
Citation: Kuang, Y.; Wu, Z.; Xia, R.;

Li, X.; Liu, J.; Dai, Y.; Wang, D.; Chen,

S. Phase Lag Index of Resting-State

EEG for Identification of Mild

Cognitive Impairment Patients with

Type 2 Diabetes. Brain Sci. 2022, 12,

1399. https://doi.org/10.3390/

brainsci12101399

Academic Editors: Evanthia Bernitsas

and Andrea Loftus

Received: 10 September 2022

Accepted: 7 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Phase Lag Index of Resting-State EEG for Identification of Mild
Cognitive Impairment Patients with Type 2 Diabetes
Yuxing Kuang 1,2, Ziyi Wu 1,2, Rui Xia 2, Xingjie Li 2, Jun Liu 2, Yalan Dai 2 , Dan Wang 2 and Shangjie Chen 1,2,*

1 The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
2 Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University

(The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
* Correspondence: csjme@163.com; Tel.: +86-0755-27788311

Abstract: Mild cognitive impairment (MCI) is one of the important comorbidities of type 2 dia-
betes mellitus (T2DM). It is critical to find appropriate methods for early diagnosis and objective
assessment of mild cognitive impairment patients with type 2 diabetes (T2DM-MCI). Our study
aimed to investigate potential early alterations in phase lag index (PLI) and determine whether it can
distinguish between T2DM-MCI and normal controls with T2DM (T2DM-NC). EEG was recorded
in 30 T2DM-MCI patients and 30 T2DM-NC patients. The phase lag index was computed and used
in a logistic regression model to discriminate between groups. The correlation between the phase
lag index and Montreal Cognitive Assessment (MoCA) score was assessed. The α-band phase lag
index was significantly decreased in the T2DM-MCI group compared with the T2DM-NC group and
showed a moderate degree of classification accuracy. The MoCA score was positively correlated with
the α-band phase lag index (r = 0.4812, moderate association, p = 0.015). This work shows that the
functional connectivity analysis of EEG may offer an effective way to track the cortical dysfunction
linked to the cognitive deterioration of T2DM patients, and the α-band phase lag index may have a
role in guiding the diagnosis of T2DM-MCI.

Keywords: mild cognitive impairment; diabetes; resting-state EEG; phase lag index

1. Introduction

Type 2 diabetes mellitus (T2DM) is a long-term metabolic illness defined by improper
glucose metabolism and insulin resistance. It has a wide range of physiological side
effects, including those that affect the central nervous system [1]. The increased tau
hyperphosphorylation and intra-neuronal β-amyloid deposition in the brain are results
of insulin resistance and hyperinsulinemia [2]. These insulin-related effects may have
an impact on cognitive function and may hasten the onset of mild cognitive impairment
(MCI) [3]. MCI is seen as a transitional stage between healthy aging and dementia [4]. MCI
patients exhibit memory impairment, but their functional capacity remains. T2DM is linked
to an increase in the percentage of individuals who transition from MCI to dementia [5],
while previous research showed that the conversion rate is 1.5–3 times higher than people
without T2DM [6]. More importantly, cognitive dysfunction such as memory and learning
ability decline will cause the decline of self-management ability and deterioration of
glycemic control in T2DM patients, which not only affects their quality of life but also
brings a heavy economic burden to society. Since MCI is one of the important comorbidities
of T2DM [7], it is critical to find appropriate methods for the early diagnosis and objective
assessment of mild cognitive impairment patients with type 2 diabetes (T2DM-MCI).

Electroencephalography (EEG) is an inexpensive and non-invasive method with high
temporal resolution [8]. Recent studies have shown new ways of EEG applications, such
as sleep stages [9], driving workload [10], and brain stimulation for different neurological
workloads [11]. Although EEG has been used for many years, using it as a cognitive
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biomarker to identify and forecast diseases is a relatively new endeavor. Several studies
have used machine learning methods for stroke prediction, describing the classification of
stroke-derived cognitive impairment using EEG [12,13]. There is growing evidence that
EEG biomarkers can be used to identify early abnormalities in neuronal function before
cortical tissue loss or cognitive decline. Many researchers believe that the disruption of func-
tional connectivity may be a pathological characteristic of neurodegenerative diseases [14].
Several studies used coherence as a method of functional connectivity and found a signif-
icant reduction in α-band coherence in AD patients [15,16]. According to Musaeus et al.
(2019), there was a considerable decline in the α-band EEG synchronization in MCI patients,
and this decline was correlated with the degree of cognitive impairment as determined by
the Mini-Mental State Examination (MMSE) [17]. The results mentioned above imply that
reduced α-band functional connectivity represents particular pathophysiology in MCI and
AD patients.

Notably, phase synchronization is a way of functional connectivity representation
that may show functional connectivity across various cortical areas of the brain and reveal
information about the synchronization of the regional cortical activity [18]. The phase
lag index (PLI) is an important index of phase synchronization. The measurement of the
phase lag index can be used to quantify changes in functional connectivity indirectly as
a result of disease progression [19,20]. The main advantage of the phase lag index over
other functional connectivity measures is that it is insensitive to the effects of volume
conduction [21].

Functional connectivity measures of EEG may serve as features for a diagnostic
classifier. In this study, we investigated the potential early alteration of the phase lag index
and tested the classification feature of the phase lag index to determine whether it could
distinguish between T2DM-MCI and normal controls with T2DM (T2DM-NC) patients. We
also identified the correlation between the phase lag index and neuropsychological tests to
figure out whether phase lag index characteristics could reflect cognitive degeneration in
T2DM-MCI patients. We hypothesized that the phase lag index is decreased in T2DM-MCI
patients compared to T2DM-NC patients and that this indicator is associated with cognitive
function in T2DM-MCI patients.

This study looked for biomarkers for early diagnosis of T2DM-MCI patients and
revealed the role of phase lag index in differentiating T2DM-MCI and T2DM-NC patients.

This study explored the diagnostic accuracy of the phase lag index between T2DM-
MCI and T2DM-NC patients.

This study explored the association between phase lag index and cognitive function.

2. Materials and Methods
2.1. Participants

Our study enrolled 30 T2DM-MCI patients and 30 T2DM-NC patients who were
matched for age, sex, and educational level from the Affiliated Baoan Hospital of Shenzhen,
Southern Medical University. Cognitive deterioration was assessed by an experienced
physician who works in cognitive rehabilitation. The inclusion criteria of the T2DM-MCI
group include: (1) satisfied the diagnostic criteria for T2DM (The Chinese Guidelines for
the Prevention and Treatment of Type 2 Diabetes, 2019) [22]; (2) met the MCI diagnostic
criteria (Petersen, 2004) [23]; (3) over 60 years old. The inclusion criteria of the T2DM-NC
group include: (1) satisfied the diagnostic criteria for T2DM (The Chinese Guidelines
for the Prevention and Treatment of Type 2 Diabetes, 2019) [22]; (2) did not meet the
MCI diagnostic criteria (Petersen, 2004) [23]; (3) over 60 years old. The exclusion criteria
include: (1) neuropsychosis and other medical or neuropsychological conditions such
as alcohol and/or substance abuse that can cause brain dysfunction; (2) combined with
severe primary disorders such as those of the cardiovascular, cerebrovascular, liver, kidney,
and hematological system; (3) take cognition-related drugs or participate in other similar
research projects; (4) epilepsy or epilepsy family, hypothyroidism, mental illness in the
past or several other factors that might influence cognitive function; (5) subjects with
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severe decreases in vitamin B12 as a result of pharmacological treatment with metformin;
(6) subjects have a parental history of dementia. The Affiliated Baoan Hospital of Shenzhen,
Southern Medical University’s Ethics Committee for Clinical Research approved this study.
All participants provided written informed consent after being informed about the study.

2.2. EEG Recording and Processing

EEG data were collected from 64 scalp electrodes placed according to the international
extended 10–20 system using the Neuroscan system (Neuvo 64, Neuroscan Compumedics,
Australia) at the Department of Rehabilitation of the Affiliated Baoan Hospital of Shenzhen,
Southern Medical University. Subjects were asked to be eyes closed, awake, and quiet for
five minutes during EEG acquisition. In order to search for eye-blinking artifacts, vertical
and horizontal electrooculography (EOG) channels were located. The impedance of all
electrodes was maintained below 5 KΩ, and the sampling rate was 1000 Hz.

The preprocessing process was as follows. Firstly, eye electrodes HEO and VEO
were removed, and re-referencing was completed using the average of the left and right
mastoid sensors. Next, the recorded EEG data were bandpass filtered to 0.1–30 Hz, and
a notch filter was used to remove the line noise between 48 and 52 Hz. Afterward, the
sampling rate was down-sampled to 500 Hz and EEG data were segmented into 3 s epochs.
Then, independent component analysis was used to reject other artifact components,
including EOG, electromyography (EMG), and electrocardiogram (ECG) artifacts. Then,
the remaining EEG data were checked manually, and data segments with muscular and
cardiac artifacts were removed.

The phase lag index was used to calculate the functional connectivity between several
brain areas [24]. The phase lag index measures the asymmetry in the distribution of phase
discrepancies between two signals. It displays the consistency of the phase lead or lag of
one signal to another. For example, if the phase differences between two-time series are
4φ(tk)(k = 1 . . . N), then the phase lag index can be calculated by:

PLI = |〈sign[4φ(tk)]〉|

where sign stands for signum, sin stands for sinusoidal function, and < > and | | stand
for mean and absolute value, respectively. The phase lag index has a value between 0 and
1, with 0 denoting complete synchronization and 1 denoting perfect non-zero phase lock-
ing [25]. Node-to-node phase lag index values were computed in the four frequency bands:
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). A 62 × 62 connectivity
matrix was created by treating each EEG channel signal as a real-valued time series. The
average phase lag index across all node pairs was also calculated and utilized as a global
EEG synchronization measure.

2.3. Statistical Analysis

The data were analyzed using SPSS 27.0 (IBM Corp. Released 2020. IBM SPSS
Statistics for Windows, Version 27.0. Armonk, NY, USA: IBM Corp). All data were tested
for normality. When the data conformed to a normal distribution, they were expressed as
mean and standard deviation (SD). An independent sample t-test and χ2 test were used
to compare the clinical characteristics between T2DM-MCI and T2DM-NC groups. Data
that were not normally distributed were analyzed using the Wilcoxon rank sum test. The
diagnostic model was created using multi-factor binary logistic regression analysis, and
the diagnostic model’s discriminatory power was assessed using the area under the curve
(AUC). The diagnostic model was considered to have good discriminatory ability when
the AUC value was > 0.75. The AUC of the phase lag index was counted, and the receiver
operating characteristic (ROC) curves were plotted. The p-value was set at 0.05 for the
significance level.

For the purpose of classifying T2DM-MCI and T2DM-NC patients, the accuracy of
the phase lag index was estimated using machine learning analysis of logistic regression.
The samples were divided into test and training sets by 10-fold cross-validation (1 fold for
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testing and the remaining 9 folds for training). The training set data were used to train on
the logistic regression classifier, and the test set data were used to make predictions and to
calculate the accuracy, specificity, sensitivity, precision, F1 value, and AUC to assess the
overall performance of the logistic regression model.

3. Results
3.1. Subject Characteristics

The clinical characteristics such as the participants’ gender, age, education level, and
overall cognitive states are shown in the table below (See Table 1). The results showed that
the two groups were matched in gender, age, and education level. Additionally, there was
a significant difference between the Montreal Cognitive Assessment (MoCA) score of the
T2DM-MCI group and the T2DM-NC group (p < 0.001).

Table 1. Clinical characteristics of the participants.

Group T2DM-MCI (N = 30) T2DM-NC (N = 30) χ2/t Value p-Value

Gender (M/F) 13/17 16/14 0.601 0.438
Age (years) 67.17 ± 4.12 67.73 ± 4.40 −0.515 0.609

Education level
(years) 10.63 ± 3.75 10.23 ± 3.23 0.443 0.660

MoCA(scores) 22.08 ± 2.24 28.08 ± 1.41 −11.350 <0.001 *
Duration of

T2DM (years) 14.23 ± 7.80 15.43 ± 8.34 −0.576 0.567

Duration of MCI
(years) 3.33 ± 1.86 - - -

The data are displayed as mean ± SD. The p-value for gender was discovered using the chi square test, while
p-values for the comparison of demographic information and neuropsychological performance were discovered
using an independent sample t-test. M, male; F, female; SD, standard deviation; MoCA, Montreal Cognitive
Assessment; T2DM, type 2 diabetes mellitus; MCI, mild cognitive impairment. * p < 0.05.

3.2. Electroencephalographic Results

In each of the four frequency bands, the phase lag index of every pair-wise combination
of channels was calculated independently. The phase lag index in each frequency band was
compared between T2DM-MCI and T2DM-NC groups using the Wilcoxon rank sum test.
The findings of between-group variations in the phase lag index are displayed in Figure 1.
Compared with the T2DM-NC group, the α-band phase lag index in the T2DM-MCI group
was significantly decreased. The outcomes of the additional frequency bands did not
differ appreciably. Compared with T2DM-NC patients, the phase lag index in T2DM-MCI
patients was marginally lower in the beta and theta bands and marginally higher in the
delta band. The multi-factor binary logistic regression analysis results are presented in the
Supplementary Material.
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The difference in the α-band phase lag index between different electrode pairs in
the T2DM-MCI group and the T2DM-NC group was further analyzed, and the results
are shown in Figure 2. The eight specific electrode pairs included: F4-P3, P4-CP3, and
CP5-O2 in inter-hemispheric regions, and C3-P3, C4-P8, F3-C5, F8-P8, and CP3-O1 in intra-
hemispheric regions. The results showed that the α-band phase lag index of T2DM-MCI
patients was significantly lower than that of T2DM-NC patients in both inter-hemispheric
and intra-hemispheric regions.
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Figure 2. The phase lag index of eight specific electrode pairs in the alpha band between the T2DM-
MCI and T2DM-NC groups. The T2DM-MCI group and T2DM-NC group are shown in blue and
green boxes, respectively. Error bars are standard deviations. * p < 0.05.

Figure 3 shows the alpha band matrix of phase lag index in the T2DM-MCI group
and the T2DM-NC group. The matrices of the two groups were clearly different, as can
be observed. The T2DM-NC group (right) showed more areas of high values (red) than
the T2DM-MCI group (left). In the T2DM-NC group, the high values of phase lag index
were distributed in parietal and parieto-occipital areas (C3/C4-P3/P4, P3/P4-O1/O2) in
the alpha band.
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3.3. Machine Learning Applications

The α-band phase lag index measures were used to train the logistic regression classi-
fier. The ROC curve was obtained by the logistic regression classifier. As can be seen from
Figure 4, the ROC curve of the α-band phase lag index has an area under the curve of 0.805.
In Table 2, the accuracy rate is 75.00%, which is higher than the empirical chance level accu-
racy of 64.58%, proving that the logistic regression model has a good classification effect.
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Figure 4. ROC curve was obtained by the logistic regression classifier.

Table 2. Accuracy, empirical chance level, specificity, sensitivity, precision, F1 value, and AUC using
logistic regression classifier.

Classifier Accuracy (%) Empirical Chance Level
Accuracy (%) Specificity (%) Sensitivity (%) AUC

Logistic Regression 75.00 64.58 60.87 88.00 0.805

Empirical chance level accuracy is the 95th percentile of the empirical performance distribution created by
randomly permuting the labels 5000 times, representing the original classification as significant at p < 0.05.

3.4. Correlation Analysis

Pearson’s linear correlation was calculated to test whether there was a correlation
between the α-band phase lag index and cognitive state. Figure 5 illustrated the correlation
between the MoCA score distribution and the α-band phase lag index through a scatter
plot. The results showed that the MoCA score was positively correlated with the α-band
phase lag index in the T2DM-MCI group (r = 0.4812, moderate association, p = 0.015).
However, the positive correlation was not significant in the T2DM-NC group (r = 0.2639,
weak association, p = 0.203). The results suggested that the α-band phase lag index may
reflect cognitive dysfunction in T2DM-MCI patients.
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The findings revealed a significant positive correlation between the MoCA score and the α-band
phase lag index among T2DM-MCI patients (r = 0.4812, moderate association, p = 0.015). There was
no significant correlation in T2DM-NC patients (r = 0.2639, weak association, p = 0.203). * p < 0.05.
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4. Discussion
4.1. This Work

This study aimed to investigate potential early alterations in phase lag index and
determine whether it can distinguish between T2DM-MCI and T2DM-NC patients. We
discovered that the α-band phase lag index was significantly reduced in the T2DM-MCI
group compared with the T2DM-NC group, especially in parietal and parieto-occipital
areas. This result suggested that T2DM-MCI patients had impaired functional connectivity,
which lent credence to the idea that T2DM-MCI is a disconnection syndrome. Machine
learning results showed a moderate degree of classification accuracy (AUC > 0.7) between
the two groups. Furthermore, our study also revealed a substantial positive correlation
between the MoCA score and the α-band phase lag index. The results suggested that the
α-band phase lag index characteristics could reflect the degeneration of cognitive function
in T2DM-MCI patients. A comparative analysis of the proposed work and previous works
is presented in Table 3.

It is suggested that T2DM is associated with an increased risk of dementia [5], and
it is yet unclear how T2DM affects cognition in specific ways. Recent studies revealed
that glycemic variability and prediabetes may be a factor associated with hippocampal
hypoperfusion and cause cognitive deterioration [26]. Our results showed that the α-
band phase lag index was significantly reduced in the T2DM-MCI group compared with
the T2DM-NC group, which is in agreement with another phase lag index study [27].
Similarly, in a coherence study, the α-band coherence in the frontal–occipital and temporal–
occipital regions was shown to be lower in the T2DM-MCI patients than in the T2DM-
NC patients [28]. The results mentioned above implied that reduced alpha functional
connectivity may reflect specific pathology in T2DM-MCI patients.

Furthermore, to evaluate the effectiveness of the EEG α-band phase lag index in
distinguishing between T2DM-MCI and T2DM-NC patients, we employed a machine
learning classification method with a logistic regression classifier. It has been shown that
when the AUC is greater than 0.7, the significance of the classification is more pronounced
and the diagnosis is better [29]. In the current investigation, we report a moderate accuracy
of 75.00% for the individual classification of T2DM-MCI versus T2DM-NC. According
to these findings, there is a moderate degree of discrimination between T2DM-MCI and
T2DM-NC individuals using the α-band phase lag index.

Our study revealed a moderate association between the MoCA score and the α-band
phase lag index in T2DM-MCI patients. This result confirmed the viability and importance
of our investigation that intended to identify EEG biomarkers for T2DM-MCI. According to
the above findings, the functional connectivity decline between brain channels or regions
is linked to cognitive impairment. This association may be the result of a reduction in
the processing of local information brought on by synaptic degeneration and the death
of cortical neurons, which leads to a gradual loss of connectivity between some cortical
areas [30].

4.2. Contributions

In this work, the potential biomarker for differentiating T2DM-MCI and T2DM-NC
groups was explored using the α-band phase lag index. The results of the logistic regression
classifier may shed light on the use of machine learning techniques in the diagnosis of
T2DM-MCI.

4.3. Limitations

This study has several limitations. Firstly, this was a cross-sectional study. Future work
could consider collecting longitudinal data to monitor the predictive value of resting-state
EEG characteristics in T2DM-MCI participants. Secondly, no restriction was imposed on the
range of education levels, and the severity of cognitive impairment in T2DM-MCI patients
was not controlled. Further studies with large populations are needed to distinguish T2DM
patients with different levels of education and different levels of cognitive impairment.
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Thirdly, given the relatively long time required for neuropsychological testing, machine
learning methods using resting-state EEG functional connectivity features may be thought
of as a practical screening tool to distinguish T2DM-MCI from T2DM-NC. However, the
α-band phase lag index explains only a small fraction of the neural correlates of overall
cognitive function in T2DM-MCI and T2DM-NC patients. Therefore, future studies could
use other functional connectivity metrics such as coherence, synchronization possibilities,
and global field synchronization to complement the resting-state EEG results.

Table 3. Comparative study of methodologies and results between proposed work and previ-
ous works.

Study Study Sample EEG Features of
Neurological Outcome Main Findings

Zeng et al. [27]
Sixteen T2DM-aMCI
patients and twelve
T2DM-NC patients

Phase lag index, clustering
coefficient, and path length

The complex network-derived biomarkers based
on EEG could be employed to track the cognitive
function of diabetic patients and provide a new

diagnostic tool for T2DM-aMCI patients.

Bian et al. [28]
Sixteen T2DM-aMCI
patients and twelve
T2DM-NC patients

Relative power and coherence

The decreased theta, alpha coherence, and
increased delta coherence in corresponding
regions may distinguish T2DM-aMCI from

T2DM-NC and help the diagnosis of
T2DM-aMCI patients.

Wen et al. [31]
Nineteen T2DM-aMCI

patients and twenty
T2DM-NC patients

Permutation conditional
mutual information (PCMI)

The coupling strength or directionality of EEG
signals calculated by PCMI might be used as a
biomarker in distinguishing the T2DM-aMCI

from T2DM-NC.

Cui et al. [32]
Eight T2DM-aMCI
patients and eleven
T2DM-NC patients

Synchronization index (SI)
and global synchronization

index (GSI)

Each of the methods reflected that the cortical
source synchronization was significantly

different between the aMCI and the control
group, and these differences correlated with

cognitive functions.

Lu et al. [33]
Seventeen T2DM-aMCI

patients and ten
T2DM-NC patients

Correlation between
probabilities of

recurrence (CPR)

The synchronization value of the EEG signal was
significantly decreased in T2DM-aMCI patients
compared with T2DM-NC patients, and the EEG

indicator was associated with cognitive
impairment in T2DM-aMCI patients.

Proposed work
Thirty T2DM-MCI
patients and thirty
T2DM-NC patients

Phase lag index

The functional connectivity analysis of EEG may
offer an effective way to track the cortical

dysfunction linked to the cognitive deterioration
of T2DM patients, and the α-band phase lag

index may have a role in guiding the diagnosis
of T2DM-MCI.

4.4. Future Work

Firstly, except for monitoring EEG during the resting state, we can also record EEG dur-
ing cognitive tasks, including attentional, episodic, and working memory tasks. Secondly,
future prospective research involving sizable populations is required to ascertain whether
the machine learning algorithms could distinguish between T2DM-MCI and T2DM-NC,
which may offer new information about the efficacy of machine learning applications for
categorizing cognitive decline in T2DM patients.

5. Conclusions

This work shows that the functional connectivity analysis of EEG may offer an effective
way to track the cortical dysfunction linked to the cognitive deterioration of T2DM patients.
The α-band phase lag index shows a moderate degree of classification accuracy (AUC > 0.7)
between T2DM-MCI and T2DM-NC patients. These findings suggested that the α-band
phase lag index may be used as a supplementary diagnostic tool and may eventually play a
role in guiding the diagnosis of T2DM-MCI. Based on these preliminary findings, in future



Brain Sci. 2022, 12, 1399 9 of 11

studies, we should confirm the effectiveness of machine learning approaches to identify
T2DM-MCI patients in prospective trials with large samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12101399/s1, Figure S1: ROC curves from different
frequency bands. Performance is good when the curves are around the upper left corner (0.0, 1.0).
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AD Alzheimer’s Disease
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