
Logistic Regression 0.848 0.668 0.152 0.655 0.475 0.939 0.551 0.471 0.414 0.462
Naive Bayes 0.809 0.568 0.191 0.519 0.350 0.921 0.418 0.317 0.271 0.309
J48 0.819 0.532 0.181 0.571 0.300 0.945 0.393 0.320 0.245 0.299
SVM 0.843 0.650 0.157 0.643 0.450 0.939 0.529 0.449 0.389 0.439
KStar 0.853 0.670 0.147 0.679 0.475 0.945 0.559 0.485 0.420 0.474
k-NN 0.833 0.661 0.167 0.594 0.475 0.921 0.528 0.432 0.396 0.428

Pa
rk

in
so

n

Bayesian Network 0.956 0.903 0.044 0.727 0.842 0.968 0.780 0.759 0.810 0.756
Neural Network 0.941 0.869 0.059 0.652 0.789 0.957 0.714 0.686 0.746 0.682
Logistic Regression 0.946 0.898 0.054 0.667 0.842 0.957 0.744 0.721 0.799 0.715
Naive Bayes 0.936 0.840 0.064 0.636 0.737 0.957 0.683 0.650 0.694 0.648
J48 0.922 0.832 0.078 0.560 0.737 0.941 0.636 0.600 0.677 0.593
SVM 0.941 0.842 0.059 0.667 0.737 0.962 0.700 0.669 0.699 0.667
KStar 0.941 0.920 0.059 0.630 0.895 0.946 0.739 0.721 0.841 0.707
k-NN 0.917 0.857 0.083 0.536 0.789 0.930 0.638 0.607 0.719 0.593

Graphical comparison of the results is given in Figure 3. When the graph is examined,
it is observed that the compared machine learning methods are close to each other and that
Bayesian network produces better results than the compared machine learning algorithms.

Comparison should be made for subclasses as well as general comparison of methods.
The results of comparison obtained for each subclass are given in Table 4. Accordingly,
Bayes network produced more successful results in the ALS estimation than other methods.
It was observed that all individuals in the ALS patient group were classified correctly. The
results obtained with the SVM and the NN are also close to these values. It can be proposed
that all methods yield successful results in predicting the ALS patients. In addition, it is
very important to estimate the individuals in other classes.

When the results for the control group were examined, it has been seen that Bayesian
network gives the highest ACC value with 0.917. On the other hand, J48 algorithm
produced the best results according to GM (0.902), SENS (0.929), and YI (0.805) criteria.
However, Bayesian network showed the best fit (0.747) with Kappa value [56] between
data and forecast results. In addition, the best results for other criteria for the control group
were produced by the Bayesian network.
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Bayesian network has produced more successful results than other methods according
to all comparison criteria for the Neurological Control group, as in the ALS group. For this
group, the Bayesian Network’s ACC value has been found as (0.902). The Kappa values of
other methods indicate that the results obtained are random, while the Kappa value (0.677)
was found for Bayesian network.

Similar results to the control group were obtained for the last group, Parkinson. The
Kstar algorithm produced the best results according to the GM (0.920), SENS (0.895) and YI
(0.841) criteria. However, it has been seen that the results obtained for Bayesian network
are close to these values.

The ROC curves and the AUC values of the methods are given in Figure 4. According
to these values, the AUC value of Bayesian network for each class is higher than other
methods. This result supports the values given in Table 4.
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3.3. Queries of Bayesian Network Model

One of the most important features of Bayesian networks is that predictions can be
made by creating queries with the information and data available [20]. While the known
variables are included as evidence, the predicted variables are taken as target nodes. When
a new person in one of the disease groups is considered, the questions about the status of
other variables are given in Table 5.

When the probability values given in Table 5 are examined, in the absence of any
prior knowledge, probability values of the persons are P(Patient Type = ALS) = 0.340;
P(Patient Type = Control) = 0.252; P(Patient Type = Neurological Control) = 0.257 and P(Patient
Type = Parkinson) = 0.151. From these given values, the conditional probability value
obtained for gender is shown in Equation (2).

P (SEX = Female | Patient Type = ALS) = 0.382
P (SEX = Male | Patient Type = ALS) = 0.618

(2)
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Table 5. Bayesian network model queries for patient type.

Target Node (s) Target Value Evidence (Patient Type)

ALS Control N-Control Parkinson

None None 0.340 0.252 0.257 0.151

AGE

Below 36 0.119 0.249 0.106 0.078
Between 36–52 0.333 0.419 0.298 0.316
Between 52–67 0.437 0.232 0.449 0.430
Upper 67 0.111 0.100 0.148 0.175

SEX
Female 0.382 0.342 0.401 0.452
Male 0.618 0.658 0.599 0.548

PARKIN Level (ng/mL)

Upper than 3.74 0.244 0.107 0.098 0.114
Between 2.79–3.74 0.078 0.072 0.100 0.084
Between 2.06–2.79 0.192 0.200 0.159 0.131
Between 1.36–2.06 0.238 0.279 0.340 0.107
Lower than 1.36 0.247 0.343 0.303 0.563

UMN
No 0.273 0.840 0.844 0.733
Yes 0.727 0.160 0.156 0.267

LMN
No 0.822 0.912 0.913 0.852
Yes 0.178 0.088 0.087 0.148

BULBAR
No 0.853 0.924 0.925 0.872
Yes 0.147 0.076 0.075 0.128

Total Number of Patience

None 0.040 0.696 0.288 0.075
One 0.704 0.189 0.595 0.731
Two 0.140 0.060 0.059 0.101
Three 0.103 0.042 0.045 0.070
Four 0.008 0.008 0.007 0.013
Five 0.006 0.006 0.006 0.010

According to this result, it is understood that the ALS disease is seen 62% in men and
38% in women. In addition, the ALS disease is expressed largely as an adult-onset disease
in the literature [9]. In this part, it was found that 88.1% of the ALS patients were older
than 36 years. Furthermore, it was predicted that 54.8% of the ALS patients and 60.5% of
Parkinson’s patients were older than 52 years.

P (UMN = No | Patient Type = ALS) = 0.273
P (UMN = Yes| Patient Type = ALS) = 0.727

(3)

when the information given in Equation (3) is examined, it is predicted that 72.7% of the
ALS patients have the UMN type onset involvement. In addition, it is understood that
82.2% of the patients do not have the LMN and 85.3% have no bulbar onset involvement.
However, it was calculated that there were 3.8% of the ALS patients with no involvement.
In summary, the probability of having at least 1 type of onset involvement in the ALS
patients was predicted 96.2%.

In Table 5, 25.7% of the ALS patients have at least 1 disease other than their own
disease. This probability was 19.4% in Parkinson’s patients. This probability was found to
be 11.6% in the control group and 11.7% in the neurological control group. Accordingly,
it can be thought that different neurological-chronic diseases are related to neurological
diseases such as Parkinson’s or ALS.

Moreover, according to the Parkin level, it is predicted that 75.3% of the ALS patients
to be higher than 1.36 (ng/mL). This value is quite different in Parkinson’s patients. When
Table 5 is examined, 56.3% of Parkinson’s patients’ Parkin level is lower than 1.36 (ng/mL).
Also, Parkin level distribution is given in Figure 5. The protein level differences of the
groups are also shown in the graph. Protein level is highest in the ALS patients, but this
level is lowest in Parkinson’s patients.
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4. Discussion and Conclusions

The use of machine learning methods with personal medical records in medical
decision-making processes is increasing. In this study Bayesian network—one of the most
beneficial ML method in clinical decision-making—has been used for the prediction of
ALS, based on differences in the level of a plasma protein, onset, age, sex, and total number
of patience. Then results were compared with some popular ML algorithms. To the best
of our knowledge, this is the first performance comparison study for Bayesian network
model and the ML models for predicting ALS disease using these variables.

Bayesian Networks are one of the probabilistic expert systems that use probability
as a measure of uncertainty in order to obtain a graphical structure that best represents
the data [57,58]. Since BN uses all the variables in the model, it is easily used in cases
where there is missing data [13,59]. With diagnostic reasoning in BN, it is ensured to
make a judgement about the patient and the disease by observing various symptoms [60].
Unlike various rule-based ML methods such as NN, LR, SVM, and BN is a method of
inference and reasoning. These features allow making queries that reveal cause-effect
relationships between variables in the model [13]. The posterior probability values of the
network are updated with every new information acquired in BNs. Therefore, the use of
BN in prediction problems produces more effective results [61]. The transparency of all
relationships in the network structure makes BN advantageous to other ML methods such
as k-nn, NN and LR. In addition, it can produce successful results in cases where the data
set is small and the number of variables is high [62]. Discretization is main drawback of the
BNs which causes loss of information [63]. However, working with discrete data increases
the power of accurate prediction regarding classes [64]. All these features have made BN a
preferred method in clinical studies [59,62,65–68].

In this study, unlike the literature, there are three control groups; Parkinson’s disease,
neurological control and healthy individuals in the control group. In this way, a compara-
tive result with different control groups containing a large number of subjects improves
the applicability of the study in practice.

According to the results of this study, ALS disease is more likely to be seen in men
than in women. Various studies have also indicated that gender is an independent variable
affecting ALS along with other demographic factors [5,69,70]. Gender was an influential
variable and it was confirmed that the ALS disease is more common in males [7,8,71–73].
There are studies showing that there is a difference in onset of the disease in ALS patients
with different mutations depending on sex [70,74]. Although it is known in which gene
some of ALS patients carry a mutation in this study, it has not been taken into consideration.
In the future, a similar analysis can be applied to a more homogeneous ALS patient group
in terms of mutation.
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It has been determined that with the algorithm used in this study, the probability of
having ALS will be higher with increasing age. This finding is also consistent with the
results of previous studies [75,76]. UMN, LMN and Bulbar are the onset types seen in ALS
disease. The probability of having at least one of each kind of onset involvement in the
ALS patients was found to be 96.2%. UMN has been determined to be the most common
type of involvement. LMN and Bulbar are less common. ALS patients can present together
with each a LMN or UMN prevalent phenotype [77]. Previously particular clinical and
demographic characteristics of ALS phenotypes have been demonstrated in a population
based study with a large epidemiological setting The likelihood of a specific phenotype
occurring in different age and gender groups changes. Bulbar phenotype occurs mostly in
elderly patients with almost equal incidence rates in the two genders [76].

In particular, the ALS is considered as a multifactorial disease which influenced by
environmental and genetic factors. Other neurological diseases that people have can have
a small effect on the ALS. It is thought that brain damages and mutations [77] caused
by other diseases such as schizophrenia [78], Alzheimer’s disease, Parkinson’s disease,
or frontotemporal dementia [79,80] should be associated with the ALS. In our study, the
probability of having multiple diseases with the ALS was higher than the control and
neurological control groups. Similar results were seen in Parkinson’s patients. Therefore, it
will be beneficial to treat patients considering multiple disease situations.

According to all these results, the algorithms we use and the Bayesian network can
predict the correct classes with high accuracy rates when information such as the type of
involvement of individuals, Parkin protein level, age, and the number of various chronic
diseases are considered. Although other machine learning algorithms also produce results
with high success, the most important advantage of Bayesian network in this regard is that
it can be updated with new additional information and this aspect increases its success. In
this respect, it provides more useful results than other machine learning methods such as
artificial neural networks showing black box feature in prospective studies, the change of
the results should be examined by increasing number of samples and using more variables.
The results obtained from statistical and computational methods may be more useful in
combination with neuroimaging methods. There is such a study in the literature [81]. A
similar approach can be used to classify images of different brain networks as alternative or
additional views and the entire MV framework can be further extended to combine imaging
with non-imaging views, such as clinical, behavioral, or even genetic multidimensional
data, when available from the same subjects.
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