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Abstract: Diabetic retinopathy (DR) is a visual obstacle caused by diabetic disease, which forms
because of long-standing diabetes mellitus, which damages the retinal blood vessels. This disease is
considered one of the principal causes of sightlessness and accounts for more than 158 million cases
all over the world. Since early detection and classification could diminish the visual impairment,
it is significant to develop an automated DR diagnosis method. Although deep learning models
provide automatic feature extraction and classification, training such models from scratch requires a
larger annotated dataset. The availability of annotated training datasets is considered a core issue for
implementing deep learning in the classification of medical images. The models based on transfer
learning are widely adopted by the researchers to overcome annotated data insufficiency problems
and computational overhead. In the proposed study, features are extracted from fundus images using
the pre-trained network VGGNet and combined with the concept of transfer learning to improve
classification performance. To deal with data insufficiency and unbalancing problems, we employed
various data augmentation operations differently on each grade of DR. The results of the experiment
indicate that the proposed framework (which is evaluated on the benchmark dataset) outperformed
advanced methods in terms of accurateness. Our technique, in combination with handcrafted features,
could be used to improve classification accuracy.

Keywords: diabetic retinopathy; annotated data insufficiency; transfer learning; fundus images;
computer-aided diagnosis; convolutional neural network

1. Introduction

Diabetic retinopathy is directly associated with the prevalence of diabetes, which
is now at epidemic proportions worldwide [1]. Currently, about 463 million diabetes
patients are present, and approximately one-third of them have some form of diabetic
retinopathy [2]. The international diabetes federation (IDF) reported that diabetes patients
are expected to reach about 552 million by 2035 and 642 million by 2040 [3,4]. There are
more than 158.2 million people currently suffering from DR, and this number is estimated
to increase to about 191 million by 2030 [5].

DR is an ocular impediment caused by diabetic disease; it has held its position as one
of the main factors behind the occurrence of blindness globally [6–8]. DR develops because
of the long-standing occurrence of diabetes mellitus. The risks of disease are more common
in patients with uncontrolled blood sugar. Generally, DR develops gradually and may
not cause any symptoms or only mild vision loss in the primary stages. Eventually, if the
treatment and diagnosis are not timely, then it tends to cause blindness [9]. DR is generally
categorized into three categories, normal, non-proliferative DR (NPDR), and proliferative
DR (PDR), based on the progression of the diabetic retinopathy [10]. NPDR develops when
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new retinal blood vessels are not growing, and the blood vessel walls become faded. NPDR
is divided further into mild, moderate, or severe stages of disease. In PDR, the retinal area
is occupied by new blood vessels and obstructs the blood supply to the retina. Figure 1
shows samples of NPDR, PDR, and its subdivided classes of retinopathy discussed above.
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Figure 1. These images show the different types of retinopathies in the fundus images. (a) Normal,
(b) mild, (c) moderate, (d) severe, and (e) proliferative.

DR detection and grading at initial periods is laborious, time-intensive, and requires
domain experts [11]. Moreover, the manual screening of DR patients indorses ex- tensive
inconsistency among various clinicians. Approximately 79% of DR patients belong to
underdeveloped or developing nations, which are deficient in ophthalmologists and a basic
setup for DR detection [12]. With the rapid prevalence of DR worldwide, manual screening
techniques are unable to keep pace with the demand for diagnosis methods [13].

Due to the developments in computer vision techniques, numerous automatic tech-
niques have been projected by researchers for the diagnosis of DR. There are various
challenges associated with enhancements in computer-aided diagnosis (CAD) systems,
such as identification of lesions from a retinal image, subdivision of optic disc, segmentation
of blood vessel, etc. [14,15]. Although machine learning-based systems have shown resilient
performance in DR detection, their efficacy is highly dependent on handcrafted features,
which are very difficult to generalize [16]. To overcome such limitations, deep learning
(DL) methods provide automatic feature extraction and classification from fundus images.
The major determination of this study is to explain an efficient method for categorizing
early-stage DR to assist ophthalmologists. The key contribution of this study is highlighted
in the following points:

1. A VGGNet model based on transfer learning is proposed for detecting and classifying
diabetic retinopathy.

2. Implementation of various preprocessing techniques such as interpolation image
resizing, weighted Gaussian blur, and CLAHE for improving the value and visibility
of retinal images.

3. Performed data augmentation operations on each grade of DR individually to over-
come annotated data insufficiency and to make a balanced dataset.

4. A comprehensive DR classification system is developed with accuracy and robustness.
5. Evaluation of the proposed model is performed on a large dataset, EyePACS, with

35,126 retinal fundus images.
6. Various performance measures are implemented, such as accuracy, sensitivity, speci-

ficity, and the AUC to verify the analytical skill.

The paper is compiled in the following manner: The dataset details and the proposed
framework is elaborated in Section 2. Results and Discussions are described in Section 3
and the Conclusions in Section 4.

2. Methodology

The proposed framework of DR classification was mainly categorized into the follow-
ing steps: image preprocessing, data augmentation, feature extraction, and classification.
The graphical illustration of the proposed work is presented in Figure 2.
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Figure 2. Proposed framework for detection and classification of diabetic retinopathy. In the first
phase, retinal images are preprocessed, and data augmentation operations are performed individually
on each grade of DR to improve classification accuracy. In the last, model-based on transfer learning
is used for automatic features extraction and classification of DR into different stages.

2.1. The Kaggle EyePACS Dataset

The public dataset EyePACS was used for acquiring fundus images of the retina via
Kaggle.com (accessed on 24 March 2021). These images were labeled by the ophthalmolo-
gists and subdivided into five categories: normal, mild, moderate, severe, and proliferative
DR, as shown in Figure 1. The details related to this dataset are stated in Table 1.

Table 1. Kaggle EyePACS dataset details.

Grade Severity No. of Images % of Total Images

0 Normal 25,810 73.15
1 Mild 2443 6.96
2 Moderate 5292 15.07
3 Severe 873 2.81
4 PDR 708 2.01

Total 35,126 100%

2.2. Image Preprocessing

The EyePACS dataset is a heterogeneous dataset containing images from various
smaller datasets captured with different cameras, under different adjustments, of different
sizes, and with a lot of brightness and illumination differences; therefore, we adopted
various preprocessing steps to standardize these images. First, we resized the fundus
images to a uniform size by using bicubic interpolation over a 4 × 4-pixel neighborhood. We
preferred this interpolation over simple resizing because it resizes the image by sustaining
quality and locking the aspect ratio.

Generally, the retinal images were yellowish with a dark background. The fundus
details did not overlap with the background and thus can be abolished to reduce noise.
Equalizing the black background of the fundus images resulted in darkness being expanded
into the image’s details [17]. Concerning this matter, we agreed with preprocessing to delete
the black background by setting the pixel value to zero and non-zero for all bright regions.
After thresholding was performed, the extraction of the green channel was performed. This

Kaggle.com
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green channel conserves more retinal data in comparison to the red or blue channels. The
implementation of CLAHE, which is the contrast limited adaptive histogram equalization,
took place for improving the quality of the retinal image as well as for enhancing the
small areas.

Then, the weighted Gaussian blur was applied to images to reduce noise and increase
image structure [18]. The mathematical expression to calculate the Gaussian function in
two dimensions (x, y) along with σ standard deviation is given in Equation (1).

G(x, y) =
1

2πσ2 ε
x2+y2

2σ2 (1)

2.3. Data Augmentation

The training dataset size is one of the key features for the efficient performance of
the DL models. Therefore, it is mandatory to have a larger dataset for the training of
deep learning architecture to prevent generalization and overfitting issues. Although the
Kaggle EyePACS dataset size is sufficient, it is considered very small as compared to the
ImageNet [19] dataset. The dataset distribution over the classes was highly imbalanced,
as shown in Figure 3, where the maximum images were from grade 0. This highly imbal-
anced dataset was in the ratio of (36:3:7:1:1), which may cause incorrect classification. We
performed data augmentation operations to amplify the retinal dataset at various scales
and to eliminate the noise in fundus images.
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Figure 3. Dataset distribution over DR severity. There were about 73% of images in the normal
category, while only 2% of them from the proliferative DR category. Thus, it was an imbalanced
dataset with 36:1 for normal and proliferative DR.

We employed various data augmentation operations on each grade differently because
of the highly imbalanced nature of the dataset. The visual exemplification of some augmen-
tation techniques performed on preprocessed images is given. This augmentation operation
includes cropping, flipping, translating, shearing, rotating, zooming, Gaussian scale-space
theory (GST) augmentation [20], and Krizhevsky augmentation [21]. To produce visually
appealing images, the clipping limit of CLAHE was set to 2 along the tile grid and 8, as
shown in Figure 4.

For improvement of image quality and enhancement of image structure, we imployed
weighted gaussian blur to the retinal fundus images. Figure 5 shows the effects of gaussian
blur on the retinal fundus images. The representation of images before and after applying
this method of image processing is shown in the Figure 5.
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Figure 5. Some examples of adding weighted Gaussian blur to the retinal images, which is employed
to reduce noise and increase image structure. First row are original fundus images, and second
images are output of the preprocessed images.

Cropping: Images were randomly cropped from the corner and center to 60–75% of
the original image.

Flipping: Images were flipped on both the X and Y axes.
Translating: Images were shifted between 0 and 30 pixels.
Shearing: Images were sheared between 0 and 180 degrees randomly.
Rotating: Images were rotated randomly in the range of 0 to 360 degrees.
Zooming: Images were zoomed in the range of (0.7, 1.3).
GST Augmentation: The GST-based augmentation was performed for a

two-dimensional image.
Krizhevsky Augmentation: Krizhevsky color augmentation technique was used for

dataset augmentation.
The representation of images after applying various data augemntation operation is

displayed in the Figure 6.
The details of augmentation operations after applying them to the training dataset

are given in Table 2. Different augmentation operations were performed on each grade of
fundus images. The augmented dataset was 3.6 times greater than the original dataset and
was highly balanced with 1:1 for all grades of DR.
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images to augment the retinal dataset (a) Original image (b) Cropping (c) Shearing (d) Flipping
(e) Rotating (f) Zooming (g) Translating (h) All augmentation.

Table 2. The dataset statistics by using data augmentation operations.

Grade Severity No. of Images Operations Augmented Images

0 Normal 25,810 0 25,810
1 Mild 2443 11 24,430
2 Moderate 5292 5 26,460
3 Severe 873 29 25,317
4 PDR 708 36 25,488

Total 35,126 127,505

2.4. Proposed Architecture

Although deep learning algorithms are good enough to solve various classification prob-
lems, the main problem with the classification of medical images is the unavailability of labeled
data. Transfer learning is widely adopted to overcome annotated data insufficiency by reusing
already trained deep convolutional neural networks for another identical task. Thus, it may
be employed for reducing the training overhead as well as for training with a smaller dataset.
There arise questions about the implementation of transfer learning to overwhelm annotated
data availability in medical image classification based on deep learning. In this study, we opted
for pre-trained VGG 16 to take advantage of fixed size 3 × 3 kernel filters for detection.

The architecture of the proposed model is shown in Table 3. This architecture consists
of 16 layers with an input layer is 512 × 512. A 3 × 3 kernel size filter, united bias, and stride
of 1 were utilized for all convolutional layers other than the first layer with a stride of 2. A
2 × 2 kernel size filter along with a stride of 2 was selected for all the max-pooling layers;
extracted features were flattened before forwarding to the connected layers. The usage
of the activation function rectified linear unit (ReLU) was made in all layers, and a drop
of 0.5 was applied before the first two fully connected layers to evade overfitting. After
convolution layers, two fully connected layers were added, with each having 1024 neurons.
Finally, a softmax function was used as a single neuron output layer for the early-stage
detection and classifying the diabetic retinopathy.
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Table 3. The proposed architecture for early-stage detection and classification of diabetic retinopathy
comprising of 16 layers.

Sr. No. Layer Type Kernel Size and Number Stride Output

1 input — — (512,512,3)
2 conv 1_1 3 × 3 × 32 2 (256,256,32)
3 conv 1_2 3 × 3 × 32 1 (255,255,32)
4 max-pooling 2 × 2 2 (127,127,32)
5 conv 2_1 3 × 3 × 64 1 (63,63,64)
6 conv 2_2 3 × 3 × 64 1 (64,64,64)
7 max-pooling 2 × 2 2 (32,32,64)
8 conv 3_1 3 × 3 × 128 1 (32,32,128)
9 conv 3_2 3 × 3 × 128 1 (33,33,128)
10 conv 3_3 3 × 3 × 128 1 (34,34,128)
11 max-pooling 2 × 2 2 (17,17,128)
12 conv 4_1 3 × 3 × 256 1 (9,9,256)
13 conv 4_2 3 × 3 × 256 1 (10,10,256)
14 conv 4_3 3 × 3 × 256 1 (11,11,256)
15 max-pooling 2 × 2 2 (6,6,256)
16 conv 5_1 3 × 3 × 512 1 (6,6,512)
17 conv 5_2 3 × 3 × 512 1 (5,5,512)
18 conv 5_3 3 × 3 × 512 1 (4,4,512)
19 max-pooling 2 × 2 2 (2,2,512)
20 fully connected 1024 — −1024
21 fully connected 1024 — −1024
22 fully connected 1 — −1

2.5. Training

Training of transfer learning-based VGGNet was performed through the process of
fine-tuning the hyperparameters. The model was trained through Adam’s optimization
function, and the learning rate was set to 0.0001. The weights of the network were initialized
randomly through 32 batch-sizes and then trained on a network for 300 epochs. The
momentum size was set at 0.9, and categorical cross-entropy was considered as an objective
function. Data augmentation operations were performed separately on each grade to
overcome data misbalancing issues. The details of these hyperparameters are given in
Table 4.

Table 4. Diagnostic test for the prevalence of the disease.

Sr. No. Hyperparameters Value

1 Learning Rate 0.0001
2 Batch Size 32
3 Activation Function ReLU
4 Epochs 300
5 Optimizer Adam
6 Momentum 0.9
7 Loss Function Categorical Cross-Entropy

3. Results and Discussion

By utilizing a transfer learning technique, a detailed analysis of the working of the
proposed scheme for diabetic retinopathy was evaluated. The Kaggle EyePACS dataset
after data augmentation operations were segmented into 80%, 20% for the training and
testing datasets.

3.1. The System Configurations

A system with the following specifications was used for the methodology.
OS: Linux Mint 18.1 operating system.
CPU: Intel(R) 3rd Generation Core (TM) i5-3470 CPU @ 3.20 GHz @ 3.20 GHz;



Brain Sci. 2022, 12, 535 8 of 12

CPU Ram: 16 GB;
GPU: Quadro K620;
Graphics card Ram size: 12 GB.

3.2. The Performance Metrics

For evaluation of the overall working of the presented scheme, we analyzed the
performance of abnormal human activity recognition from a confusion matrix [22] and
then computed the following performance metrics.

Precision: Expressed as the ratio of a total number of TP with respect to the total
number of component tags as appropriate to the positive class (i.e., the sum of TP and FP).
Positive Predictive Value (PPV) is used to denote the precision. Precision can be measured
as follows:

Precision =
TP

TP + FP
(2)

F1 Score: The harmonic mean of recall and precision is used to measure it as in
Equation (3):

F1 Score =
2 × Precision × Recall

Precision + Recall
(3)

Accuracy: The ratio of a number of components TP and TN to the total number of
components TP, TN, FP, and FN is used to measure the accuracy. The accuracy can be
calculated using the following Equation (4).

Accuracy =
TP + FN

TP + FN + TN + FP
(4)

Specificity: It can be expressed in the ratio of the number of TN with respect to the
total number of components that are appropriate to the negative class (i.e., the sum of TN
and FP). The mathematical expression is shown in Equation (5).

Recall =
TN

TN + FP
(5)

The Area Under the Curve: It can be obtained by performing a definite integral
between the two points. This can be measured by using the following mathematical
Equation (6).

Area Under the Curve =
1
2
(

TP
TP + FN

+
TN

TN + FP
) (6)

3.3. Result Analysis

After the training of the proposed model, the learning data was passed to the combined
extracted features by using transfer learning. Besides the proposed VGGNet approach,
different transfer learning models were also implemented, as shown in Table 5.

Table 5. The performance comparison of the proposed model on an original and augmented dataset.

Sr. No Architecture Sensitivity Specificity Accuracy Precision F1-Score AUC

1 ResNet 0.854 0.943 0.924 0.977 0.918 0.924
2 GoogLeNet 0.895 0.989 0.937 0.99 0.939 0.935
3 AlexNet 0.953 0.938 0.946 0.937 0.945 0.949
4 VGGNet 0.949 0.984 0.966 0.985 0.967 0.971

From Table 5, we can make observations that the ResNet, GoogLeNet, and AlexNet
gave average accuracies of 92.40%, 93.75%, and 94.62%, respectively. Meanwhile, the
proposed model stated an accuracy level of about 96.61%. Thus, it is an efficient method
for detecting and classifying diabetic retinopathy. Furthermore, the data is split into the
training and testing data. For training purposes, 80% of the data were used; for testing the
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proposed architecture, the rest of the 20% of unseen data were used. The proposed model
was assessed through both the original and augmented dataset, as presented in Table 6.

Table 6. The performance comparison of the proposed model and different existing transfer learning
models on an original and augmented dataset.

Sr. No. Dataset Accuracy AUC

1 Original 0.936 0.954

2 Augmented 0.966 0.971

The proposed model showed higher accuracy for detecting and classifying diabetic
retinopathy on a balanced augmented dataset. In Figure 7a,b, it can be observed that the
training plots and validation accuracy improved constantly.
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Figure 7. (a) Shows the training and validation accuracy of the proposed framework and (b) shows
the training and validation loss of the proposed fine-tuned VGGNet framework.

The fine-tuned version of VGGNet displayed exceedingly acceptable performance.
The rate of training and validation accuracy continuously improved with an increase in
each epoch. The loss curve indicates that the loss of training and validation decreased with
each epoch.

The implemetation of various data augmentation techniques, the augmented data was
obtained. The acquired augmented data was distributed into training and testing data as
shown in the Table 7.

Table 7. The distribution of augmented data into training and testing data.

Sr. No. Grade Severity Original Images Augmented Images Training Validation

1 0 Normal 25,810 25,810 20,648 5162
2 1 Mild 2443 24,430 19,544 4886
3 2 Moderate 5292 26,460 21,168 5292
4 3 Severe 873 25,317 20,254 5063
5 4 PDR 708 25,488 20,390 5098

Total 35,126 127,505 102,004 25,501

In addition to average results, the best performance results were also important and
retained in this paper because the validation accuracy can be altered with each epoch
during the CNN training. Table 8 shows the prevalence of the disease on the basis of the
diagnosis test.
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Table 8. Diagnostic test for the prevalence of the disease.

DR Normal

Identified as having DR TP FP

Identified as having no DR FN TN

The comparative analysis of the proposed architecture was carried out with five
up-to-date methods to relate its strength, as shown in Table 9.

Table 9. Performance comparison of the proposed framework with baseline methods.

Reference # Author Year Model Target Accuracy

[23] Rakhlin 2018 CNN DR 85.3
[24] Sengupta et al. 2019 CNN DR 90.4
[25] Gulshan et al. 2016 CNN DR 91.7
[26] Chang 2018 CNN DR 78.7
[27] Wan 2018 CNN rDR 95.68
[28] Gargeya 2017 CNN DR 95.03
[29] Zeng 2019 CNN rDR 82.2
[30] Zhang 2019 CNN rDR 87.06
[31] Lin 2018 CNN DR 86.10
[32] Li 2018 DCNN vtDR 86.04
[33] Seth 2018 CNN rDR 84.36

[34] Keel 2018 Third-party
DL algorithm rDR 89.08

Proposed Method CNN DR 96.6

Observations made by the methods in [23–34] gave average accuracies of 82.3, 85.3,
90.4, 78.7, 95.68, 95.03%, and so on, as shown in the figure. This method yielded an accuracy
of 96.6%, which is much higher than baseline methods. The experimental outputs indicate
the strength of the proposed architecture with respect to the accuracy as compared to
existing methods. Figure 8 shows the receiver the operating characteristic (ROC) and AUC
curve of the proposed model.
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4. Conclusions

We proposed a framework for the automatic detection and classification of diabetic
retinopathy by using the transfer learning concept in this paper. For the preprocessing,
we employed effective preprocessing techniques such as interpolation image resizing,
weighted Gaussian blur, and non-local mean denoising (NLMD) for improving the vis-
ibility of an image. After preprocessing, transfer learning-based VGGNet architecture
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was used for classifying DR into the normal, mild, moderate, severe, and proliferative
classes. The experimental studies were conducted on the Kaggle EyePACS public dataset.
The effectiveness of the method was evaluated using numerical procedures such as the
sensitivity, specificity, accuracy, and area under the curve.

We explored the extraction of features in fundus images using VGGNet architecture
and united using the concept of transfer learning to improve classification performance.
Moreover, we also employed various data augmentation operations on each grade of DR
differently to make a balanced dataset and improve the efficiency of architecture. Finally,
the results of the proposed study were compared to many deep learning architectures, and
a comparison was made with the baseline methods. It is concluded that this proposed
method displays exceptional presentation regarding various statistical measures. In the
future, we intend to use hand-engineered features along with CNN to further improve
classification accuracy.
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